Currently systems for providing transparent services for multicast data messages at a network edge device prematurely forward the multicast data messages to the plurality of destinations of the multicast data message. Accordingly, a solution that provides a transparent service at a network edge device before forwarding the multicast data message to the plurality of destinations is required.
Some embodiments of the invention provide novel methods for providing a set of transparent services for multicast data messages traversing a network edge forwarding element (e.g., a forwarding element executing on an NSX edge) operating at a boundary between two networks (e.g., an external site and a local site operating the network edge device). The method analyzes data messages received at the network edge device to determine whether they require a service provided at the boundary and whether they are unicast or multicast (including broadcast). For data messages that are determined to be multicast data messages that require a particular service, the method modifies a multicast destination media access control (MAC) address of the data message to be a unicast destination MAC address and provides, without processing by a standard routing function, the modified data message directly to an interface associated with a service node that provides the particular service required by the data message. The method receives the serviced data message and modifies the destination MAC address to be the original multicast destination MAC address and provides the data message to the standard routing function to forward the serviced data message to a set of destinations associated with the multicast destination address.
By avoiding the routing function when providing the data message to the service node, the method ensures that the data message is not sent, before the service is provide, by the standard routing function to the destinations associated with the destination multicast internet protocol (IP) address. Furthermore, by changing only the destination MAC address while maintaining the destination multicast IP address throughout the data message processing, the method is able to generate the original destination multicast MAC address using known techniques (i.e., using the last 23 bits of the multicast IP address as the last 23 bits of a multicast MAC address where the first 25 bits of the multicast MAC address are a prefix that identifies the MAC address as a multicast MAC address).
Identifying that the data message is a multicast data message requiring a particular service, in some embodiments, includes using policy-based routing rules that each specify a set of data message attributes (e.g., an n-tuple, or an n-tuple and a VLAN tag, etc.) and a set of actions (e.g., modifying the data message, or identifying a next hop for the data message) for data messages with attributes that match the specified set of data message attributes. In some embodiments, an action specifies a universally unique identifier (UUID) of a service node for a required service. The UUID, for a first set of services, identifies a service node cluster with a specific service provide node further identified with a separate UUID or a network or link layer address identifying a particular service node associated with the cluster's UUID. For a second set of services, the UUID identifies a particular service node directly. A set of UUIDs identifying particular service nodes may also be specified in the policy-based routing rule with one of the UUIDs being selected at random or based on a load balancing operation to provide the service for a particular data message. The particular service node may operate on a physical device separate from the network edge device or may operate on the network edge device (as a virtual machine, container, etc.). Additionally, the service node be a third party service node. The different uses of UUIDs, in some embodiments, depend on the structure of the service nodes.
For policy-based rules that apply to unicast as well as multicast data messages, in some embodiments, a separate determination that the data message is a multicast data message is made. In some embodiments, the determination is based on (1) a destination IP address being in a range of IP addresses assigned to multicast data messages (i.e., 224.0.0.0/4), (2) a bit in the destination MAC address (e.g., the last bit of the first octet) that indicates that the MAC address is a multicast MAC address, or (3) on both the IP and MAC addresses. The determination, in some embodiments, is a further condition specified in the actions of the policy-based routing rule.
For data messages identified as being multicast and as requiring a service, the method uses the UUID of a particular service node identified from the policy-based routing rule to identify a set of interfaces associated with the particular service node. The set of interfaces includes a first and second interface that are used as source and destination interfaces with the direction of the data message (north to south or south to north) determining, in some embodiments, which interface is used as a source and which is used as a destination. The identified interfaces, in some embodiments, are identified by MAC addresses associated with the first and second interfaces. The MAC addresses are then used to replace the source and destination MAC addresses of the received multicast data message and the modified data message is sent out the interface identified as the source interface (corresponding to the MAC address used as the source MAC address of the modified data message).
Upon receiving the modified data message, the service node provides the service (e.g., services the data message) and returns the serviced data message to the interface identified as the destination interface (i.e., the interface having the MAC address used as the destination MAC address in the modified data message). In some embodiments, the service node is a bump-in-the-wire service node that does not alter the header values of the serviced data message. In all embodiments, the service node preserves the destination IP address and the destination MAC address so as to enable delivery to the proper interface and the recovery of the multicast MAC address. The service node (or switches associated with the service node) forward the modified data message based on layer 2 (e.g., MAC) addresses such that the modified data message is treated as a unicast data message based on the unicast MAC address of the destination interface.
As discussed above, when the serviced data message is returned, the method modifies the destination MAC address of the serviced data message to be a multicast MAC address corresponding to the unmodified destination multicast IP address of the data message. The modification, in some instances is performed using a function that calculates a multicast MAC address from the multicast IP address (e.g., by using a prefix associated with multicast MAC addresses and a last 23 bits that match the last 23 bits of the multicast IP address), while in other embodiments a lookup table that stores the destination multicast IP and the original corresponding destination multicast MAC address is used to identify the correct destination multicast MAC address for the serviced data message. In some embodiments, the serviced data message is also modified by adding or modifying a tag bit to indicate that the particular service has been performed. The tag value (e.g., ‘0’ or ‘1’) is used, in some embodiments, in a policy-based routing rule as a condition for requiring a service, such that a set of specified attributes of a tagged data message match all the attributes specified in the policy-baser routing rule except for the tag value and based on the mismatch in tag values the data message is processed by the standard routing function without having the service provided for a second time. In some embodiments, a service chain may be identified with a set of multiple tags identifying each corresponding to a different service required by the data message.
The standard routing function forwards the multicast data message by identifying outgoing interfaces associated with the multicast IP address. In some embodiments, the outgoing interfaces are identified in an outgoing interfaces (OIF) list that is populated with all interfaces over which a join message has been received for the particular multicast group (i.e., multicast IP address). After identifying the outgoing interfaces, the routing function modifies each data message to identify the IP and MAC addresses of the interface on which the data message is forwarded as the source IP and MAC address of the data message while leaving the destination IP and MAC addresses as the multicast IP and MAC addresses of the original data message. This allows the data message to be identified by downstream routers as a multicast data message and to not return the data message to the interface from which it was received.
The preceding Summary is intended to serve as a brief introduction to some embodiments of the invention. It is not meant to be an introduction or overview of all inventive subject matter disclosed in this document. The Detailed Description that follows and the Drawings that are referred to in the Detailed Description will further describe the embodiments described in the Summary as well as other embodiments. Accordingly, to understand all the embodiments described by this document, a full review of the Summary, Detailed Description, the Drawings and the Claims is needed. Moreover, the claimed subject matters are not to be limited by the illustrative details in the Summary, Detailed Description and the Drawing.
The novel features of the invention are set forth in the appended claims. However, for purposes of explanation, several embodiments of the invention are set forth in the following figures.
In the following detailed description of the invention, numerous details, examples, and embodiments of the invention are set forth and described. However, it will be clear and apparent to one skilled in the art that the invention is not limited to the embodiments set forth and that the invention may be practiced without some of the specific details and examples discussed.
As used in this document, the term data packet, packet, data message, or message refers to a collection of bits in a particular format sent across a network. It should be understood that the term data packet, packet, data message, or message may be used herein to refer to various formatted collections of bits that may be sent across a network, such as Ethernet frames, IP packets, TCP segments, UDP datagrams, etc. While the examples below refer to data packets, packets, data messages, or messages, it should be understood that the invention should not be limited to any specific format or type of data message. Also, as used in this document, references to L2, L3, L4, and L7 layers (or layer 2, layer 3, layer 4, layer 7) are references to the second data link layer, the third network layer, the fourth transport layer, and the seventh application layer of the OSI (Open System Interconnection) layer model, respectively.
A user-defined logical network as used in this application, refers to a particular logical abstraction of a network. In some embodiments, the logical abstraction includes logical counterparts to network elements of a physical network such as forwarding elements (e.g., switches, hubs, routers, bridges, etc.), load balancers, and firewalls. The logical forwarding elements (e.g., a logical switch or logical router) in some embodiments are implemented by a set of MFEs (e.g., physical or virtual/software switches, or routers) executing on host machines. A particular host machine may host data compute nodes (DCNs) (e.g., containers or virtual machines (VMs)) connected to multiple different logical networks and the set of MFEs implements all the logical networks to which the DCNs logically connect. Additional details of the structure and function of logical networks are described in U.S. Pat. No. 9,787,605 which is hereby incorporated by reference.
Some embodiments of the invention provide novel methods for providing a transparent service for multicast data messages traversing a network edge forwarding element (e.g., a network edge forwarding element executing on an NSX edge) operating at a boundary between two networks (e.g., an external site and a local site operating the network edge device). In some embodiments, the local site implements a logical network that includes machines that may be sources or destinations of multicast data messages.
The two service routers 250 and 255 each operate on a different gateway machine 240 and 245 (e.g., network edge devices). The gateway machines 240 and 245 are host machines similar to the machines 235 in some embodiments, but host service routers rather than user VMs. In some embodiments, the gateway machines 240 and 245 each include an MFE as well as the service router, in order for the MFE to handle any logical switching necessary. For instance, packets sent from the external network 220 may be routed by the service router implementation on the gateway and then subsequently switched by the MFE on the same gateway. The gateway devices are each shown as connecting to a service node (SN) 225 shown as a separate device. The SNs 225 are implemented on the gateway devices 240 and 245 as a namespace, a virtual machine, or a container in different embodiments. In embodiments with multiple service nodes there may be a combination of local and external service nodes in any form factor described above.
The SRs may be implemented in a namespace, a virtual machine, or as a VRF in different embodiments. The SRs may operate in an active-active or active-standby mode in some embodiments, depending on whether any stateful services (e.g., firewalls) are configured on the logical router. When stateful services are configured, some embodiments require only a single active SR. In some embodiments, the active and standby service routers are provided with the same configuration, but the MFEs 230 are configured to send packets via a tunnel to the active SR (or to the MFE on the gateway machine with the active SR). Only if the tunnel is down will the MFE send packets to the standby gateway.
The gateway machines 240 and 245 are configured, in some embodiments, to provide received data messages to service nodes executing locally on gateway machines or to service nodes executing on other physical machines (e.g., SNs 225) to provide a service to the received data messages. The service nodes, in some embodiments, are provided by third-party vendors and provide transparent (e.g., bump-in-the-wire) services that do not change the source and destination addresses of a serviced data message.
Process 100 of
After receiving (at 105) the data message the process 100 analyzes the data message and determines (at 110) that the data message is a multicast data message that requires a service. The determination, in some embodiments, is based on a set of policy-based routing (PBR) rules that define policies for handling data messages matching specified criteria. In some embodiments, the specified criteria include criteria that are not in L2-L4 headers. Additionally, the policies may specify actions in addition to, or instead, of identifying a next hop. For example, a PBR rule, in some embodiments, specifies a UUID associated with a service node to provide a service required for the data message. In some embodiments, a separate determination is made as to whether a data message requiring a service based on a PBR rule is a multicast data message (i.e., has a multicast destination address). The determination is made based on at least one of a destination internet protocol (IP) address (e.g., by identifying the multicast prefix 224.0.0.0/4) and a destination media access control (MAC) address (e.g., by identifying that the last bit of the first octet is equal to 1).
Once the process 100 determines (at 110) that the data message is a multicast data message that requires a service, the service changes (at 115) the multicast destination MAC address to a unicast destination MAC address associated with a service node that provides the service to the data message. In some embodiments, the service node is identified in the determining operation as the determination is based on a PBR rule identifying a service node as a next hop and providing information to determine at least one MAC address associated with the service node.
After changing (at 115) the multicast destination MAC address into the unicast destination MAC address, the process 100 provides (at 120) the data message to the service node for the service node to provide the service. In some embodiments, providing the data message to the service node includes bypassing a routing function (i.e., not using layer 3 attributes of the data message to forward the message) in order to avoid providing the unserviced data message to a set of outgoing interfaces associated with the multicast destination IP address. Instead, the process provides the data message to the service node using a layer 2 processing that identifies destinations based on the MAC address.
Once the service node has provided the required service, the service node sends the serviced data message back to the network edge forwarding element (e.g., SR 250 or 255) which receives (at 125) the data message. The process 100 then restores (at 130) the multicast destination MAC to the original multicast destination MAC address of the received data message. Restoring (at 130) the MAC address, in some embodiments, is performed by a module in the network edge forwarding element that determines that the data message is a multicast data message that should have its multicast MAC address restored based on at least the presence of a multicast destination IP address and at least one of a service interface and a determination that the data message has been received from the service engine. In some embodiments, the multicast destination MAC address is stored in a table associated with the multicast destination IP address and restoring the multicast destination MAC address includes identifying the multicast destination MAC address using the multicast destination IP address. In other embodiments, the multicast destination MAC address is generated from the multicast destination IP address through a known process (i.e., using the last 23 bits of the multicast IP address as the last 23 bits of a multicast MAC address where the first 25 bits of the multicast MAC address are a prefix that identifies the MAC address as a multicast MAC address).
Once the multicast destination MAC address has been restored (at 130), the process forwards (at 135) the serviced data message to the set of destinations. In some embodiments, forwarding the data message includes identifying outgoing interfaces associated with the multicast IP address. In some embodiments, the outgoing interfaces are identified in an outgoing interfaces (01F) list that is populated with all interfaces over which a join message has been received for the particular multicast group (i.e., multicast IP address) (excluding the interface on which the multicast data message was received. After identifying the outgoing interfaces, the routing function modifies each data message to identify the IP and MAC addresses of the interface on which the data message is forwarded as the source IP and MAC address of the data message while leaving the destination IP and MAC addresses as the multicast IP and MAC addresses of the original data message. This allows the data message to be identified by downstream routers as a multicast data message and to not return the data message to the interface from which it was received.
For network traffic coming from the external network 220, the set of outgoing interfaces includes the interfaces of the SR 250 or 255 that are connected to MFEs 230 executing on hosts 235 with machines (e.g., VMs) that have joined the multicast group associated with the multicast destination IP address of the data message. The SR, in some embodiments, will first forward the traffic to a single interface connected to a distributed router implemented on the gateway device 240 or 245 and then perform the distributed router processing to identify the set of outgoing interfaces associated with the MFEs 230 or the hosts 235. For network traffic being sent to the external network 220, the set of outgoing interfaces include any routers in the external network connected to the SR 250 or 255 (or gateway device 240 or 245) that have joined the multicast group associated with the multicast destination IP address. Once the serviced data message is forwarded (at 135) the process 100 ends.
By avoiding the routing function when providing the data message to the service node, the method ensures that the data message is not sent, before the service is provide, by the standard routing function to the destinations associated with the destination multicast internet protocol (IP) address. Furthermore, by changing only the destination MAC address while maintaining the destination multicast IP address throughout the data message processing, the method is able to generate the original destination multicast MAC address using known techniques (i.e., using the last 23 bits of the multicast IP address as the last 23 bits of a multicast MAC address where the first 25 bits of the multicast MAC address are prefix that identifies the MAC address as a multicast MAC address).
Network edge device 310 also includes a set of interfaces 301 (e.g., “IF N” a north-facing interface) and 304-307 (e.g., IF_S1 to IF_S4 a set of south-facing interfaces) connecting the network edge device 310 to the external and internal networks, respectively. Additionally, the network edge device 310 has a set of interfaces 302 and 303 (IF_SN1 and IF_SN2, respectively) for connecting to a service node (SN) 320. As shown the interfaces of the network edge device 310 correspond to (unlabeled) interfaces of the routing module 330. One of ordinary skill in the art will understand that the SPN 320 may instead be implemented as a container or service virtual machine executing on the network edge device 310 and represents only a single service node and associated interfaces where other embodiments will have multiple service nodes or service node clusters each with their own associated interfaces.
Rule 1b is specified to apply to a south-bound multicast data message received at the interface IF N 301 with destination IP address MIP1 with any source IP and source MAC address (indicated by the wildcard symbol *). Rule 1b also includes a requirement that the tag value is equal to 0 such that any data message that hits rule 1a will no longer hit rule 1b). However, for newly received multicast data messages, the action specified in rule 1b updates the source and destination MAC to be the MAC addresses of IF_SN1 and IF_SN2 respectively so that the south-bound data message is passed through the SPN 320 in a direction that indicates that the data message is south-bound. Rules 2a and 2b that would apply to a north-bound data message with destination multicast IP address MIP1 are also illustrated to indicate that the interfaces/MAC addresses identified as the source and destination interfaces/MAC addresses are reversed in rule 2b to indicate that the data message is north-bound. One of ordinary skill in the art will understand that the illustrated rules are merely exemplary and that many more rules will be specified in some embodiments, and that the rules may specify any relevant data message attribute and associated actions.
After receiving (at 405) the data message, the process 400 determines (at 410) whether the data message requires a service. Identifying that the data message requires a particular service, in some embodiments, includes using policy-based routing rules that each specify a set of data message attributes (e.g., an n-tuple, or an n-tuple and a VLAN tag, etc.) and a set of actions (e.g., modifying the data message, or identifying a next hop for the data message) for data messages with attributes that match the specified set of data message attributes. In some embodiments, identifying that a data message requires a particular service includes an action that specifies a universally unique identifier (UUID) of a service node for a required service.
In some embodiments, the UUID for a first set of services identifies a service node cluster and a particular service provide node in the service node cluster is further identified using a separate UUID or a network or link layer address identifying the particular service node of the service node cluster (i.e., associated with the cluster's UUID). For a second set of services, the UUID identifies, in some embodiments, a particular service node directly. In some embodiments, a set of UUIDs identifying particular service nodes may also be specified in the policy-based routing rule with one of the UUIDs being selected at random or based on a load balancing operation to provide the service for a particular data message. The particular service node identified using the policy-base routing rules may operate on a physical device separate from the network edge device or may operate on the network edge device (as a virtual machine, container, etc.). Additionally, the service node be a third party service node. The different uses of UUIDs, in some embodiments, depend on the structure of the service nodes.
If the process 400 determines (at 410) that the data message does not require a service, the process 400 forwards (at 455) the data message. Determining that a data message does not require a service, in some embodiments, includes not finding a matching policy-based routing rule in a set of policy-based routing rules. In some embodiments, forwarding the data message includes processing the data message using the standard routing function of the network edge device to determine a next hop for the data message. The standard routing function, in some embodiments, determines a next hop based on the destination IP address (whether unicast or multicast).
If the process 400 determines (at 410) that the data message requires a service, the process 400 identifies (at 415) a set of interfaces associated with the service node for the required service. The set of interfaces, in some embodiments, are a pair of interfaces that are both connected to the network edge device such that the data message is sent and received by the network edge device without any change in the data message headers performed by the service node (e.g., the service is provided transparently, or as a bump-in-the-wire service). In some embodiments, the set of interfaces is identified using the UUIDs identified from the policy-based routing rule that matches the received data message. The UUIDs, in some embodiments are used to identify MAC addresses of the interfaces. One of ordinary skill in the art will appreciate that there are a number of other ways to identify the set of interfaces associated with a particular service node or cluster selected to provide a service.
Some embodiments not only identify the set of interfaces, but also identify which interface will be designated the source and which will be designated the destination based on the interface of the network edge device on which the data message was received. Identifying one interface as a destination for all traffic traversing from a north-facing interface to a south-facing interface and the other interface as the destination for all traffic in the other direction allows the data messages direction to be assessed from the destination MAC address of the data messages received from the service nodes.
After identifying (at 415) the interfaces associated with a service node, the process 400 determines (at 420) if the data message is a multicast data message. In some embodiments, the determination is based on (1) a destination IP address being in a range of IP addresses assigned to multicast data messages (i.e., 224.0.0.0/4), (2) a bit in the destination MAC address (e.g., the last bit of the first octet) that indicates that the MAC address is a multicast MAC address, or (3) on both the IP and MAC addresses. The determination, in some embodiments, is a further condition specified in the actions of the policy-based routing rule. For policy-based rules that apply to unicast as well as multicast data messages, in some embodiments, this determination is an independent determination of whether the data message is a multicast data. In some embodiments, the determination is inherent in a policy-based rule and does not require the separate determination of operation 420.
If the process determines (at 420) that the data message is not a multicast data message the process 400 uses (at 430) the standard routing function to route/forward the unicast data message to the identified service node interfaces. Alternatively, if the process determines (at 420) that the data message is a multicast data message, the process bypasses the standard routing function and updates (at 425) the source and destination MAC addresses to those identified for the service node.
After either processing (at 430) the data message by the standard routing function or updating (at 425) the MAC addresses of the data message, the data message is sent (at 435) out of the interface identified as the outgoing (source) interface for the service node (e.g., based on the direction of the traffic) to be returned on the interface identified as the destination interface. Upon receiving the modified data message, the service node provides the service (e.g., services the data message) and returns the serviced data message to the interface identified as the destination interface (i.e., the interface having the MAC address used as the destination MAC address in the modified data message). In some embodiments, the service node is a bump-in-the-wire service node that does not alter the header values of the serviced data message. In all embodiments, the service node preserves the destination IP address and the destination MAC address so as to enable delivery to the proper interface and the recovery of the multicast MAC address. The service node (or switches associated with the service node) forward the modified data message based on layer 2 (e.g., MAC) addresses such that the modified data message is treated as a unicast data message based on the unicast MAC address of the destination interface.
The serviced data message is then received (at 440) by the network edge device from the service node. When the serviced data message is returned, the method determines (at 445) if the data message is a multicast data message. In some embodiments, the determination is based on the destination IP address (e.g., if the destination IP address is in the 244.0.0.0/4 subnet). If the process determines (at 445) that the data message is a multicast data message, the process restores (at 450) the destination MAC address of the serviced data message to be the multicast MAC address corresponding to the unmodified destination multicast IP address of the data message. The restoration, in some instances is performed using a function that calculates a multicast MAC address from the multicast IP address (e.g., by using a prefix associated with multicast MAC addresses and a last 23 bits that match the last 23 bits of the multicast IP address), while in other embodiments a lookup table that stores the destination multicast IP and the original corresponding destination multicast MAC address used to identify the correct destination multicast MAC address for the serviced data message.
In some embodiments, the serviced data message is also modified (at 450) by adding or modifying a tag bit to indicate that the particular service has been performed. The tag value (e.g., ‘0’ or ‘1’) is used, in some embodiments, in a policy-based routing rule as a condition for requiring a service, such that a set of specified attributes of a tagged data message match all the attributes specified in the policy-based routing rule except for the tag value and based on the mismatch in tag values the data message is processed by the standard routing function without having the service provided for a second time. In some embodiments, a service chain may be identified with a set of multiple tags identifying each corresponding to a different service required by the data message.
After the multicast data message has its multicast MAC address restored (at 450) or the data message is determined (at 445) to be a unicast data message the data message is forwarded (at 455) to the destination (or set of destinations for a multicast data message). In some embodiments, the forwarding is performed by a standard routing function that identifies a destination (or set of destinations) based on the destination IP address of the data message. For multicast data messages a standard routing function forwards the multicast data message by identifying outgoing interfaces associated with the multicast IP address. In some embodiments, the outgoing interfaces are identified in an outgoing interfaces (OIF) list that is populated with all interfaces over which a join message has been received for the particular multicast group (i.e., multicast IP address). After identifying the outgoing interfaces, the routing function modifies each data message to identify the IP and MAC addresses of the interface on which the data message is forwarded as the source IP and MAC address of the data message while leaving the destination IP and MAC addresses as the multicast IP and MAC addresses of the original data message. This allows the data message to be identified by downstream routers as a multicast data message and to not return the data message to the interface from which it was received.
Many of the above-described features and applications are implemented as software processes that are specified as a set of instructions recorded on a computer readable storage medium (also referred to as computer readable medium). When these instructions are executed by one or more processing unit(s) (e.g., one or more processors, cores of processors, or other processing units), they cause the processing unit(s) to perform the actions indicated in the instructions. Examples of computer readable media include, but are not limited to, CD-ROMs, flash drives, RAM chips, hard drives, EPROMs, etc. The computer readable media does not include carrier waves and electronic signals passing wirelessly or over wired connections.
In this specification, the term “software” is meant to include firmware residing in read-only memory or applications stored in magnetic storage, which can be read into memory for processing by a processor. Also, in some embodiments, multiple software inventions can be implemented as sub-parts of a larger program while remaining distinct software inventions. In some embodiments, multiple software inventions can also be implemented as separate programs. Finally, any combination of separate programs that together implement a software invention described here is within the scope of the invention. In some embodiments, the software programs, when installed to operate on one or more electronic systems, define one or more specific machine implementations that execute and perform the operations of the software programs.
The set of network manager computers 520 provide control and management functionality for defining and managing the instantiation of one or more GVMs on each host (for the purposes of this discussion, network controllers 520 includes both management plane and control plane controllers). These controllers are also responsible, in some embodiments, for configuring the network edge device to provide the functionality described above. These controllers, in some embodiments, also provide control and management functionality for defining and managing multiple logical networks that are defined on the common software forwarding elements of the hosts.
Many of the above-described features and applications are implemented as software processes that are specified as a set of instructions recorded on a computer readable storage medium (also referred to as computer readable medium). When these instructions are executed by one or more processing unit(s) (e.g., one or more processors, cores of processors, or other processing units), they cause the processing unit(s) to perform the actions indicated in the instructions. Examples of computer readable media include, but are not limited to, CD-ROMs, flash drives, RAM chips, hard drives, EPROMs, etc. The computer readable media does not include carrier waves and electronic signals passing wirelessly or over wired connections.
In this specification, the term “software” is meant to include firmware residing in read-only memory or applications stored in magnetic storage, which can be read into memory for processing by a processor. Also, in some embodiments, multiple software inventions can be implemented as sub-parts of a larger program while remaining distinct software inventions. In some embodiments, multiple software inventions can also be implemented as separate programs. Finally, any combination of separate programs that together implement a software invention described here is within the scope of the invention. In some embodiments, the software programs, when installed to operate on one or more electronic systems, define one or more specific machine implementations that execute and perform the operations of the software programs.
The bus 505 collectively represents all system, peripheral, and chipset buses that communicatively connect the numerous internal devices of the computer system 500. For instance, the bus 505 communicatively connects the processing unit(s) 510 with the read-only memory 530, the system memory 525, and the permanent storage device 535.
From these various memory units, the processing unit(s) 510 retrieve instructions to execute and data to process in order to execute the processes of the invention. The processing unit(s) may be a single processor or a multi-core processor in different embodiments. The read-only-memory (ROM) 530 stores static data and instructions that are needed by the processing unit(s) 510 and other modules of the computer system. The permanent storage device 535, on the other hand, is a read-and-write memory device. This device is a non-volatile memory unit that stores instructions and data even when the computer system 500 is off. Some embodiments of the invention use a mass-storage device (such as a magnetic or optical disk and its corresponding disk drive) as the permanent storage device 535.
Other embodiments use a removable storage device (such as a floppy disk, flash drive, etc.) as the permanent storage device. Like the permanent storage device 535, the system memory 525 is a read-and-write memory device. However, unlike storage device 535, the system memory is a volatile read-and-write memory, such a random access memory. The system memory stores some of the instructions and data that the processor needs at runtime. In some embodiments, the invention's processes are stored in the system memory 525, the permanent storage device 535, and/or the read-only memory 530. From these various memory units, the processing unit(s) 510 retrieve instructions to execute and data to process in order to execute the processes of some embodiments.
The bus 505 also connects to the input and output devices 540 and 545. The input devices enable the user to communicate information and select commands to the computer system. The input devices 540 include alphanumeric keyboards and pointing devices (also called “cursor control devices”). The output devices 545 display images generated by the computer system. The output devices include printers and display devices, such as cathode ray tubes (CRT) or liquid crystal displays (LCD). Some embodiments include devices such as a touchscreen that function as both input and output devices.
Finally, as shown in
Some embodiments include electronic components, such as microprocessors, storage and memory that store computer program instructions in a machine-readable or computer-readable medium (alternatively referred to as computer-readable storage media, machine-readable media, or machine-readable storage media). Some examples of such computer-readable media include RAM, ROM, read-only compact discs (CD-ROM), recordable compact discs (CD-R), rewritable compact discs (CD-RW), read-only digital versatile discs (e.g., DVD-ROM, dual-layer DVD-ROM), a variety of recordable/rewritable DVDs (e.g., DVD-RAM, DVD-RW, DVD+RW, etc.), flash memory (e.g., SD cards, mini-SD cards, micro-SD cards, etc.), magnetic and/or solid state hard drives, read-only and recordable Blu-Ray® discs, ultra-density optical discs, any other optical or magnetic media, and floppy disks. The computer-readable media may store a computer program that is executable by at least one processing unit and includes sets of instructions for performing various operations. Examples of computer programs or computer code include machine code, such as is produced by a compiler, and files including higher-level code that are executed by a computer, an electronic component, or a microprocessor using an interpreter.
While the above discussion primarily refers to microprocessor or multi-core processors that execute software, some embodiments are performed by one or more integrated circuits, such as application specific integrated circuits (ASICs) or field programmable gate arrays (FPGAs). In some embodiments, such integrated circuits execute instructions that are stored on the circuit itself.
As used in this specification, the terms “computer”, “server”, “processor”, and “memory” all refer to electronic or other technological devices. These terms exclude people or groups of people. For the purposes of the specification, the terms display or displaying means displaying on an electronic device. As used in this specification, the terms “computer readable medium,” “computer readable media,” and “machine readable medium” are entirely restricted to tangible, physical objects that store information in a form that is readable by a computer. These terms exclude any wireless signals, wired download signals, and any other ephemeral or transitory signals.
While the invention has been described with reference to numerous specific details, one of ordinary skill in the art will recognize that the invention can be embodied in other specific forms without departing from the spirit of the invention. For instance, several figures conceptually illustrate processes. The specific operations of these processes may not be performed in the exact order shown and described. The specific operations may not be performed in one continuous series of operations, and different specific operations may be performed in different embodiments. Furthermore, the process could be implemented using several sub-processes, or as part of a larger macro process. Thus, one of ordinary skill in the art would understand that the invention is not to be limited by the foregoing illustrative details, but rather is to be defined by the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
6006264 | Colby et al. | Dec 1999 | A |
6104700 | Haddock et al. | Aug 2000 | A |
6154448 | Petersen et al. | Nov 2000 | A |
6772211 | Lu et al. | Aug 2004 | B2 |
6779030 | Dugan et al. | Aug 2004 | B1 |
6826694 | Dutta et al. | Nov 2004 | B1 |
6880089 | Bommareddy et al. | Apr 2005 | B1 |
6985956 | Luke et al. | Jan 2006 | B2 |
7013389 | Srivastava et al. | Mar 2006 | B1 |
7209977 | Acharya et al. | Apr 2007 | B2 |
7239639 | Cox et al. | Jul 2007 | B2 |
7379465 | Aysan et al. | May 2008 | B2 |
7406540 | Acharya et al. | Jul 2008 | B2 |
7447775 | Zhu et al. | Nov 2008 | B1 |
7480737 | Chauffour et al. | Jan 2009 | B2 |
7487250 | Siegel | Feb 2009 | B2 |
7649890 | Mizutani et al. | Jan 2010 | B2 |
7698458 | Liu et al. | Apr 2010 | B1 |
7818452 | Matthews et al. | Oct 2010 | B2 |
7898959 | Arad | Mar 2011 | B1 |
7948986 | Ghosh et al. | May 2011 | B1 |
8078903 | Parthasaralhy et al. | Dec 2011 | B1 |
8094575 | Vadlakonda et al. | Jan 2012 | B1 |
8175863 | Ostermeyer et al. | May 2012 | B1 |
8190767 | Maufer et al. | May 2012 | B1 |
8201219 | Jones | Jun 2012 | B2 |
8223634 | Tanaka et al. | Jul 2012 | B2 |
8224885 | Doucette et al. | Jul 2012 | B1 |
8230493 | Davidson et al. | Jul 2012 | B2 |
8266261 | Akagi | Sep 2012 | B2 |
8339959 | Moisand et al. | Dec 2012 | B1 |
8451735 | Li | May 2013 | B2 |
8484348 | Subramanian et al. | Jul 2013 | B2 |
8488577 | Macpherson | Jul 2013 | B1 |
8521879 | Pena et al. | Aug 2013 | B1 |
8615009 | Ramamoorthi et al. | Dec 2013 | B1 |
8707383 | Bade et al. | Apr 2014 | B2 |
8743885 | Khan et al. | Jun 2014 | B2 |
8804720 | Rainovic et al. | Aug 2014 | B1 |
8804746 | Wu et al. | Aug 2014 | B2 |
8811412 | Shippy | Aug 2014 | B2 |
8830834 | Sharma et al. | Sep 2014 | B2 |
8832683 | Heim | Sep 2014 | B2 |
8849746 | Candea et al. | Sep 2014 | B2 |
8856518 | Sridharan et al. | Oct 2014 | B2 |
8862883 | Cherukuri et al. | Oct 2014 | B2 |
8868711 | Skjolsvold et al. | Oct 2014 | B2 |
8873399 | Bothos et al. | Oct 2014 | B2 |
8874789 | Zhu | Oct 2014 | B1 |
8892706 | Dalal | Nov 2014 | B1 |
8913611 | Koponen et al. | Dec 2014 | B2 |
8914406 | Haugsnes et al. | Dec 2014 | B1 |
8966024 | Koponen et al. | Feb 2015 | B2 |
8966029 | Zhang et al. | Feb 2015 | B2 |
8971345 | McCanne et al. | Mar 2015 | B1 |
8989192 | Foo et al. | Mar 2015 | B2 |
8996610 | Sureshchandra et al. | Mar 2015 | B1 |
9009289 | Jacob | Apr 2015 | B1 |
9015823 | Koponen et al. | Apr 2015 | B2 |
9094464 | Scharber et al. | Jul 2015 | B1 |
9104497 | Mortazavi | Aug 2015 | B2 |
9148367 | Kandaswamy et al. | Sep 2015 | B2 |
9172603 | Padmanabhan et al. | Oct 2015 | B2 |
9178709 | Higashida | Nov 2015 | B2 |
9191293 | Iovene et al. | Nov 2015 | B2 |
9195491 | Zhang et al. | Nov 2015 | B2 |
9203748 | Jiang et al. | Dec 2015 | B2 |
9225638 | Jain et al. | Dec 2015 | B2 |
9225659 | McCanne et al. | Dec 2015 | B2 |
9232342 | Seed et al. | Jan 2016 | B2 |
9258742 | Pianigiani et al. | Feb 2016 | B1 |
9264313 | Manuguri et al. | Feb 2016 | B1 |
9277412 | Freda et al. | Mar 2016 | B2 |
9397946 | Yadav | Jul 2016 | B1 |
9407540 | Kumar et al. | Aug 2016 | B2 |
9407599 | Koponen et al. | Aug 2016 | B2 |
9419897 | Cherian et al. | Aug 2016 | B2 |
9479358 | Klosowski et al. | Oct 2016 | B2 |
9503530 | Niedzielski | Nov 2016 | B1 |
9531590 | Jain et al. | Dec 2016 | B2 |
9577845 | Thakkar et al. | Feb 2017 | B2 |
9602380 | Strassner | Mar 2017 | B2 |
9660905 | Dunbar et al. | May 2017 | B2 |
9686192 | Sengupta et al. | Jun 2017 | B2 |
9686200 | Pettit et al. | Jun 2017 | B2 |
9705702 | Foo et al. | Jul 2017 | B2 |
9705775 | Zhang et al. | Jul 2017 | B2 |
9749229 | Previdi et al. | Aug 2017 | B2 |
9755898 | Jain et al. | Sep 2017 | B2 |
9755971 | Wang et al. | Sep 2017 | B2 |
9774537 | Jain et al. | Sep 2017 | B2 |
9787605 | Zhang et al. | Oct 2017 | B2 |
9804797 | Ng et al. | Oct 2017 | B1 |
9825810 | Jain et al. | Nov 2017 | B2 |
9860079 | Cohn et al. | Jan 2018 | B2 |
9900410 | Dalal | Feb 2018 | B2 |
9935827 | Jain et al. | Apr 2018 | B2 |
9979641 | Jain et al. | May 2018 | B2 |
9985896 | Koponen et al. | May 2018 | B2 |
10013276 | Fahs et al. | Jul 2018 | B2 |
10042722 | Chigurupati et al. | Aug 2018 | B1 |
10075470 | Vaidya et al. | Sep 2018 | B2 |
10079779 | Zhang et al. | Sep 2018 | B2 |
10084703 | Kumar et al. | Sep 2018 | B2 |
10089127 | Padmanabhan et al. | Oct 2018 | B2 |
10091276 | Bloomquist et al. | Oct 2018 | B2 |
10104169 | Moniz et al. | Oct 2018 | B1 |
10129077 | Jain et al. | Nov 2018 | B2 |
10129180 | Zhang et al. | Nov 2018 | B2 |
10135636 | Jiang et al. | Nov 2018 | B2 |
10135737 | Jain et al. | Nov 2018 | B2 |
10158573 | Lee et al. | Dec 2018 | B1 |
10187306 | Nainar et al. | Jan 2019 | B2 |
10200493 | Bendapudi et al. | Feb 2019 | B2 |
10212071 | Kancherla et al. | Feb 2019 | B2 |
10225137 | Jain et al. | Mar 2019 | B2 |
10237379 | Kumar et al. | Mar 2019 | B2 |
10250501 | Ni | Apr 2019 | B2 |
10257095 | Jain et al. | Apr 2019 | B2 |
10284390 | Kumar et al. | May 2019 | B2 |
10320679 | Jain et al. | Jun 2019 | B2 |
10333822 | Jeuk et al. | Jun 2019 | B1 |
10341233 | Jain et al. | Jul 2019 | B2 |
10341427 | Jalan et al. | Jul 2019 | B2 |
10375155 | Cai et al. | Aug 2019 | B1 |
10397275 | Jain et al. | Aug 2019 | B2 |
10514941 | Zhang et al. | Dec 2019 | B2 |
10516568 | Jain et al. | Dec 2019 | B2 |
10547692 | Salgueiro et al. | Jan 2020 | B2 |
10594743 | Hong et al. | Mar 2020 | B2 |
10609091 | Hong et al. | Mar 2020 | B2 |
10623309 | Gampel et al. | Apr 2020 | B1 |
10645060 | Ao et al. | May 2020 | B2 |
10659252 | Boutros et al. | May 2020 | B2 |
10693782 | Jain et al. | Jun 2020 | B2 |
10708229 | Sevinc et al. | Jul 2020 | B2 |
10728174 | Boutros et al. | Jul 2020 | B2 |
10742544 | Roeland et al. | Aug 2020 | B2 |
10757077 | Rajahalme et al. | Aug 2020 | B2 |
10797910 | Boutros et al. | Oct 2020 | B2 |
10797966 | Boutros et al. | Oct 2020 | B2 |
10805181 | Boutros et al. | Oct 2020 | B2 |
10805192 | Boutros et al. | Oct 2020 | B2 |
10812378 | Nainar et al. | Oct 2020 | B2 |
10853111 | Gupta et al. | Dec 2020 | B1 |
10929171 | Gokhale et al. | Feb 2021 | B2 |
10938716 | Chin et al. | Mar 2021 | B1 |
10944673 | Naveen et al. | Mar 2021 | B2 |
10949244 | Naveen et al. | Mar 2021 | B2 |
11003482 | Rolando et al. | May 2021 | B2 |
11012420 | Sevinc et al. | May 2021 | B2 |
11036538 | Lecuyer et al. | Jun 2021 | B2 |
11038782 | Boutros et al. | Jun 2021 | B2 |
11042397 | Mishra et al. | Jun 2021 | B2 |
11075839 | Zhuang et al. | Jul 2021 | B2 |
20020078370 | Tahan | Jun 2002 | A1 |
20020097724 | Halme et al. | Jul 2002 | A1 |
20020194350 | Lu et al. | Dec 2002 | A1 |
20030065711 | Acharya et al. | Apr 2003 | A1 |
20030093481 | Mitchell et al. | May 2003 | A1 |
20030097429 | Wu et al. | May 2003 | A1 |
20030105812 | Flowers et al. | Jun 2003 | A1 |
20030236813 | Abjanic | Dec 2003 | A1 |
20040066769 | Ahmavaara et al. | Apr 2004 | A1 |
20040210670 | Anerousis et al. | Oct 2004 | A1 |
20040215703 | Song et al. | Oct 2004 | A1 |
20050021713 | Dugan et al. | Jan 2005 | A1 |
20050089327 | Ovadia et al. | Apr 2005 | A1 |
20050091396 | Nilakantan et al. | Apr 2005 | A1 |
20050114429 | Caccavale | May 2005 | A1 |
20050114648 | Akundi et al. | May 2005 | A1 |
20050132030 | Hopen et al. | Jun 2005 | A1 |
20050198200 | Subramanian et al. | Sep 2005 | A1 |
20050249199 | Albert et al. | Nov 2005 | A1 |
20060069776 | Shim et al. | Mar 2006 | A1 |
20060112297 | Davidson | May 2006 | A1 |
20060130133 | Andreev et al. | Jun 2006 | A1 |
20060155862 | Kathi et al. | Jul 2006 | A1 |
20060195896 | Fulp et al. | Aug 2006 | A1 |
20060233155 | Srivastava | Oct 2006 | A1 |
20070061492 | Riel | Mar 2007 | A1 |
20070121615 | Weill et al. | May 2007 | A1 |
20070214282 | Sen | Sep 2007 | A1 |
20070248091 | Khalid et al. | Oct 2007 | A1 |
20070260750 | Feied et al. | Nov 2007 | A1 |
20070288615 | Keohane et al. | Dec 2007 | A1 |
20070291773 | Khan et al. | Dec 2007 | A1 |
20080005293 | Bhargava et al. | Jan 2008 | A1 |
20080031263 | Ervin et al. | Feb 2008 | A1 |
20080046400 | Shi et al. | Feb 2008 | A1 |
20080049614 | Briscoe et al. | Feb 2008 | A1 |
20080049619 | Twiss | Feb 2008 | A1 |
20080049786 | Ram et al. | Feb 2008 | A1 |
20080072305 | Casado et al. | Mar 2008 | A1 |
20080084819 | Parizhsky et al. | Apr 2008 | A1 |
20080095153 | Fukunaga et al. | Apr 2008 | A1 |
20080104608 | Hyser et al. | May 2008 | A1 |
20080195755 | Lu et al. | Aug 2008 | A1 |
20080225714 | Denis | Sep 2008 | A1 |
20080239991 | Applegate et al. | Oct 2008 | A1 |
20080247396 | Hazard | Oct 2008 | A1 |
20080276085 | Davidson et al. | Nov 2008 | A1 |
20080279196 | Friskney et al. | Nov 2008 | A1 |
20090003349 | Havemann et al. | Jan 2009 | A1 |
20090003364 | Fendick et al. | Jan 2009 | A1 |
20090003375 | Havemann et al. | Jan 2009 | A1 |
20090019135 | Eswaran et al. | Jan 2009 | A1 |
20090037713 | Khalid et al. | Feb 2009 | A1 |
20090063706 | Goldman et al. | Mar 2009 | A1 |
20090129271 | Ramankutty et al. | May 2009 | A1 |
20090172666 | Yahalom et al. | Jul 2009 | A1 |
20090199268 | Ahmavaara et al. | Aug 2009 | A1 |
20090235325 | Dimitrakos et al. | Sep 2009 | A1 |
20090238084 | Nadeau et al. | Sep 2009 | A1 |
20090249472 | Litvin et al. | Oct 2009 | A1 |
20090265467 | Peles et al. | Oct 2009 | A1 |
20090271586 | Shaath | Oct 2009 | A1 |
20090299791 | Blake et al. | Dec 2009 | A1 |
20090300210 | Ferris | Dec 2009 | A1 |
20090303880 | Maltz et al. | Dec 2009 | A1 |
20090307334 | Maltz et al. | Dec 2009 | A1 |
20090327464 | Archer et al. | Dec 2009 | A1 |
20100031360 | Seshadri et al. | Feb 2010 | A1 |
20100036903 | Ahmad et al. | Feb 2010 | A1 |
20100100616 | Bryson et al. | Apr 2010 | A1 |
20100131638 | Kondamuru | May 2010 | A1 |
20100165985 | Sharma et al. | Jul 2010 | A1 |
20100223364 | Wei | Sep 2010 | A1 |
20100223621 | Joshi et al. | Sep 2010 | A1 |
20100235915 | Memon et al. | Sep 2010 | A1 |
20100265824 | Chao et al. | Oct 2010 | A1 |
20100281482 | Pike et al. | Nov 2010 | A1 |
20100332595 | Fullagar et al. | Dec 2010 | A1 |
20110010578 | Dominguez et al. | Jan 2011 | A1 |
20110016348 | Pace et al. | Jan 2011 | A1 |
20110022695 | Dalal et al. | Jan 2011 | A1 |
20110022812 | Van Der Linden et al. | Jan 2011 | A1 |
20110035494 | Pandey et al. | Feb 2011 | A1 |
20110040893 | Karaoguz et al. | Feb 2011 | A1 |
20110055845 | Nandagopal et al. | Mar 2011 | A1 |
20110058563 | Saraph et al. | Mar 2011 | A1 |
20110090912 | Shippy | Apr 2011 | A1 |
20110164504 | Bothos et al. | Jul 2011 | A1 |
20110194563 | Shen et al. | Aug 2011 | A1 |
20110211463 | Matityahu et al. | Sep 2011 | A1 |
20110225293 | Rathod | Sep 2011 | A1 |
20110235508 | Goel et al. | Sep 2011 | A1 |
20110261811 | Battestilli et al. | Oct 2011 | A1 |
20110268118 | Schlansker et al. | Nov 2011 | A1 |
20110271007 | Wang et al. | Nov 2011 | A1 |
20110276695 | Maldaner | Nov 2011 | A1 |
20110283013 | Grosser et al. | Nov 2011 | A1 |
20110295991 | Aida | Dec 2011 | A1 |
20110317708 | Clark | Dec 2011 | A1 |
20120005265 | Ushioda et al. | Jan 2012 | A1 |
20120014386 | Xiong et al. | Jan 2012 | A1 |
20120023231 | Ueno | Jan 2012 | A1 |
20120054266 | Kazerani et al. | Mar 2012 | A1 |
20120089664 | Igelka | Apr 2012 | A1 |
20120137004 | Smith | May 2012 | A1 |
20120140719 | Hui et al. | Jun 2012 | A1 |
20120144014 | Natham et al. | Jun 2012 | A1 |
20120147894 | Mulligan et al. | Jun 2012 | A1 |
20120155266 | Patel et al. | Jun 2012 | A1 |
20120176932 | Wu et al. | Jul 2012 | A1 |
20120185588 | Error | Jul 2012 | A1 |
20120195196 | Ghai et al. | Aug 2012 | A1 |
20120207174 | Shieh | Aug 2012 | A1 |
20120213074 | Goldfarb et al. | Aug 2012 | A1 |
20120230187 | Tremblay et al. | Sep 2012 | A1 |
20120239804 | Liu et al. | Sep 2012 | A1 |
20120246637 | Kreeger et al. | Sep 2012 | A1 |
20120281540 | Khan et al. | Nov 2012 | A1 |
20120287789 | Aybay et al. | Nov 2012 | A1 |
20120303784 | Zisapel et al. | Nov 2012 | A1 |
20120303809 | Patel et al. | Nov 2012 | A1 |
20120311568 | Jansen | Dec 2012 | A1 |
20120317260 | Husain et al. | Dec 2012 | A1 |
20120317570 | Dalcher et al. | Dec 2012 | A1 |
20120331188 | Riordan et al. | Dec 2012 | A1 |
20130003735 | Chao et al. | Jan 2013 | A1 |
20130021942 | Bacthu | Jan 2013 | A1 |
20130031544 | Sridharan et al. | Jan 2013 | A1 |
20130039218 | Narasimhan et al. | Feb 2013 | A1 |
20130044636 | Koponen et al. | Feb 2013 | A1 |
20130058346 | Sridharan et al. | Mar 2013 | A1 |
20130073743 | Ramasamy et al. | Mar 2013 | A1 |
20130100851 | Bacthu | Apr 2013 | A1 |
20130125120 | Zhang et al. | May 2013 | A1 |
20130136126 | Wang et al. | May 2013 | A1 |
20130142048 | Gross, IV et al. | Jun 2013 | A1 |
20130148505 | Koponen et al. | Jun 2013 | A1 |
20130151661 | Koponen et al. | Jun 2013 | A1 |
20130159487 | Patel et al. | Jun 2013 | A1 |
20130160024 | Shtilman et al. | Jun 2013 | A1 |
20130163594 | Sharma et al. | Jun 2013 | A1 |
20130166703 | Hammer et al. | Jun 2013 | A1 |
20130170501 | Egi et al. | Jul 2013 | A1 |
20130201989 | Hu et al. | Aug 2013 | A1 |
20130227097 | Yasuda et al. | Aug 2013 | A1 |
20130227550 | Weinstein et al. | Aug 2013 | A1 |
20130287026 | Davie | Oct 2013 | A1 |
20130291088 | Shieh | Oct 2013 | A1 |
20130297798 | Arisoylu et al. | Nov 2013 | A1 |
20130311637 | Kamath et al. | Nov 2013 | A1 |
20130318219 | Kancherla | Nov 2013 | A1 |
20130332983 | Koorevaar et al. | Dec 2013 | A1 |
20130336319 | Liu | Dec 2013 | A1 |
20130343174 | Guichard et al. | Dec 2013 | A1 |
20130343378 | Veteikis et al. | Dec 2013 | A1 |
20140003232 | Guichard et al. | Jan 2014 | A1 |
20140003422 | Mogul et al. | Jan 2014 | A1 |
20140010085 | Kavunder et al. | Jan 2014 | A1 |
20140029447 | Schrum, Jr. | Jan 2014 | A1 |
20140046997 | Dain et al. | Feb 2014 | A1 |
20140046998 | Dain et al. | Feb 2014 | A1 |
20140052844 | Nayak et al. | Feb 2014 | A1 |
20140059204 | Nguyen et al. | Feb 2014 | A1 |
20140059544 | Koganty et al. | Feb 2014 | A1 |
20140068602 | Gember et al. | Mar 2014 | A1 |
20140092738 | Grandhi et al. | Apr 2014 | A1 |
20140092906 | Kandaswamy et al. | Apr 2014 | A1 |
20140092914 | Kondapalli | Apr 2014 | A1 |
20140096183 | Jain et al. | Apr 2014 | A1 |
20140101226 | Khandekar et al. | Apr 2014 | A1 |
20140101656 | Zhu et al. | Apr 2014 | A1 |
20140115578 | Cooper et al. | Apr 2014 | A1 |
20140129715 | Mortazavi | May 2014 | A1 |
20140149696 | Frenkel et al. | May 2014 | A1 |
20140164477 | Springer et al. | Jun 2014 | A1 |
20140169168 | Jalan et al. | Jun 2014 | A1 |
20140169375 | Khan et al. | Jun 2014 | A1 |
20140195666 | Dumitriu et al. | Jul 2014 | A1 |
20140207968 | Kumar et al. | Jul 2014 | A1 |
20140254374 | Janakiraman et al. | Sep 2014 | A1 |
20140254591 | Mahadevan | Sep 2014 | A1 |
20140269487 | Kalkunte | Sep 2014 | A1 |
20140269717 | Thubert | Sep 2014 | A1 |
20140269724 | Mehler et al. | Sep 2014 | A1 |
20140281029 | Danforth | Sep 2014 | A1 |
20140282526 | Basavaiah et al. | Sep 2014 | A1 |
20140301388 | Jagadish et al. | Oct 2014 | A1 |
20140304231 | Kamath et al. | Oct 2014 | A1 |
20140307744 | Dunbar et al. | Oct 2014 | A1 |
20140310391 | Sorenson et al. | Oct 2014 | A1 |
20140310418 | Sorenson et al. | Oct 2014 | A1 |
20140317677 | Vaidya et al. | Oct 2014 | A1 |
20140321459 | Kumar et al. | Oct 2014 | A1 |
20140330983 | Zisapel et al. | Nov 2014 | A1 |
20140334485 | Jain et al. | Nov 2014 | A1 |
20140334488 | Guichard et al. | Nov 2014 | A1 |
20140351452 | Bosch et al. | Nov 2014 | A1 |
20140362682 | Guichard et al. | Dec 2014 | A1 |
20140362705 | Pan | Dec 2014 | A1 |
20140369204 | Anand et al. | Dec 2014 | A1 |
20140372567 | Ganesh et al. | Dec 2014 | A1 |
20140372616 | Arisoylu et al. | Dec 2014 | A1 |
20140372702 | Subramanyam et al. | Dec 2014 | A1 |
20150003453 | Sengupta et al. | Jan 2015 | A1 |
20150003455 | Haddad et al. | Jan 2015 | A1 |
20150009995 | Gross, IV et al. | Jan 2015 | A1 |
20150016279 | Zhang et al. | Jan 2015 | A1 |
20150023354 | Li et al. | Jan 2015 | A1 |
20150026345 | Ravinoothala et al. | Jan 2015 | A1 |
20150026362 | Guichard et al. | Jan 2015 | A1 |
20150030024 | Venkataswami et al. | Jan 2015 | A1 |
20150052262 | Chanda et al. | Feb 2015 | A1 |
20150052522 | Chanda et al. | Feb 2015 | A1 |
20150063102 | Mestery et al. | Mar 2015 | A1 |
20150063364 | Thakkar et al. | Mar 2015 | A1 |
20150071301 | Dalal | Mar 2015 | A1 |
20150073967 | Katsuyama | Mar 2015 | A1 |
20150078384 | Jackson et al. | Mar 2015 | A1 |
20150092564 | Aldrin | Apr 2015 | A1 |
20150103645 | Shen et al. | Apr 2015 | A1 |
20150103679 | Tessmer et al. | Apr 2015 | A1 |
20150103827 | Quinn et al. | Apr 2015 | A1 |
20150109901 | Tan et al. | Apr 2015 | A1 |
20150124608 | Agarwal et al. | May 2015 | A1 |
20150124622 | Kovvali et al. | May 2015 | A1 |
20150124840 | Bergeron | May 2015 | A1 |
20150138973 | Kumar et al. | May 2015 | A1 |
20150139041 | Bosch et al. | May 2015 | A1 |
20150146539 | Mehta et al. | May 2015 | A1 |
20150156035 | Foo et al. | Jun 2015 | A1 |
20150188770 | Naiksatam et al. | Jul 2015 | A1 |
20150195197 | Yong et al. | Jul 2015 | A1 |
20150213087 | Sikri | Jul 2015 | A1 |
20150215819 | Bosch et al. | Jul 2015 | A1 |
20150222640 | Kumar et al. | Aug 2015 | A1 |
20150236948 | Dunbar et al. | Aug 2015 | A1 |
20150237013 | Bansal et al. | Aug 2015 | A1 |
20150242197 | Alfonso et al. | Aug 2015 | A1 |
20150263901 | Kumar et al. | Sep 2015 | A1 |
20150263946 | Tubaltsev et al. | Sep 2015 | A1 |
20150271102 | Antich | Sep 2015 | A1 |
20150280959 | Vincent | Oct 2015 | A1 |
20150281089 | Marchetti | Oct 2015 | A1 |
20150281098 | Pettit et al. | Oct 2015 | A1 |
20150281125 | Koponen et al. | Oct 2015 | A1 |
20150281179 | Raman et al. | Oct 2015 | A1 |
20150281180 | Raman et al. | Oct 2015 | A1 |
20150288671 | Chan et al. | Oct 2015 | A1 |
20150288679 | Ben-Nun et al. | Oct 2015 | A1 |
20150295831 | Kumar et al. | Oct 2015 | A1 |
20150365322 | Shatzkamer et al. | Dec 2015 | A1 |
20150370596 | Fahs et al. | Dec 2015 | A1 |
20150372840 | Benny et al. | Dec 2015 | A1 |
20150372911 | Yabusaki et al. | Dec 2015 | A1 |
20150381493 | Bansal | Dec 2015 | A1 |
20150381494 | Cherian et al. | Dec 2015 | A1 |
20150381495 | Cherian et al. | Dec 2015 | A1 |
20160006654 | Fernando et al. | Jan 2016 | A1 |
20160028640 | Zhang et al. | Jan 2016 | A1 |
20160043901 | Sankar et al. | Feb 2016 | A1 |
20160057050 | Ostrom et al. | Feb 2016 | A1 |
20160057687 | Horn et al. | Feb 2016 | A1 |
20160065503 | Yohe et al. | Mar 2016 | A1 |
20160080253 | Wang et al. | Mar 2016 | A1 |
20160087888 | Jain et al. | Mar 2016 | A1 |
20160094384 | Jain et al. | Mar 2016 | A1 |
20160094389 | Jain et al. | Mar 2016 | A1 |
20160094451 | Jain et al. | Mar 2016 | A1 |
20160094452 | Jain et al. | Mar 2016 | A1 |
20160094453 | Jain et al. | Mar 2016 | A1 |
20160094454 | Jain et al. | Mar 2016 | A1 |
20160094455 | Jain et al. | Mar 2016 | A1 |
20160094456 | Jain et al. | Mar 2016 | A1 |
20160094457 | Jain et al. | Mar 2016 | A1 |
20160094631 | Jain et al. | Mar 2016 | A1 |
20160094632 | Jain et al. | Mar 2016 | A1 |
20160094633 | Jain et al. | Mar 2016 | A1 |
20160094642 | Jain et al. | Mar 2016 | A1 |
20160094643 | Jain et al. | Mar 2016 | A1 |
20160094661 | Jain et al. | Mar 2016 | A1 |
20160105333 | Lenglet et al. | Apr 2016 | A1 |
20160119226 | Guichard et al. | Apr 2016 | A1 |
20160127306 | Wang | May 2016 | A1 |
20160127564 | Sharma et al. | May 2016 | A1 |
20160134528 | Lin et al. | May 2016 | A1 |
20160149816 | Roach et al. | May 2016 | A1 |
20160164776 | Biancaniello | Jun 2016 | A1 |
20160164787 | Roach et al. | Jun 2016 | A1 |
20160164826 | Riedel et al. | Jun 2016 | A1 |
20160173373 | Guichard et al. | Jun 2016 | A1 |
20160182684 | Connor et al. | Jun 2016 | A1 |
20160197839 | Li et al. | Jul 2016 | A1 |
20160205015 | Halligan et al. | Jul 2016 | A1 |
20160212048 | Kaempfer et al. | Jul 2016 | A1 |
20160226700 | Zhang et al. | Aug 2016 | A1 |
20160226754 | Zhang et al. | Aug 2016 | A1 |
20160226762 | Zhang et al. | Aug 2016 | A1 |
20160248685 | Pignataro et al. | Aug 2016 | A1 |
20160277210 | Lin et al. | Sep 2016 | A1 |
20160277294 | Akiyoshi | Sep 2016 | A1 |
20160294612 | Ravinoothala et al. | Oct 2016 | A1 |
20160294933 | Hong et al. | Oct 2016 | A1 |
20160294935 | Hong et al. | Oct 2016 | A1 |
20160308758 | Li et al. | Oct 2016 | A1 |
20160308961 | Rao | Oct 2016 | A1 |
20160337189 | Liebhart et al. | Nov 2016 | A1 |
20160337249 | Zhang et al. | Nov 2016 | A1 |
20160344565 | Batz et al. | Nov 2016 | A1 |
20160344621 | Roeland et al. | Nov 2016 | A1 |
20160352866 | Gupta et al. | Dec 2016 | A1 |
20160366046 | Anantharam et al. | Dec 2016 | A1 |
20160373364 | Yokota | Dec 2016 | A1 |
20160378537 | Zou | Dec 2016 | A1 |
20170005920 | Previdi et al. | Jan 2017 | A1 |
20170005923 | Babakian | Jan 2017 | A1 |
20170005988 | Bansal et al. | Jan 2017 | A1 |
20170019329 | Kozat et al. | Jan 2017 | A1 |
20170026417 | Ermagan et al. | Jan 2017 | A1 |
20170033939 | Bragg et al. | Feb 2017 | A1 |
20170063683 | Li et al. | Mar 2017 | A1 |
20170063928 | Jain et al. | Mar 2017 | A1 |
20170064048 | Pettit et al. | Mar 2017 | A1 |
20170064749 | Jain et al. | Mar 2017 | A1 |
20170078176 | Lakshmikantha et al. | Mar 2017 | A1 |
20170078961 | Rabii | Mar 2017 | A1 |
20170093698 | Farmanbar | Mar 2017 | A1 |
20170126497 | Dubey et al. | May 2017 | A1 |
20170126522 | McCann et al. | May 2017 | A1 |
20170134538 | Mahkonen et al. | May 2017 | A1 |
20170142012 | Thakkar et al. | May 2017 | A1 |
20170147399 | Cropper et al. | May 2017 | A1 |
20170149582 | Cohn et al. | May 2017 | A1 |
20170149675 | Yang | May 2017 | A1 |
20170149680 | Liu | May 2017 | A1 |
20170163531 | Kumar et al. | Jun 2017 | A1 |
20170163724 | Puri et al. | Jun 2017 | A1 |
20170195255 | Pham et al. | Jul 2017 | A1 |
20170208000 | Bosch et al. | Jul 2017 | A1 |
20170208011 | Bosch et al. | Jul 2017 | A1 |
20170208532 | Zhou | Jul 2017 | A1 |
20170214627 | Zhang et al. | Jul 2017 | A1 |
20170230333 | Glazemakers et al. | Aug 2017 | A1 |
20170230467 | Salgueiro et al. | Aug 2017 | A1 |
20170237656 | Gage | Aug 2017 | A1 |
20170250902 | Rasanen et al. | Aug 2017 | A1 |
20170250917 | Ruckstuhl et al. | Aug 2017 | A1 |
20170257432 | Fu et al. | Sep 2017 | A1 |
20170264677 | Li | Sep 2017 | A1 |
20170273099 | Zhang et al. | Sep 2017 | A1 |
20170279938 | You et al. | Sep 2017 | A1 |
20170295021 | Gutiérrez et al. | Oct 2017 | A1 |
20170295100 | Hira et al. | Oct 2017 | A1 |
20170310588 | Zuo | Oct 2017 | A1 |
20170310611 | Kumar et al. | Oct 2017 | A1 |
20170317887 | Dwaraki et al. | Nov 2017 | A1 |
20170317926 | Penno et al. | Nov 2017 | A1 |
20170317954 | Masurekar et al. | Nov 2017 | A1 |
20170318097 | Drew et al. | Nov 2017 | A1 |
20170324651 | Penno et al. | Nov 2017 | A1 |
20170331672 | Fedyk et al. | Nov 2017 | A1 |
20170339110 | Ni | Nov 2017 | A1 |
20170339600 | Roeland et al. | Nov 2017 | A1 |
20170346764 | Tan et al. | Nov 2017 | A1 |
20170353387 | Kwak et al. | Dec 2017 | A1 |
20170364794 | Mahkonen et al. | Dec 2017 | A1 |
20170373990 | Jeuk et al. | Dec 2017 | A1 |
20180027101 | Kumar et al. | Jan 2018 | A1 |
20180041524 | Reddy et al. | Feb 2018 | A1 |
20180063018 | Bosch et al. | Mar 2018 | A1 |
20180091420 | Drake et al. | Mar 2018 | A1 |
20180102919 | Hao et al. | Apr 2018 | A1 |
20180102965 | Hari | Apr 2018 | A1 |
20180115471 | Curcio et al. | Apr 2018 | A1 |
20180123950 | Garg et al. | May 2018 | A1 |
20180124061 | Raman et al. | May 2018 | A1 |
20180139098 | Sunavala et al. | May 2018 | A1 |
20180145899 | Rao | May 2018 | A1 |
20180159733 | Poon et al. | Jun 2018 | A1 |
20180159801 | Rajan et al. | Jun 2018 | A1 |
20180159943 | Poon et al. | Jun 2018 | A1 |
20180176177 | Bichot et al. | Jun 2018 | A1 |
20180176294 | Vacaro et al. | Jun 2018 | A1 |
20180183764 | Gunda | Jun 2018 | A1 |
20180184281 | Tamagawa et al. | Jun 2018 | A1 |
20180191600 | Hecker | Jul 2018 | A1 |
20180198692 | Ansari et al. | Jul 2018 | A1 |
20180198705 | Wang et al. | Jul 2018 | A1 |
20180198791 | Desai et al. | Jul 2018 | A1 |
20180205637 | Li | Jul 2018 | A1 |
20180213040 | Pak et al. | Jul 2018 | A1 |
20180219762 | Wang et al. | Aug 2018 | A1 |
20180227216 | Hughes | Aug 2018 | A1 |
20180234360 | Narayana et al. | Aug 2018 | A1 |
20180248713 | Zanier et al. | Aug 2018 | A1 |
20180248755 | Hecker et al. | Aug 2018 | A1 |
20180248986 | Dalal | Aug 2018 | A1 |
20180262427 | Jain et al. | Sep 2018 | A1 |
20180262434 | Koponen et al. | Sep 2018 | A1 |
20180278530 | Connor et al. | Sep 2018 | A1 |
20180295053 | Leung et al. | Oct 2018 | A1 |
20180302242 | Hao et al. | Oct 2018 | A1 |
20180337849 | Sharma et al. | Nov 2018 | A1 |
20180349212 | Liu et al. | Dec 2018 | A1 |
20180351874 | Abhigyan et al. | Dec 2018 | A1 |
20190020580 | Boutros et al. | Jan 2019 | A1 |
20190020600 | Zhang et al. | Jan 2019 | A1 |
20190020684 | Qian et al. | Jan 2019 | A1 |
20190028384 | Penno et al. | Jan 2019 | A1 |
20190036819 | Kancherla et al. | Jan 2019 | A1 |
20190068500 | Hira | Feb 2019 | A1 |
20190089679 | Kahalon et al. | Mar 2019 | A1 |
20190097838 | Sahoo et al. | Mar 2019 | A1 |
20190124096 | Ahuja et al. | Apr 2019 | A1 |
20190132220 | Boutros | May 2019 | A1 |
20190132221 | Boutros et al. | May 2019 | A1 |
20190140947 | Zhuang et al. | May 2019 | A1 |
20190140950 | Zhuang et al. | May 2019 | A1 |
20190149512 | Sevinc et al. | May 2019 | A1 |
20190149516 | Rajahalme et al. | May 2019 | A1 |
20190149518 | Sevinc et al. | May 2019 | A1 |
20190166045 | Peng et al. | May 2019 | A1 |
20190173778 | Faseela et al. | Jun 2019 | A1 |
20190173850 | Jain et al. | Jun 2019 | A1 |
20190173851 | Jain et al. | Jun 2019 | A1 |
20190229937 | Nagarajan et al. | Jul 2019 | A1 |
20190230126 | Kumar et al. | Jul 2019 | A1 |
20190238363 | Boutros et al. | Aug 2019 | A1 |
20190238364 | Boutros et al. | Aug 2019 | A1 |
20190288947 | Jain et al. | Sep 2019 | A1 |
20190306036 | Boutros et al. | Oct 2019 | A1 |
20190306086 | Boutros et al. | Oct 2019 | A1 |
20190342175 | Wan et al. | Nov 2019 | A1 |
20190379578 | Mishra et al. | Dec 2019 | A1 |
20190379579 | Mishra et al. | Dec 2019 | A1 |
20200007388 | Johnston et al. | Jan 2020 | A1 |
20200036629 | Roeland et al. | Jan 2020 | A1 |
20200059761 | Li | Feb 2020 | A1 |
20200067828 | Liu et al. | Feb 2020 | A1 |
20200076684 | Naveen et al. | Mar 2020 | A1 |
20200076734 | Naveen et al. | Mar 2020 | A1 |
20200084141 | Bengough et al. | Mar 2020 | A1 |
20200136960 | Jeuk et al. | Apr 2020 | A1 |
20200145331 | Bhandari et al. | May 2020 | A1 |
20200162318 | Patil et al. | May 2020 | A1 |
20200204492 | Sarva et al. | Jun 2020 | A1 |
20200213366 | Hong et al. | Jul 2020 | A1 |
20200220805 | Dhanabalan | Jul 2020 | A1 |
20200272493 | Lecuyer et al. | Aug 2020 | A1 |
20200272494 | Gokhale et al. | Aug 2020 | A1 |
20200272495 | Rolando et al. | Aug 2020 | A1 |
20200272496 | Mundaragi et al. | Aug 2020 | A1 |
20200272497 | Kavathia et al. | Aug 2020 | A1 |
20200272498 | Mishra et al. | Aug 2020 | A1 |
20200272499 | Feng et al. | Aug 2020 | A1 |
20200272500 | Feng et al. | Aug 2020 | A1 |
20200272501 | Chalvadi et al. | Aug 2020 | A1 |
20200274757 | Rolando et al. | Aug 2020 | A1 |
20200274769 | Naveen et al. | Aug 2020 | A1 |
20200274778 | Lecuyer et al. | Aug 2020 | A1 |
20200274779 | Rolando et al. | Aug 2020 | A1 |
20200274795 | Rolando et al. | Aug 2020 | A1 |
20200274808 | Mundaragi et al. | Aug 2020 | A1 |
20200274809 | Rolando et al. | Aug 2020 | A1 |
20200274810 | Gokhale et al. | Aug 2020 | A1 |
20200274826 | Mishra et al. | Aug 2020 | A1 |
20200274944 | Naveen et al. | Aug 2020 | A1 |
20200274945 | Rolando et al. | Aug 2020 | A1 |
20200322271 | Jain et al. | Oct 2020 | A1 |
20200344088 | Selvaraj | Oct 2020 | A1 |
20200358696 | Hu et al. | Nov 2020 | A1 |
20200366526 | Boutros et al. | Nov 2020 | A1 |
20200366584 | Boutros et al. | Nov 2020 | A1 |
20200382412 | Chandrappa | Dec 2020 | A1 |
20200382420 | Suryanarayana et al. | Dec 2020 | A1 |
20210029088 | Mayya et al. | Jan 2021 | A1 |
20210044502 | Boutros et al. | Feb 2021 | A1 |
20210120080 | Mishra et al. | Apr 2021 | A1 |
20210135992 | Tidemann et al. | May 2021 | A1 |
20210136140 | Tidemann et al. | May 2021 | A1 |
20210136141 | Tidemann et al. | May 2021 | A1 |
Number | Date | Country |
---|---|---|
1689369 | Oct 2005 | CN |
101594358 | Dec 2009 | CN |
101729412 | Jun 2010 | CN |
103516807 | Jan 2014 | CN |
103795805 | May 2014 | CN |
2426956 | Mar 2012 | EP |
2466985 | Jun 2012 | EP |
3210345 | Aug 2017 | EP |
3300319 | Mar 2018 | EP |
2005311863 | Nov 2005 | JP |
9918534 | Apr 1999 | WO |
2008095010 | Aug 2008 | WO |
2014069978 | May 2014 | WO |
2014182529 | Nov 2014 | WO |
2016053373 | Apr 2016 | WO |
2016054272 | Apr 2016 | WO |
2019084066 | May 2019 | WO |
2019147316 | Aug 2019 | WO |
2020046686 | Mar 2020 | WO |
2020171937 | Aug 2020 | WO |
2021086462 | May 2021 | WO |
Entry |
---|
Casado, Martin, et al., “Virtualizing the Network Forwarding Plane,” Dec. 2010, 6 pages. |
Karakus, Murat, et al., “Quality of Service (QoS) in Software Defined Networking (SDN): A Survey,” Journal of Network and Computer Applications, Dec. 9, 2016, 19 pages, vol. 80, Elsevier, Ltd. |
Non-Published Commonly Owned U.S. Appl. No. 16/905,909, filed Jun. 18, 2020, 36 pages, Nicira, Inc. |
Non-Published Commonly Owned U.S. Appl. No. 16/945,675, filed Jul. 31, 2020, 51 pages, Nicira, Inc. |
Non-Published Commonly Owned U.S. Appl. No. 16/945,868, filed Aug. 1, 2020, 48 pages, Nicira, Inc. |
Non-Published Commonly Owned U.S. Appl. No. 17/067,635, filed Oct. 9, 2020, 65 pages, Nicira, Inc. |
Siasi, N., et al., “Container-Based Service Function Chain Mapping,” 2019 SoutheastCon, Apr. 11-14, 2019, 6 pages, IEEE, Huntsville, AL, USA. |
Author Unknown, “Datagram,” Jun. 22, 2012, 2 pages, retrieved from https://web.archive.org/web/20120622031055/https://en.wikipedia.org/wiki/datagram. |
Author Unknown, “AppLogic Features,” Jul. 2007, 2 pages. 3TERA, Inc. |
Author Unknown, “Enabling Service Chaining on Cisco Nexus 1000V Series,” Month Unknown, 2012, 25 pages, CISCO. |
Dixon, Colin, et al., “An End to the Middle,” Proceedings of the 12th Conference on Hot Topics in Operating Systems, May 2009, 5 pages, USENIX Association, Berkeley, CA, USA. |
Dumitriu, Dan Mihai, et al., (U.S. Appl. No. 61/514,990), filed Aug. 4, 2011, 31 pages. |
Greenberg, Albert, et al., “VL2: A Scalable and Flexible Data Center Network,” SIGCOMM '09, Aug. 17-21, 2009, 12 pages, ACM, Barcelona, Spain. |
Guichard, J., et al., “Network Service Chaining Problem Statement,” Network Working Group, Jun. 13, 2013, 14 pages, Cisco Systems, Inc. |
Halpern, J., et al., “Service Function Chaining (SFC) Architecture,” draft-ietf-sfc-architecture-02, Sep. 20, 2014, 26 pages, IETF. |
Joseph, Dilip Anthony, et al., “A Policy-aware Switching Layer for Data Centers,” Jun. 24, 2008, 26 pages, Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA. |
Kumar, S., et al., “Service Function Chaining Use Cases in Data Centers,” draft-ietf-sfc-dc-use-cases-01, Jul. 21, 2014, 23 pages, IETF. |
Liu, W., et al., “Service Function Chaining (SFC) Use Cases,” draft-liu-sfc-use-cases-02, Feb. 13, 2014, 17 pages, IETF. |
Non-Published Commonly Owned U.S. Appl. No. 16/444,826, filed Jun. 18, 2019, 125 pages, VMware, Inc. |
Non-Published Commonly Owned U.S. Appl. No. 16/444,845, filed Jun. 18, 2019, 124 pages, VMware, Inc. |
Non-Published Commonly Owned U.S. Appl. No. 16/444,884, filed Jun. 18, 2019, 98 pages, VMware, Inc. |
Non-Published Commonly Owned U.S. Appl. No. 16/444,907, filed Jun. 18, 2019, 98 pages, VMware, Inc. |
Non-Published Commonly Owned U.S. Appl. No. 16/444,927, filed Jun. 18, 2019, 99 pages, VMware, Inc. |
Non-Published Commonly Owned U.S. Appl. No. 16/444,935, filed Jun. 18, 2019, 98 pages, VMware, Inc. |
Non-Published Commonly Owned U.S. Appl. No. 16/444,956, filed Jun. 18, 2019, 98 pages, VMware, Inc. |
Non-Published Commonly Owned U.S. Appl. No. 16/444,964, filed Jun. 18, 2019, 98 pages, VMware, Inc. |
Non-Published Commonly Owned U.S. Appl. No. 16/444,978, filed Jun. 18, 2019, 98 pages, VMware, Inc. |
Non-Published Commonly Owned U.S. Appl. No. 16/444,989, filed Jun. 18, 2019, 98 pages, VMware, Inc. |
Non-Published Commonly Owned U.S. Appl. No. 16/445,004, filed Jun. 18, 2019, 98 pages, VMware, Inc. |
Non-Published Commonly Owned U.S. Appl. No. 16/445,016, filed Jun. 18, 2019, 99 pages, VMware, Inc. |
Mon-Published Commonly Owned U.S. Appl. No. 16/445,023, filed Jun. 18, 2019, 99 pages, VMware, Inc. |
Non-Published Commonly Owned U.S. Appl. No. 16/445,031, filed Jun. 18, 2019, 99 pages, VMware, Inc. |
Non-Published Commonly Owned U.S. Appl. No. 16/445,035, filed Jun. 18, 2019, 98 pages, VMware, Inc. |
Non-Published Commonly Owned U.S. Appl. No. 16/445,044, filed Jun. 18, 2019, 98 pages, VMware, Inc. |
Non-Published Commonly Owned U.S. Appl. No. 16/445,051, filed Jun. 18, 2019, 99 pages, VMware, Inc. |
Non-Published Commonly Owned U.S. Appl. No. 16/445,058, filed Jun. 18, 2019, 99 pages, VMware, Inc. |
Non-Published Commonly Owned U.S. Appl. No. 16/445,062, filed Jun. 18, 2019, 98 pages, VMware, Inc. |
Non-Published Commonly Owned U.S. Appl. No. 16/445,064, filed Jun. 18, 2019, 99 pages, VMware, Inc. |
Non-Published Commonly Owned U.S. Appl. No. 16/668,477, filed Oct. 30, 2019, 31 pages, VMware, Inc. |
Non-Published Commonly Owned U.S. Appl. No. 16/668,485, filed Oct. 30, 2019, 55 pages, VMware, Inc. |
Non-Published Commonly Owned U.S. Appl. No. 16/668,505, filed Oct. 30, 2019, 39 pages, VMware, Inc. |
Non-Published Commonly Owned U.S. Appl. No. 16/816,067, filed Mar. 11, 2020, 55 pages, Nicira, Inc. |
Salsano, Stefano, et al., “Generalized Virtual Networking: An Enabler for Service Centric Networking and Network Function Virtualization,” 2014 16th International Telecommunications Network Strategy and Planning Symposium, Sep. 17-19, 2014, 7 pages, IEEE, Funchal, Portugal. |
Sekar, Vyas, et al., “Design and Implementation of a Consolidated Middlebox Architecture,” 9th USENIX Symposium on Networked Systems Design and Implementation, Apr. 25-27, 2012, 14 pages, USENIX, San Jose, CA, USA. |
Sherry, Justine, et al., “Making Middleboxes Someone Else's Problem: Network Processing as a Cloud Service,” in Proc, of SIGCOMM '12, Aug. 13-17, 2012, 12 pages, Helsinki, Finland. |
Lin, Po-Ching, et al., “Balanced Service Chaining in Software-Defined Networks with Network Function Virtualization,” Computer: Research Feature, Nov. 2016, 9 pages, vol. 49, No. 11, IEEE. |
Non-Published Commonly Owned U.S. Appl. No. 17/346,255, filed Jun. 13, 2021, 49 pages, Nicira, Inc. |
Non-Published Commonly Owned U.S. Appl. No. 17/352,298, filed Jun. 19, 2021, 132 pages, VMware, Inc. |
Xiong, Gang, et al., “A Mechanism for Configurable Network Service Chaining and Its Implementation,” KSII Transactions on Internet and Information Systems, Aug. 2016, 27 pages, vol. 10, No. 8, KSII. |
Number | Date | Country | |
---|---|---|---|
20210218587 A1 | Jul 2021 | US |