1. Field of the Invention
This invention relates generally to the field of pay computer-controlled games, either games of skills or games of chance, and more particularly to the field of cashless gaming systems and methods.
2. Description of the Related Art
Conventional cashless methods and systems typically rely on centralized accounts (player accounts, anonymous game session accounts, voucher verification accounts, smartcard reconciliation accounts) that are managed by a complex central system (i.e., controlled or coupled to a central server). Such systems require the services of highly trained professionals and the maintenance of stringent security procedures. This leads to high operational costs that are not acceptable for small to medium sized gaming operators. Centralized systems of the prior art are described in U.S. Pat. No. 6,280,328, U.S. Pat. No. 5,265,874 and U.S. Pat. No. 6,048,269.
What are needed, therefore, are cashless gaming methods and systems that overcome the complexity, cost and manpower of conventional gaming methods and systems.
It is, therefore, an object of this invention to offer gaming terminals and network architectures, systems and methods that overcome the complexity, cost and manpower inherent in conventional gaming terminals, network architectures, methodologies and systems.
According to embodiments of the present invention, each networked gaming terminal comprises a highly secure enclosure because of the strict regulations that are imposed in gaming jurisdictions. The compute modules thereof are carefully partitioned with multiple locking mechanisms and alarm systems. Strict procedures must be followed to access various parts and functions. Furthermore, the computer architecture and components of motherboards used in gaming machines are becoming enormously powerful and extremely reliable due to the technology advancements; they are identical to those used in computer servers that constitute complex central systems. Therefore, networked gaming terminals may offer an exceptionally secure and exceedingly powerfill computing environment.
In the present invention, the gaming terminals are advantageously configured to support functions traditionally implemented by centralized systems. Gaming terminal software is adapted to support, in addition to the local terminal game session metering (including, for example, tracking of winning and available credits), the game session metering of one or a plurality of peer gaming terminals. A patron may deposit funds in cash or using any other financial instrument (including, for example, any form of electronic money) to a cashier or an automated network cashier, or alternatively a gaming terminal equipped with cash acceptors or other financial instrument acceptors. According to an embodiment of the present invention, the amount of money deposited by the patron is credited by the cashier, or gaming terminal or using a basic stateless (i.e. not managing the session context) entry terminal, into a peer gaming terminal or alternatively, the equivalent operation may be automatically performed by the automated network cashier. In the case of a gaming terminal equipped with financial instrument acceptors, the credit is entered directly into the local meters (i.e., not stored in memory prior to being transferred to the local meters of the gaming terminal). The patron may be issued an identification (ID) instrument that may be accepted by any gaming terminal in the network. Each time the patron submits his ID instrument (or is otherwise authenticated) to a new gaming terminal on the network, the new gaming terminal may broadcast a network message to request the previously used gaming terminal to transfer to the new terminal the game session meters corresponding to the ID instrument. That is, the request may be broadcast to all gaming terminals on the network and only the gaming terminal owning the requested game session meters will respond to the broadcast request. Consequently, the patron may play on any gaming terminal within the network and change gaming terminal at any time as long as his game session credit is not exhausted. The transfer of meters preferably occurs directly between the networked gaming terminals, without the intermediary of an intervening terminal or storage.
The patron may redeem his winnings or remaining credits by submitting his ID instrument to an automated cashier, to a cashier equipped with a network entry terminal or to a gaming terminal equipped with a coin dispenser or a bank note dispenser. For the payment operation, payment authorization may be obtained via the network from the last gaming terminal on which the patron last played.
For fault tolerance, each game session meter may be mirrored on one or a plurality of peer gaming terminals on the network.
It is a further object of this invention supports all forms of cashless instruments such as:
a player account whereby primary meters are the monetary credit balance associated to a patron ID;
an anonymous game session account whereby primary meters are the monetary credit balance associated to a game session ID;
a voucher verification account whereby the primary meters are the monetary value and the hash associated to the value amount and the encrypted signature printed or encoded on the voucher;
a time gaming account whereby the primary meters are the time-to-play balance and the total of the winnings associated to a patron ID or to a game session ID;
a smartcard reconciliation account whereby the primary meters are a mirrored copy of the meters managed in the secure electronic module of the smartcard.
Reference will now be made in detail to the construction and operation of preferred implementations of the present invention illustrated in the accompanying drawings. The following description of the preferred implementations of the present invention is only exemplary of the invention. Indeed, the present invention is not limited to these implementations, but may be realized by other implementations.
According to one embodiment of the present invention, the gaming terminals (GT) 104 are advantageously configured to support functions traditionally implemented by central systems.
The exact same cashless session 407 through 412 may be performed by making use of the automated cashier 300 instead of the cashier terminal 600 wherein the role of the cashier 402 is replaced by an automated program executed in the automated cashier. Suitable peripherals may be attached to the automated cashier 300 to allow for the deposit of funds, capture of information and dispensing of ID instruments.
The start 413 of a cashless game session 414 may be identified by the patron 401 receiving the ID instrument 412. The end 436 of the cashless game session 414 may be identified by the patron 401 redeeming the credit balance of money 435 associated with his ID instrument 412, or when the credit associated with his ID is exhausted (null).
The patron 401 (who forms no part of the present invention and whose actions are only described herein to illustrate aspects of the present invention), subsequent to receiving an ID instrument 412, may execute a certain number of cashless operations associated with his ID instrument. The patron may choose any gaming terminal 403, 404, 405 or 406 to play on. In the illustration of
When the cash-out signal 422 is activated by the patron, the player may use the remaining of his or her credit to play on another gaming terminal or redeem the credit for cash. A ticket showing the credit remaining may be printed if a printing device is available on gaming terminal 403. In the illustration of
When the cash-out signal 429 is activated, the player may use any remaining credit to play on another gaming terminal or may redeem the credit for cash (or for credit on another payment instrument or account). A ticket showing the credit remaining may be printed if a printing device is available on gaming terminal 406. In the illustration of
In another embodiment of the present invention, the patron may request partial payment of the credit available. In that case, the gaming terminal 406 having ownership of the cashless meters associated with the patron or the patron's ID instrument authorizes payment and initiates an update process instead of a closure process 433 in order to reflect the amount of payment made,. Subsequently, the patron may continue to play on any gaming terminal or later redeem his credits at a cashier using his ID instrument.
For clarity of illustration, the server-less gaming session 400 of
The method and a server-less gaming session 400 of the present invention and illustrated on
The patron submits his ID instrument at 712 to the selected gaming terminal that requests transfer of meters associated with the ID instrument from a previous gaming terminal 714 (the gaming terminal on which the patron last played), or alternatively in the case whereby the patron has just remitted finds to a cashier, from the gaming terminal on which the cashier has initialized the meters on. The previous gaming terminal may deny transfer of meters if the credit is exhausted or already paid, thus preventing the patron from playing a game.
Once the transfer of meters from a previous gaming terminal is successfully completed, the patron may repetitively play a game at 716 as long as his credit is not exhausted as shown at 718 or the cash-out signal has not been activated 722, 726. In case credit is exhausted 728, the patron can no longer play and the cashless game session terminates at 730.
After activating the cash-out signal 722, 724, the patron may choose another gaming terminal 708 and proceed as described above. If the patron no longer wishes to play 732, he may go to a cashier 734 to redeem his credit by submitting his ID instrument 736. The cashier may use his network entry terminal to obtain payment authorization from the previous gaming terminal 738. If authorization is given, the credit amount available in the meters of the previous gaming machine may be paid by the cashier 740, and the meters at the previous gaming terminal may be updated to reflect the payment.
Traditionally and in compliance with gaming jurisdictions, gaming terminals may contain a set of highly secure persistent meters comprising essentially the patron's credit balance, the meters associated with a variety of events such as coins inserted and coins given out for a particular game, and an audit log of events for later examination if required. The operation for updating the meters in accordance with the game session activity is commonly referred as metering. Metering also infers that the necessary storage and access means to the meters are available. Applying modern object oriented programming and persistent data storage techniques such as structured access to non-volatile memory, the meters may be defined as a class that is dynamically instantiated at run time. It may be clear to those acquainted with object programming that a multitude of instantiations of the meters class may be obtained, the only limitation being the memory available. Memory being plentiful on a typical computer unit controlling a gaming terminal, a substantial number of instantiations of the meters class may be obtained.
The other meters 512, 514 and 516 are associated with gaming sessions played previously on the gaming terminal 502 and are frozen. Alternatively, any of the meters 512, 514 or 516 may be associated with a new cashless session initiated by the cashier when the patron deposit funds as explained relative to steps 407 to 412. Gaming terminal 502 retain ownership of the frozen meters until ownership is requested by another gaming terminal. If the credit remaining on these meters is exhausted, transfer of ownership to another gaming terminal is denied. If a redeem operation is requested by the cashier terminal or the automated cashier while some credit is available, the gaming terminal 502 authorizes payment, closes the meters and retains ownership of the closed meters. The closed meters may be erased at a later time in order to recover storage space in accordance with the gaming operator's rules for flushing old data.
The peer-to-peer metering method object of the present invention is suitable for supporting all forms of cashless instruments such as:
a player account;
an anonymous game session account;
a voucher verification account;
a time gaming account;
a smartcard reconciliation account.
A cashless player account is identified by a unique identifier key assigned to a patron that points to a set of records stored in computer memory containing the patron's personal details and the state of the cashless session. The records may be queried and updated by authorized software using the key that may be derived from the ID instrument submitted. The state of the cashless session comprises essentially the balance of monetary credit available to the patron (the primary meters) and some auxiliary attributes (secondary meters) reflecting the games played, the time stamping of various operations, a flag indicating if the meters are owned by the gaming terminal hosting the meters and a flag indicating if available credits have already been paid.
An anonymous game session account is identified by a unique identifier key assigned to a game session that points to a set of records stored in computer memory containing the state of the cashless session. The records may be queried and updated by authorized software using the key that may be derived from the ID instrument submitted. The state of the cashless session comprises essentially (the primary meters) the balance of monetary credit available to the anonymous older of the ID instrument and some auxiliary attributes (secondary meters) reflecting the games played, the time stamping of various operations, a flag indicating if the meters are owned by the gaming terminal hosting the meters and a flag indicating if available credits have already been paid.
A voucher verification account is identified by a unique identifier key assigned to a voucher that points to a set of records stored in computer memory containing the state of the cashless session. The records may be queried and updated by authorized software using the key that may be derived from the voucher submitted. The state of the cashless session comprises essentially (the primary meters) the balance of monetary credit available to the holder of the voucher and verification data, and some auxiliary attributes (secondary meters) reflecting the games played, the time stamping of various operations, a flag indicating if the meters are owned by the gaming terminal hosting the meters, and a flag indicating if available credits have already been paid. In the case of a cash-out at the gaming terminal or alternatively when funds are remitted to a human cashier or an automated cashier, a voucher comprising clear text and machine-readable code representing the monetary value of the credit available and some verification data is dispensed. The clear text may indicate the value of the credit available, or simply said for the holder, “the value of voucher”. In the case of a cash-in at the gaming terminal or alternatively when requesting the redeem of credits to a human cashier or an automated cashier, a voucher comprising clear text and machine-readable code representing the monetary value of the credit available and some verification data is read. The unique identifier key is derived from the verification data upon reading the clear text and/or the machine-readable code. The associated records are then queried in order to authenticate the value of the voucher by comparing the verification data contained in the records with the verification data read from the voucher. It should be apparent to those acquainted with secure transactional techniques that the unique identifier key, or alternatively the verification data, may be a hash or an encrypted signature of all or portion of the clear text and/or the machine-readable code.
A time gaming account may be associated to a patron or be anonymous.
A time gaming player account is identified by a unique identifier key assigned to a patron that points to a set of records stored in computer memory containing the patron's personal details and the state of the cashless session. The records may be queried and updated by authorized software using the key that may be derived from the ID instrument submitted. The state of the cashless session comprises essentially (the primary meters) the balance of time-to-play and the total of winnings available to the patron, and some auxiliary attributes (secondary meters) reflecting the games played, the time stamping of various operations, a flag indicating if the meters are owned by the gaming terminal hosting the meters and a flag indicating if available credits have already been redeeming.
An anonymous time gaming account is identified by a unique identifier key assigned to a gaming session that points to a set of records stored in computer memory containing the state of the cashless session. The records may be queried and updated by authorized software using the key that may be derived from the ID instrument submitted. The state of the cashless session comprises essentially (the primary meters) the balance of time-to-play and the total of winnings available to the anonymous holder of the ID instrument, and some auxiliary attributes (secondary meters) reflecting the games played, the time stamping of various operations, a flag indicating if the meters are owned by the gaming terminal hosting the meters and a flag indicating if available credits have already been redeeming.
A smartcard reconciliation account is identified by a unique identifier key assigned to a smartcard that points to a set of records stored in computer memory. The records therefor are a “slave” mirrored copy of same records containing the state of the cashless session that are maintained in the electronic circuits of the smartcard. The smartcard maintains the “master” copy of the records. The slaved mirrored records may be queried but not updated by authorized software using the key that may be derived from the smartcard submitted. The state of the cashless session comprises essentially the balance of credit available to the holder of the smartcard (the primary meters) and some auxiliary attributes (secondary meters) reflecting the games played, the time stamping of various operations, a flag indicating if the meters are owned by the gaming terminal hosting the meters and a flag indicating if available credits have already been paid. The slaved mirrored records are used to reconcile accounting when the smartcard is used in order to detect possible forgery. Alternatively, the slaved mirrored records are used as a backup repository to pay the holder of the smartcard in case of the failure of the smartcard. When used for backup, the “slave” records may be updated by authorized software using the key that may be derived from the smartcard submitted (embossed code for example).
The ID instrument used to derive the unique identifier key may be submitted in a variety of ways such as typing a user ID and password, keying-in a code on a keypad, presenting a bar-coded voucher, an encoded card, a secure electronic ID device or recognizing biometric features.
The unique identifier keys are commonly called GUI or global unique identifier.
Fault tolerance may be achieved by replicating (mirroring) cashless meters owned by a given gaming terminal to a predetermined number of other peer gaming terminals. The gaming terminals holding replicated cashless meters are second-level owners that may be solicited in case the primary owner does not respond to the initial transfer request, whether the request is a direct one to an identified gaming terminal or broadcast to all gaming terminals on the network. For example, in case gaming terminal 403 does not obtain any reply subsequent to its transfer request broadcast 417 after a time-out, a new broadcast message explicitly soliciting secondary owners may be sent on the network. Gaming machine 403 would then accept the transfer of cashless meters from a responding secondary owner.
In another embodiment of the present invention, the gaming terminal may be able to encode information on the ID instrument submitted by the patron. The identification of the gaming machine used by the patron may advantageously be encoded on the ID instrument such that the next used gaming terminal knows immediately upon reading the ID instrument the identity of the previously used gaming terminal. Consequently, the next used terminal may establish network communication with the previously used gaming terminal without having to rely on network broadcasting techniques to find out which of the connected gaming terminals is the last used gaming terminal, thus reducing the time to start transferring the meters and the overall network traffic. In case the last gaming terminal is not contactable, a network broadcast to find a secondary owner of the meters may be initiated.
The invention offers a simple distributed peer-to-peer metering of cashless game sessions that is secure, robust, scalable and that requires no central system.
All the sensitive operations are carried out by the secure software (preferably certified by a recognized test laboratory) that executes in each gaming machine. All the access points to any of the gaming terminals such as the cashier terminal or the automated cashier require only basic stateless client applications operating over a secure network protocol such as IPSec or SSL. Moreover, sophisticated relational databases are not required. Wireless laptops or palmtops may be advantageously used as entry or control terminals.
The invention supports all forms of cashless instruments such as:
a player account whereby primary meters are the monetary credit balance associated to a patron ID;
an anonymous game session account whereby primary meters are the monetary credit balance associated to a game session ID;
a voucher verification account whereby the primary meters are the monetary value and the hash associated to the value amount and the encrypted signature printed or encoded on the voucher;
a time gaming account whereby the primary meters are the time-to-play balance and the total of the winnings associated to a patron ID or to a game session ID;
a smartcard reconciliation account whereby the primary meters are a mirrored copy of the meters managed in the secure electronic module of the smartcard.
The invention may be advantageously deployed for small to medium size game operators.
Number | Date | Country | |
---|---|---|---|
Parent | 10163177 | Jun 2002 | US |
Child | 11112373 | Apr 2005 | US |