The commercial and governmental space sector faces high costs in placing and maintaining communication and other satellites in orbit around the earth. A satellite's life is typically governed by the amount of on-board propellant carried by the satellite. Even when onboard electronics are still functional, once the fuel runs out, a satellite typically loses its usefulness. As demand for satellite connectivity has increased over time, so has typical satellite size. A substantial initial investment is required to launch a large geostationary communication satellite. The initial investment for a satellite service provider includes not only the cost of the satellite itself, but also the cost of the launch vehicle required to inject the satellite from earth into an injection orbit.
A satellite typically includes its own propulsion system, which allows the satellite to transition itself from an injection orbit to a final geosynchronous orbit and to maintain its orbital position for up to 15 years. Propulsion system technology has also matured throughout the years and allows the satellite to make use of not only chemical systems but also electrical propulsion systems that have a much higher efficiency. This increased efficiency saves fuel, which in turn allows placement of larger and/or heavier satellites in orbit.
A satellite in a geostationary orbit around the earth experiences gravitational and solar forces, which tend to move the satellite away from its desired geostationary position. The satellite relies on its propulsion system to take corrective measures to compensate for the displacements caused by the gravitational or solar forces. The propulsion maneuvers required to maintain the geostationary position of the satellite are sometimes referred to as station keeping. When a satellite depletes is entire on-board fuel, it can no longer use its propulsion system to maintain its geostationary position and may have to be replaced.
In some cases, the satellite launch vehicle may underperform, injecting the satellite into an incorrect orbit. The satellite may then have to expend its on-board fuel to transition itself from the incorrect orbit to its correct orbit. Thus, some of the fuel intended for station keeping may have to be used for initial orbit correction, which in turn may result in a shorter operational life of the satellite, providing less revenue to the satellite service provider. In other cases, a satellite may be required to change its orbital position and/or orientation for various commercial or operational reasons. These changes may also require the satellite to expend its on-board fuel, resulting in a shorter operational life.
Because of the high cost associated with replacing a satellite in space, there is a need for technology that may help to extend the life of a satellite already in orbit.
In one aspect, the present disclosure is directed to a service satellite for providing station keeping services to a host satellite. The service satellite may include a body and a gripping mechanism attached to the body. The gripping mechanism may be adapted to attach to an interface ring extending from an external surface of the host satellite. Attaching the gripping mechanism to the interface ring may form an interconnection between the host satellite and the service satellite through the externally extending interface ring, resulting in an interconnected unit having a combined center of mass. The service satellite may include at least two thrusters and at least one controller. Such a controller may be configured to maintain the interconnected unit in a substantially stationary orbit, and may do so by selectively moving each of the at least two thrusters to angular orientations such that during thruster firing, thrust vectors from each of the at least two thrusters avoid passing through the combined center of mass, and are each offset from the combined center of mass.
In another aspect, a station keeping method may include launching a service satellite into space and maneuvering it within docking distance of the host satellite. The method may also include connecting the service satellite to the host satellite to form an interconnected unit by engaging at least two arms of the service satellite with an external interface ring of the host satellite. The interconnected unit may have a combined center of mass. The method may include selectively moving each of at least two thrusters of the service satellite for firing during station keeping maneuvers, such that thrust vectors from the at least two thrusters avoid passing through the combined center of mass and are offset from the combined center of mass.
Additional objects and advantages of the embodiments of the present disclosure will be set forth in part in the description which follows, and in part will be understood from the description, or may be learned by practice of the embodiments of the present disclosure. It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the disclosed embodiments, as claimed.
The accompanying drawings, which are incorporated in and constitute a part of this disclosure, illustrate exemplary disclosed embodiments of the present disclosure and, together with the description, serve to explain the principles of the present disclosure. In the drawings:
Aspects of the present disclosure relate to a service satellite for providing station keeping services to a host satellite. The term “satellite” refers generally to a spacecraft that can be launched into space and is capable of orbiting a planetary body. By way of example, a satellite may be capable of orbiting around the earth. The term “host satellite” refers generally to a spacecraft that is already in space in an orbit around a planetary body. In some exemplary embodiments, the host satellite may be located in a geostationary orbit around the earth. The term “service satellite” refers to a satellite or spacecraft capable of providing services to a host satellite, while both the host satellite and the service satellite are in orbit around a planetary body. By way of example, such in-orbit services provided by a service satellite to a host satellite may include orbit raising, station keeping, station change, inclination change, deorbiting, orbital repositioning, refueling or any other maneuver or activity to repair, move, or extend the life of a host satellite.
While the present disclosure provides exemplary configurations of a service satellite, it should be noted that aspects of the disclosure in their broadest sense are not limited to the disclosed configurations. Rather, it is contemplated that the foregoing principles may be applied to other configurations of service satellites.
In accordance with the present disclosure, a service satellite may provide station keeping services to the host satellite. As discussed above, the host satellite may experience gravitational forces and/or solar forces, which may cause the host satellite to be displaced from its allocated position in a geostationary orbit. The service satellite may help to compensate for such displacements by maintaining the host satellite in its allocated position in the geostationary orbit. The term station keeping may generally refer to maneuvers associated with providing the compensatory displacements required to maintain the host satellite in its allocated position in the geostationary orbit.
In some exemplary embodiments, the host satellite may have an interface ring extending from an external surface of the host satellite. The term “interface ring” refers generally to a structure attached to the external surface of the host satellite. An interface ring may be used to attach the host satellite to a launch vehicle or rocket for launching the host satellite into space. Alternatively, the interface ring may also be referred to as a payload attach ring, indicating that it may be used to attach the host satellite as a payload to a launch vehicle. The interface ring may be attached to an outer (or external) surface of the host satellite. In some exemplary embodiments, the interface ring may have a generally circular shape. However, it is contemplated that the interface ring may have any shape, for example, elliptical, polygonal, square, rectangular, or any other shape known in the art. By way of example, as illustrated in
A service satellite in accordance with the present disclosure may include a body. The term “body” may refer generally to an enclosure or housing that encompasses one or more components of the service satellite. For example, the body may encompass and enclose electronic circuitry for controlling various components of the service satellite, communications circuitry, fuel tanks that may hold fuel required to propel the service satellite, reaction wheels for storing the residual angular momentums of the service satellite, a variety of sensors, including sensors for determining accelerations and torques on the service satellite, and any other satellite components known in the art. In some exemplary embodiments, the body of the service satellite may form a substantially complete enclosure. In other exemplary embodiments, one or more side walls of the body may have openings. The body of the service satellite may have any shape. For example, the body of the service satellite may be cubical, cuboidal, cylindrical, polygonal, or may have any other shape known in the art.
The service satellite in accordance with the present disclosure may also include a gripping mechanism attached to the body. The gripping mechanism may be adapted to attach to an interface ring extending from an external surface of the host satellite. The term “gripping mechanism” refers generally to one or more structural elements associated with the service satellite, which are capable of being mechanically attached or connected to the host satellite. In accordance with this disclosure, the gripping mechanism may be accomplished by various alternative structures. For example, the gripping mechanism may include one or more arms attached at one end to the body of the service satellite. The free end of the arm may include a clamping device configured to receive a portion of the host satellite between opposing clamping elements. In one exemplary embodiment according to the present disclosure, the interface ring of the host satellite may be received between the opposing clamping elements of the clamping device. The opposing clamping elements may be configured to sandwich the interface ring between the opposing clamping elements.
In another exemplary embodiment of a gripping mechanism, the free end of the arm may include radially expanding structural elements which may engage with an inner surface of the interface ring at one or more locations. A radially outward force exerted by the radially expanding members on the interface ring may serve to attach the arm to the interface ring. While the present disclosure describes various examples of the gripping mechanism, the disclosure in its broadest sense is not limited to a particular gripping mechanism configuration or construction. Rather, it is contemplated that any structure or configuration capable of forming a secure connection with the host satellite is considered a “gripping mechanism” within the meaning of this disclosure.
Thus, a gripping mechanism, in accordance with this disclosure, may include at least two arms, which, for example, may be configured to engage with the interface ring. The term “arm,” which may be also referred to as “docking arm,” may include one or more structural members extending outward from a body of the service satellite. Each arm may have one or more articulation points or elbows. It is contemplated that in some exemplary embodiments, the service satellite may include more than two arms.
In the exemplary embodiment of service satellite 10 illustrated in
In the exemplary embodiment of docking arm 16 illustrated in
Additionally, although the present disclosure describes attachment of the docking arm to the interface ring of the host satellite, the disclosure in its broadest sense is not limited to a particular method of attachment. It is contemplated that the free end of the gripping mechanism may be configured to be attached to an external structural feature of the host satellite other than the interface ring. For example, the free end of the gripping mechanism may be configured to be attached to a projection or other structural feature disposed on an external surface of the host satellite.
In accordance with the present disclosure, by attaching to the interface ring, the gripping mechanism may form an interconnection between the host satellite and the service satellite through the externally extending interface ring. The term “interconnection” refers generally to an attachment, connection, or coupling between two objects. The interconnection between the service satellite and the host satellite according to the present disclosure may be sufficiently rigid to be capable of transferring propulsive forces from the service satellite to the host satellite, or vice-versa.
According to the present disclosure, attaching the gripping mechanism of the service satellite to the host satellite may result in an interconnected unit having a combined center of mass. The term “interconnected unit” refers generally to an assembly formed by attaching, connecting, or coupling two objects. For example, attaching the gripping mechanism of the service satellite to the host satellite may form an interconnected unit or assembly that includes the service satellite and the host satellite. In some exemplary embodiments, the interconnected unit formed by connecting the service satellite to the host satellite may also be referred to as a “tandem assembly.”
The term “combined center of mass” refers generally to a center of mass of two objects connected to each other. The combined center of mass of the interconnected unit formed by the service satellite and the host satellite may depend, for example, on the mass of the service satellite and the mass of the host satellite. The combined center of mass may also depend, for example, on how the mass of the service satellite and the mass of the host satellite are spatially distributed. Although the present disclosure does not contemplate calculating the spatial location of the combined center of mass of the interconnected unit, it is to be noted that the interconnected unit including the service satellite and the host satellite will necessarily have a combined center of mass.
A service satellite, in accordance with this disclosure, may include at least two thrusters. As used herein, a thruster generally refers to a device that can provide a propulsive force to move an object to which the thruster may be attached. In some exemplary embodiments, the thruster may force a propellant to flow out of the thruster generally in a predetermined direction, causing a propulsive force to be generated in a direction opposite to the predetermined direction. The propellant used by the thruster may be in liquid or gaseous form. The thruster according various embodiments of the present disclosure may be a chemical thruster, a resistor jet thruster, a cold gas thruster, an electric propulsion thruster, a bi-propellant thruster, a hall effect thruster, a gridded ion thruster, an arc jet thruster, a plasma propulsion engine, or any other type of thruster known in the art or which may be employed to move an object in space.
In accordance with embodiments of the present disclosure, the at least two thrusters may include a first pair of thrusters and a second pair of thrusters. As used herein, the term “pair” denotes two thrusters. It is to be noted, however, that the phrase “pair of thrusters” in the present disclosure is not limited to two thrusters that may be associated with each other mechanically, electrically, or in any other way. For example, the first pair of thrusters and the second pair of thrusters may collectively include four separate and independently controllable thrusters. While the present disclosure describes certain configurations and positions of thrusters, the disclosure in its broadest sense is not limited to particular thruster configurations or positions. Thus, for example, it is contemplated that in some exemplary embodiments, the service satellite may have an odd number of thrusters. It is further contemplated that in other exemplary embodiments, the service satellite of the present disclosure may have more than two pairs of thrusters.
In accordance with embodiments of the present disclosure, the at least two thrusters may include a first north thruster and a second north thruster. The first north thruster and the second north thruster may be disposed on a first side of the service satellite. The first north thruster may be spaced apart from the second north thruster. According to some embodiments of the present disclosure, the at least two thrusters may also include a first south thruster and a second south thruster. The first south thruster and the second south thruster may be disposed opposite the first side of the service satellite. The first south thruster may be spaced apart from the second south thruster. The terms north and south in their broadest sense are not limited to a particular position relative to the service satellite. Rather, in their broadest sense, the terms north and south denote opposite sides of the service satellite. The opposite sides may be disposed on either side of a coordinate plane passing through the body of the service satellite.
In the exemplary embodiment illustrated in
According to some aspects of the present disclosure, the first pair of thrusters may include the first north thruster and the first south thruster. Likewise, the second pair of thrusters may include the second north thruster and the second south thruster.
In some exemplary embodiment as illustrated in
In accordance with the present disclosure, the service satellite may include a thruster deployment mechanism. The term “thruster deployment mechanism” refers generally to one or more structural elements attached to the service satellite and capable of extending outward and away from the body of the service satellite. The thruster deployment mechanism may include various alternative structures, so long as the structure is capable of deploying a thruster. In some exemplary embodiments according to the present disclosure, each thruster may have a dedicated thruster deployment mechanism. For example, each thruster may be attached to an extension arm or a boom that may have a first end attached to the body of the service satellite and a free end distal from the first end. The thruster may be attached to the free end of the extension arm or boom. In other exemplary embodiments according to the present disclosure, more than one thruster may be attached to the same extension arm or boom. In yet other exemplary embodiments, the thruster deployment mechanism may include one or more linkage mechanisms capable of positioning the thrusters at a predetermined distance from the body of the service satellite. For example, the thruster deployment mechanism may include two-, four-, or six-bar linkage mechanisms similar to those of the gripping mechanism discussed above.
Returning to
In accordance with the present disclosure, the thruster deployment mechanism of the service satellite may also include one or more thruster positioning devices. As used herein, a thruster positioning device may include a structural member coupled to a thruster deployment yoke, capable of changing an orientation of a thruster. This may occur through mechanisms that rotate, tilt, pivot or otherwise redirect the thruster. The thruster may be attached to such a structural member. While the present disclosure describes a configuration having the thruster positioning device attached to a thruster deployment yoke, the disclosure in its broadest sense is not limited to the disclosed configuration. For example, it is contemplated that the thruster positioning device may be directly attached to the body of the service satellite. It is also contemplated that more than one thruster may be attached to each thruster positioning device. It is further contemplated that the service satellite may have any number of thruster positioning devices.
As further illustrated in
According to some embodiments of the present disclosure, an orientation of a thruster attached to a thruster arm may be determined by an angular displacement θ between the thruster arm and a plane of the thruster deployment yoke to which the thruster arm may be attached. Thus, for example, as illustrated in
In accordance with the present disclosure, the service satellite may include at least one controller. As used herein, the term controller refers to electrical or other elements capable of controlling various operations of the service satellite. For example, at least one controller may include a device that has suitable logic or computational components configured according to the requirements of a particular application. In some embodiments, the controller may include any physical device having an electric circuit that performs a logic operation on input or inputs. For example, the at least one controller may include a processor that has one or more integrated circuits, microchips, microcontrollers, microprocessors, all or part of a central processing unit (CPU), graphics processing unit (GPU), digital signal processor (DSP), field-programmable gate array (FPGA), or other circuits suitable for executing instructions or performing logic operations. The instructions executed by the controller may, for example, be preloaded into a memory unit integrated with or embedded into the controller or may be stored in a separate memory unit, such as a Random Access Memory (RAM), a Read-Only Memory (ROM), a hard disk, an optical disk, a magnetic medium, a flash memory, other permanent, fixed, or volatile memory, or any other mechanism capable of storing instructions for the controller. The one or more controllers may include single-core or multi-core processors based on the RISC, CISC, or any other computer instruction architecture.
In case more than one controller or processor is employed, all may be of similar construction, or they may be of differing constructions electrically connected or disconnected from each other. They may be separate circuits or integrated in a single circuit. When more than one controller or processor is used, they may operate independently or collaboratively. They may be coupled electrically, magnetically, optically, acoustically, mechanically or by other means permitting them to interact. In some embodiments, the at least one processor may be associated with a memory.
Memories associated with a controller or processor may include, for example, NOR or NAND flash memory devices, Read Only Memory (ROM) devices, Random Access Memory (RAM) devices, etc. The storage devices associated with a controller may include, for example, hard drives, solid state drives, etc.
The at least one controller, when located in orbit, may also be configured to communicate with one or more controllers located in a ground control station on earth via one or more telecommunications interfaces and other telecommunications circuitry.
In some aspects of the present disclosure, the controller may be located on-board the service satellite. In other aspects, the controller may be located at a ground control station on the earth. In yet other aspects of the present disclosure, the controller may be located on-board a spacecraft different from the service satellite. When the controller is located off-board the service satellite, the controller may be able to control various operations of the service satellite based on signals transmitted from the controller to the service satellite via one or more telecommunications interfaces or other telecommunications circuitry.
In accordance with the present disclosure, the at least one controller may be configured to maintain the interconnected unit in a substantially stationary orbit. As used herein, the term “stationary orbit” refers to a geostationary orbit around the earth. The host satellite in a geostationary orbit may have an allocated slot. The allocated slot may be defined by a first predetermined distance in an east-west direction (i.e. along the geostationary orbit), and a second predetermined distance in a north south direction (i.e. perpendicular to the geostationary orbit). Because of gravitational and solar forces exerted on the interconnected unit, the interconnected unit may move from its position in the geostationary orbit. Thrusters of the service satellite, host satellite, or both may be activated to counteract the gravitational or solar forces causing movement of the interconnected unit to move the host satellite within its allocated slot. Thus, as used herein, the phrase “substantially stationary orbit” may encompass movements of the interconnected unit in and about the allocated slot in the geostationary orbit.
The at least one controller may maintain the interconnected unit in a substantially stationary orbit by selectively moving each of the at least two thrusters to angular orientations such that during thruster firing, thrust vectors from each of the at least two thrusters avoid passing through the center of mass. In some exemplary embodiments, the controller may cause the thrusters to fire by, for example, ejecting propellant from the thrusters. As discussed above, ejecting propellant from a thruster may generate a reactionary force on the thruster in a direction opposite to that in which the propellant is ejected. As used herein, the term “thrust vector” refers generally to the combination of a magnitude of the reactionary force and a direction of the reactionary force applied on the thruster. It is to be noted that the reactionary force applied on the thruster will also be applied on the service satellite and on the interconnected unit when the service satellite is connected to a host satellite. The reactionary forces generated by the thrusters may cause the interconnected unit to travel in a direction corresponding to that of a vector sum of the thrust vectors generated by the selected thrusters.
The service satellite may be connected with any of a plurality of host satellites forming a plurality of interconnected units. Each such interconnected unit formed by connecting the service satellite to a host satellite may have a combined center of mass.
It is contemplated that in accordance with the present disclosure, the controller may be configured to orient the at least two thrusters such the thrust vectors from the at least two thrusters do not pass through any of the combined centers of mass corresponding to the plurality of interconnected units formed by connecting the service satellite with the plurality of host satellites. Indeed, according to various embodiments of the present disclosure, the thrust vectors from each of the at least two thrusters may be offset from the combined center of mass. As used herein, the term “offset” refers generally to a spatial separation. Thus, for example, the at least one controller may orient the selected thrusters such that the thrust vectors, from the selected thrusters may be spatially separated from the combined centers of mass corresponding to the plurality of interconnected units described above. While the present disclosure describes a configuration in which at least two thrusters are selected, the invention in its broadest sense is not limited to a particular configuration. For example, it is contemplated that the at least one controller may select one, two, or any number of thrusters for the above described maneuver. The at least one controller may be configured to orient the one or more selected thrusters such that thrust vectors generated by the selected thrusters do not pass through the combined centers of mass corresponding to the plurality of interconnected units described above.
Embodiments of the present disclosure may further include at least one controller configured to selectively move each of the at least two thrusters such that the combined center of mass is disposed between intersection points of the thrust vectors and a plane passing through the combined center of mass of the interconnected unit. The term “intersection point” refers to the location where a thrust vector intersects with a plane. In some exemplary embodiments according to the present disclosure, the plane may be a longitudinal plane passing through the interconnected unit, including the host satellite and the service satellite. Thrust vectors generated by firing the thrusters of the service satellite may intersect with the longitudinal plane at a plurality of positions. The at least one controller, according to the embodiments of the present disclosure, may orient the thrusters of the service satellite such that the combined center of mass of the service satellite and the host satellite may lie between the intersection points of the thrust vectors with the longitudinal plane.
Returning to
In accordance with embodiments of the present disclosure, the at least one controller may be further configured to adjust a thrust level of each of the at least two thrusters such that torques generated by the thrust vectors about at least one coordinate axis of the interconnected unit are substantially balanced. As used herein, the term “thrust level” refers to a magnitude of a reactionary force generated by a thruster. In some exemplary embodiments, the thrust level may be adjusted by controlling an amount of propellant ejected by a thruster in a predetermined amount of time. In other exemplary embodiments, the thrust level may be determined by a velocity at which the propellant is expelled from the thruster. As used herein, the term “torques” refers to a moment of the thrust vector generated by a thruster about an axis associated with the service satellite or the host satellite. The moment may be determined as a product of the thrust level and a perpendicular distance between the thrust vector and the axis. As also used herein, the term “balanced” refers to zeroing out the torques. Thus, for example, the at least one controller according to the present disclosure may select the thrust levels of at least two thrusters such that the torque generated by the thrust vector from one of the two thrusters is exactly equal and opposite to the torque generated by the thrust vector from the other of the two thrusters. A net torque resulting from a sum of the generated torques may be substantially equal to zero. It is also contemplated that in some exemplary embodiments, the balancing of torques may be achieved based on more than two thrusters.
Similarly in the exemplary embodiment illustrated in
Similarly,
In accordance with embodiments of the present disclosure, the controller may be configured to fire the at least two thrusters at a first thrust level when the first thruster is oriented at the first angular orientation. The controller may also be configured to fire the at least two thrusters at a second thrust level different from the first thrust level when the first thruster is oriented at the second angular orientation. In some exemplary embodiments, the controller may select the thrust levels for the thrusters based on their position and/or orientation. For example, the controller may fire a thruster at the P2 position at a first thrust level TH1 and fire a thruster at the P3 position at a second thrust level TH2. In other exemplary embodiments, the controller may fire both of the at least two thrusters at the first thrust level TH1, when the first thruster of the at least two thrusters is oriented in one of the P2 or P3 positions. The controller may fire both of the at least two thrusters at the first thrust level TH1, when the first thruster of the at least two thrusters is oriented in the other of the P2 or P3 positions. It is contemplated that the thrust levels TH1 and TH2 may be equal or unequal.
In accordance with some embodiments of the present disclosure, the controller may be configured to determine the second thrust level. The controller may be configured to do so by firing the at least two thrusters at the first thrust level when the first thruster is oriented at the first angular orientation. The controller may also be configured to determine an angular momentum about the at least one coordinate axis of the interconnected unit. In addition, the controller may be configured to determine the second thrust level at which the at least two thrusters must be fired when the first thruster is oriented at the second angular orientation such that the angular momentum is substantially reduced to zero. As used herein, the term “angular momentum” refers to a product of a rotational inertia of an object and its rotational velocity about an axis of rotation. The controller may determine the angular momentum in many ways. In some exemplary embodiments, the controller may determine a rotational velocity or angular velocity of the interconnected unit based on sensors located in the service satellite or the host satellite. The controller may also determine a rotational inertia of the interconnected unit based on the mass distributions in the service satellite and the host satellite. The controller may determine an angular momentum of the interconnected unit based on the determined rotational velocity and rotational inertia. In other exemplary embodiments, the angular momentum may be determined by measurements using an angular momentum sensor. In yet other exemplary embodiments, the angular momentum may be determined based on a change of a rotational velocity of a reaction wheel associated with the service satellite or the host satellite.
In the exemplary embodiment of
In accordance with embodiments of this disclosure, the at least one controller may be configured, during a first time period to position a first thruster of the at least two thrusters at a first angular orientation and fire the first thruster. The at least one controller may also be configured during the first time period to position a second thruster of the at least two thrusters at a second angular orientation different from the first angular orientation and fire the second thruster. The controller may position the thrusters in many different ways, and the invention, in its broadest sense, is not limited to any particular way. In one way, for example, the controller may position both thrusters at their respective positions simultaneously or sequentially. The controller may also fire both the thrusters simultaneously or sequentially. In some exemplary embodiments, the controller may position the first thruster at the first position and fire the first thruster for a first firing duration that may be smaller than the first period of time. After firing the first thruster for the first firing duration, the controller may position the second thruster at the second position and fire the second thruster for a second firing duration. In other exemplary embodiments, the controller may position both the first and the second thrusters at their respective first and second positions. After positioning both thrusters, the controller may simultaneously fire both first and second thrusters for their respective first and second firing durations.
In accordance with embodiments of this disclosure, the at least one controller may be configured, during a second time period following the first time period, to move the first thruster to assume the second angular orientation and fire the first thruster. The at least one controller may also be configured, during the second time period, to move the second thruster to assume the first angular orientation and fire the second thruster. In some embodiments of the disclosure, the controller may be configured to switch the positions of the first and second thrusters after the first time period. Thus, for example, the controller may be configured to position the first thruster at the second position and the second thruster at the first position during a second time period. The controller may position both thrusters at their respective positions simultaneously or sequentially. The controller may also fire both the thrusters simultaneously or sequentially. In some exemplary embodiments, the controller may position the first thruster at the second position and fire the first thruster for the second firing duration. After firing the first thruster for the second firing duration, the controller may position the second thruster at the first position and fire the second thruster for the first firing duration. In other exemplary embodiments, the controller may position both the first and the second thrusters at their respective second and first positions, respectively. After positioning both thrusters, the controller may fire both first and second thrusters for their respective second and first firing durations.
In accordance with the present disclosure, the at least one controller may be further configured to move one of the first pair of thrusters and the second pair of thrusters to a first angular orientation. In some exemplary embodiments according to the present disclosure, the service satellite may have more than one pair of thrusters. In these exemplary embodiments, the controller may be configured to move one pair of thrusters so that both thrusters in that pair have the same orientation. The controller may orient the two thrusters in that first pair by adjusting the positions of the thruster deployment mechanisms associated with the two thrusters.
The at least one controller in accordance with the present disclosure may also be configured to move another of the first pair of thrusters and the second pair of thrusters to a second angular orientation different from the first angular orientation. In some exemplary embodiments, the controller may select a second pair of thrusters different from the first pair. The controller may be configured to move the second pair of thrusters so that both thrusters in that second pair have the same orientation. The controller may orient the two thrusters in the second pair of thrusters by adjusting the positions of the thruster deployment mechanisms associated with the two thrusters in the second pair of thrusters.
In accordance with the present disclosure, the controller may be configured to select the first and second angular orientations such that the thrust vectors from the first pair of thrusters and the second pair of thrusters avoid passing through the combined center of mass and are offset from the combined center of mass. This may be accomplished, for example, when at least one controller adjusts the positions of one or more structural elements of the thruster deployment mechanisms associated with the first and second pair of thrusters such that when the first and second pair of thrusters are fired, the thrust vectors generated by both the first pair of thrusters and the second pair of thrusters do not pass through a combined center of mass of the service satellite and the host satellite. In some exemplary embodiments, the controller may select the orientation of the first pair of thrusters and the second pair of thrusters such that the thrust vectors from the first and second pair of thruster are spatially separated (i.e. offset) from the combined center of mass of the service satellite and the host satellite. In other exemplary embodiments, the controller may select the orientation of the first pair of thrusters and the second pair of thrusters such that the thrust vectors from the first and second pair of thrusters do not pass through any of a plurality of combined centers of mass that may result by connecting the service satellite to a plurality of host satellites, where each host satellite has a differing center of mass.
As illustrated in
In accordance with embodiments of the present disclosure, the at least one controller may be configured to fire thrusters located at the first angular orientation at a first thrust level. The at least one controller may also be configured to fire thrusters located at the second angular orientation at a second thrust level different from the first thrust level, such that torques generated by the thrust vectors about at least one axis of the interconnected unit are substantially balanced. In some exemplary embodiments according to the present disclosure, the at least one controller may select the thrust levels of the first pair of thrusters and the second pair of thrusters. The controller may select the thrust levels such the torque generated by the thrust vectors from the first pair of thrusters about an axis of the service satellite is exactly equal and opposite to the torque generated by the thrust vectors from the second pair of thrusters of the two thrusters.
Similarly in the exemplary embodiment illustrated in
In some exemplary embodiments according to the present disclosure, the at least one controller may be configured to simultaneously fire the first pair of thrusters for a first time duration. The at least one controller may also be configured to simultaneously fire the second pair of thrusters for a second time duration. The term “simultaneously,” as used herein, indicates that the two thrusters included in the first or the second pair of thrusters are fired at about the same time and for about the same duration. The term “simultaneously” covers embodiment in which there may be short time differences (of the order of, for example, 0.5 seconds) between a time at which firing initiates or ceases from each of the two thrusters included in the first or second pair of thrusters. The term “simultaneously also covers situations where during thruster firing, each thruster is pulsed, and individual thruster firing alternated, such that while multiple thrusters are fired in a same time duration, there may not be overlap of firing within the time duration. The at least one controller may select the first and second time durations and the thrust levels of the first and second pair of thrusters such that torques generated by the first and second pairs of thrusters about at least one axis of the service satellite are zeroed out. The first time duration and the second time duration may be equal or unequal.
In accordance with embodiments of the present disclosure, the controller may be further configured to move the first pair of thrusters to the second angular orientation and the second pair of thrusters to the first angular orientation after a third time duration. The controller may also be configured to simultaneously fire the second pair of thrusters for the first time duration after moving the first pair of thrusters and the second pair of thrusters. In some exemplary embodiments, the controller may begin evaluating the third time duration after the first time duration and the second time duration have elapsed. In these embodiments, the third time duration may be zero or non-zero. In other exemplary embodiments, the controller may begin evaluating the third time duration from the time when the first pair of thrusters begin to fire. In these embodiments, the third time duration may be about equal to greater than at least a sum of the first and second time duration.
By way of non-limiting examples,
According to some embodiments of the present disclosure, the at least one controller may be configured to fire thrusters located at the first angular orientation at a predetermined thrust level for a first time duration. The controller may also be configured to fire thrusters located at the second angular orientation at the predetermined thrust level for a second time duration different from the first time duration, such that torques generated by the thrust vectors about at least one axis of the interconnected unit are substantially balanced. In some exemplary embodiments, the first and second time durations may be equal. In other exemplary embodiments, the first and second time durations may be unequal. It is also contemplated that in some exemplary embodiment, the controller may fire the first and second pair of thrusters simultaneously.
By way of non-limiting examples,
In accordance with some embodiments of this disclosure, the controller may be configured to determine the second time duration. The controller may be configured to do so by firing thrusters positioned at the first angular orientation at the predetermined thrust level for the first time duration. The controller may also be configured to determine an angular momentum about at least one coordinate axis of the interconnected satellite. Further, the controller may be configured to determine the second time duration for which thrusters positioned at the second angular orientation must be fired to decrease the angular momentum substantially to zero.
By way of non-limiting examples in
In some exemplary embodiment of the present disclosure, the first time duration is an amount of time after which a reaction wheel of the service satellite is fully loaded, and the second time duration is the amount of time after which the reaction wheel is fully unloaded. Some aspects of the present disclosure may include one or more reaction wheels located on-board the service satellite. As used herein, the term “reaction wheel” refers to a device capable of storing angular momentum. In some exemplary embodiments, a reaction wheel may include a flywheel capable of rotating about an axis of rotation. A reaction wheel may store angular momentum by an accompanying increase in a rotational speed of the flywheel. A reaction wheel may have a predetermined minimum rotational speed and a predetermined maximum rotational speed and may be deemed to be fully loaded when it has reached its predetermined maximum rotational speed.
By way of non-limiting examples, as illustrated in
According to some exemplary embodiments of the present disclosure, the controller may be configured to sequentially fire the first pair of thrusters and the second pair of thrusters. By way of non-limiting examples in
In accordance with embodiments of the present disclosure, in a third time duration after the second time duration, the controller may be configured to move the first pair of thrusters to the second angular orientation and the second pair of thrusters to the first angular orientation. The controller may also be configured to sequentially fire the first pair of thrusters and the second pair of thrusters after moving the first pair of thrusters and the second pair of thrusters. After firing thrusters 36 and 38 for the first time duration T1, and after firing thrusters 40 and 42 for the second time duration T2, controller 120 may be configured to switch the positions of thrusters 36, 38, 40, and 42 during a third time duration T3. Thus, for example, controller 120 may change the orientation of thruster arms 90 and 92 from the angular displacement θ4 (position P4) (as in
The present disclosure may also relate to a method of providing station keeping services to a host satellite. As discussed above, station keeping may include maneuvers associated with providing compensatory displacements required to maintain the host satellite in its allocated position in the geostationary orbit. In some exemplary embodiments the method may include launching a service satellite into space and maneuvering it to within docking distance of the host satellite. The term “launching” refers generally to a transfer of the service satellite into an orbit in space. According to some aspects of the present disclosure, the service satellite may be launched into space on a launch vehicle or rocket that travels from the earth into space. The launch vehicle or rocket may release the service satellite into a predetermined orbit in space. According to other aspects of the present disclosure, the service satellite may be taken to space on a reusable launch vehicle, for example, a space shuttle. The satellite may be released from the space shuttle into the predetermined orbit by the space shuttle. The service satellite might be a micro satellite, enabling it to be launched into space in a common launch vehicle with other satellites or with other payloads.
According to some exemplary embodiments of the present disclosure, the method of providing station keeping services to the host satellite may include connecting the service satellite to the host satellite to form an interconnected unit by engaging at least two arms of the service satellite with an external interface ring of the host satellite. The interconnected unit may have a combined center of mass. In some exemplary embodiments, the method may also include selectively moving each of at least two thrusters of the service satellite for firing during station keeping maneuvers, such that thrust vectors from the at least two thrusters avoid passing through the combined center of mass and are offset from the combined center of mass.
Method 800 may include a step of launching service satellite 10. (Step 802). Launching service satellite 10 may include loading service satellite 10 in a payload bay of a launch vehicle. The launch vehicle may include a missile, a rocket, a reusable spacecraft, a space shuttle, on any other conduit configured to convey the service satellite from earth to orbit. Thus, launching service satellite 10 may further include causing the launch vehicle to travel from a surface of the earth into space. Launching service satellite 10 may also include releasing service satellite 10 into a predetermined orbit in space. In some exemplary embodiments, service satellite 10 may be released in an orbit different from a geostationary orbit.
Method 800 may include a step of maneuvering service satellite 10 to within docking distance of a host satellite 200 (Step 804). Maneuvering service satellite 10 may include, for example, orienting at least two of thruster arms 90, 92, 94, 96 to an angular displacement θ1 (P1 position) relative a plane of a corresponding thruster deployment yoke 66, 68.
Method 800 may include a step of connecting service satellite 10 to host satellite 200 (Step 806). There are many ways of forming such a connection, and the method, in its broadest sense is not limited to any particular structure. By way of example, connecting service satellite 10 may include deploying one or more docking arms 16 of service satellite 10. A controller 120 of service satellite 10 may adjust docking arms 16 such that ring engaging portions 34 of the one or more docking arms may be positioned to receive an interface ring 202 of host satellite 200. Controller 120 may adjust positions of docking arms 16 such that the ring engaging portions 34 may engage with interface ring 202 to engage with interface ring 202 at one or more locations. Engaging with interface ring 202 may allow service satellite 10 to dock with host satellite 200 to form an interconnected unit 206.
Method 800 may include a step of selectively moving at least two thrusters of the service satellite (Step 808). There are many ways of moving thrusters, and the method, in its broadest sense is not limited to any particular structure or controller logic. By way of example, controller 120 of service satellite 10 may move two or more of thruster arms 90, 92, 94, 96 to one of angular displacements θ2 (position P2), θ3 (position P3), θ4 (position P4), or θ5 (position P5). Controller 120 may select positions P2, P3, P4, or P5 so that when one or more of thrusters 36, 36, 40, 42 are fired, one or more of thrust vectors 122, 124, 132, 134, 160, 162, 166, or 168 do not pass through joint center of mass 126.
Method 800 may include a step of firing one or more thrusters 36, 38, 40, 42 (Step 810). For example, controller 120 may fire one or more thrusters 36, 38, 40, 42 for one or more of time durations T1, T2, T3, etc. to help ensure that host satellite 200 may remain in its allocated geostationary slot. Of course, there are many ways, patterns and timings of thruster firing, and the method, in its broadest sense is not limited to any one in particular.
In accordance with some exemplary embodiments of the present disclosure, the step of selectively moving the thrusters in the method of providing station keeping services to the host satellite may include the following steps. The method may include positioning a first thruster of the at least two thrusters at a first angular orientation and firing the first thruster during a first time period. The method may also include positioning a second thruster of the at least two thrusters at a second angular orientation different from the first angular orientation and firing the second thruster during the first time period. Further, the method may include moving the first thruster to assume the second angular orientation and firing the first thruster during a second time period following the first time period. In addition, the method may include moving the second thruster to assume the first angular orientation and firing the second thruster during the second time period.
Method 900 includes a step of orienting a first thruster in the P2 position and a second thruster in the P3 position (Step 902). In one exemplary embodiment, controller 120 may orient thruster arm 90 at an angular displacement θ2 relative to thruster deployment yoke 66 so that thruster 36 is in the P2 position (see
Method 900 may include a step of firing the first and second thrusters at a first thrust level for a first firing duration (Step 902). For example, when thruster 36 is in the P2 position and thruster 38 is in the P3 position (see
Method 900 may include a step of determining torques and/or angular momentums about one or more coordinate axes (Step 904). In one exemplary embodiment, controller 120 may determine one or more torques and/or angular momentums about one or more of the x, y, or z co-ordinate axes of interconnected unit 206. Controller 120 may determine the torques and/or angular momentums based on measurements of force, rotational speeds, which may be obtained from one or more sensors located on service satellite 10 or host satellite 200. In one exemplary embodiment, controller 120 may determine a torque F1 or angular momentum AM1 about an x axis (see e.g.
In one exemplary embodiment, controller 120 may perform steps 902-906 in a first time duration T1. In other exemplary embodiments, within first time duration T1, controller 120 may fire thrusters 36 and 38 simultaneously. It is also contemplated that in some embodiments, within first time duration T1, controller 120 may fire thrusters 36 and 38 sequentially in any order.
Method 900 may include a step of orienting the first thruster in the P3 position and the second thruster in the P2 position (Step 908). In method step 908, controller 120 may switch the positions of the thrusters selected, for example, in step 902. For example, controller 120 may orient thruster arm 90, previously in position P2, to an angular displacement θ3 relative to thruster deployment yoke 66 so that thruster 36 is in the P3 position (see
Method 900 may include a step of firing the first and second thrusters at a second thrust level for a second firing duration (Step 910). For example, when thruster 36 is in the P3 position and thruster 38 is in the P2 position, controller 120 may fire thrusters 36 and 38 at second thrust level TH2 for a second firing duration Δt2.
Method 900 may include a step of determining torques and/or angular momentums about one or more co-ordinate axes (Step 912). Controller 120 may perform one or more steps similar to those discussed above with respect to, for example, step 906. In one exemplary embodiment, controller 120 may determine a torque F2 or angular momentum AM2 about the x axis (see e.g.
In one exemplary embodiment, controller 120 may perform steps 908-912 in a second time duration T2. In other exemplary embodiments, within second time duration T2, controller 120 may fire thrusters 36 and 38 simultaneously. It is also contemplated that in some embodiments, within second time duration T2, controller 120 may fire thrusters 36 and 38 sequentially in any order. Time durations T1 and T2 may be equal or unequal.
Method 900 may include a step of determining the first and/or second thrust levels to zero out net torque and/or angular momentum (Step 914). In one exemplary embodiment, controller 120 may determine one or both of thrust levels TH1 and TH2 so that the net torque F1+F2 and/or the net angular momentum AM1+AM2 about, for example, the x axis is substantially zero.
Method 900 may include a step of firing thrusters at the first thrust level when oriented in position P2 (Step 916). In one exemplary embodiment, controller 120 may fire any of thrusters 36, 38 at a thrust level TH1 when thrusters 36 or 38 are oriented in the P2 position. Method 900 may also include a step of firing thrusters at the second thrust level when oriented in position P3 (Step 918). In one exemplary embodiment, controller 120 may fire any of thrusters 36, 38 at a thrust level TH2 when thrusters 36 or 38 are oriented in the P3 position.
While the above disclosure describes method steps 902-918 in terms of thrusters 36, 38, the disclosure in its broadest sense is not limited to that configuration or any particular structure or thruster firing sequence or angular orientation. For example, in some embodiments according to this disclosure, controller may select thruster arms 94, 96 instead of thruster arms 90, 92 for orienting the thruster arms in one of angular displacements θ2 or θ3. Controller 120 may perform steps 902-918 of method 900 using thrusters 40, 42. When controller 120 initially performs steps 902-918 using thrusters 40, 42, controller 120 may repeat steps 902-918 using the other pair of thrusters 36, 38 after about 12 hours. Controller 120 may also repeat steps 902-918 with both thruster pair 36, 38 and thruster pair 40, 42 after a predetermined period of time to help ensure that the host satellite remains in its allocated geostationary slot.
It is also contemplated that in some exemplary embodiments, controller 120 may initially perform steps 902-918 using thrusters 36, 40. Thus, for example, in step 902, controller 120 may orient thruster arm 90 at an angular displacement θ2 relative to thruster deployment yoke 66 so that thruster 36 is in the P2 position. Controller 120 may also orient thruster arm 94 at an angular displacement θ3 relative to thruster deployment yoke 68 so that thruster 42 is in the P3 position. Likewise, in step 908, controller 120 may orient thruster arm 90 at an angular displacement θ3 relative to thruster deployment yoke 66 so that thruster 36 is in the P3 position. Controller 120 may also orient thruster arm 94 at an angular displacement θ2 relative to thruster deployment yoke 68 so that thruster 42 is in the P2 position. After performing steps 902-918 using thrusters 36, 40, controller may repeat steps 902-918, using thruster arms 92, 96, and corresponding thrusters 38, 42 after about 12 hours. Controller 120 may also repeat steps 902-918 with both thruster pair 36, 40 and thruster pair 38, 42 after a predetermined period of time to help ensure that the host satellite remains in its allocated geostationary slot.
Method 1000 includes a step of orienting a first thruster pair in the P4 position and a second thruster pair in the P5 position (Step 1002). In one exemplary embodiment, controller 120 may orient thruster arms 90, 92 at an angular displacement θ4 relative to thruster deployment yoke 66 so that thrusters 36 and 38 may be in the P4 position (see
Method 1000 may include a step of firing the first thruster pair at a predetermined thrust level (Step 1004). For example, when thrusters 36 and 38 are in the P4 position, controller 120 may fire thrusters 36 and 38 at a predetermined thrust level THPRE (see
Step 1008 of method 1000 may include determining firing duration Δt1 to fully load the reaction wheels. In some exemplary embodiments, controller 120 may stop firing thrusters 36 and 38 and determine the duration Δt1 required to fully load the reaction wheels associated with service satellite 10 as a result of firing thrusters 36 and 38 at the predetermine thrust level THPRE.
Method 1000 may include a step of firing the second thruster pair at the predetermined thrust level (Step 1010). For example, when thrusters 40 and 42 are in the P5 position, controller 120 may fire thrusters 40 and 42 at the predetermined thrust level THPRE (see
Step 1014 of method 1000 may include determining firing duration Δt2 to fully unload reaction wheels. In some exemplary embodiments, controller 120 may stop firing thrusters 40 and 42 and determine the duration Δt2 required to fully unload the reaction wheels associated with service satellite 10 as a result of firing thrusters 40 and 42 at the predetermine thrust level THPRE.
Method 1000 may include a step of firing thrusters at the predetermined thrust level THPRE for the first duration of time Δt1, when oriented in position P4 (Step 1016). In one exemplary embodiment, controller 120 may fire any of thrusters 36, 38, 40, 42 at a thrust level THPRE for the first duration of time Δt1 when any of thrusters 36, 38, 40, 42 are oriented in the P4 position.
Method 1000 may also include a step of firing thrusters at the predetermined thrust level THPRE for the second duration of time Δt2, when oriented in position P5 (Step 1018). In one exemplary embodiment, controller 120 may fire any of thrusters 36, 38, 40, 42 at a thrust level THPRE for the second duration of time Δt2 when any of thrusters 36, 38, 40, 42 are oriented in the P5 position.
Thus, for example, in some embodiments, controller 120 may orient first pair of thrusters 36 and 38 in the P4 position and fire thrusters 36 and 38 at the predetermined thrust level THPRE for the first duration of time Δt1. Controller 120 may also orient second pair of thrusters 40 and 42 in the P5 position and fire thrusters 40 and 42 at the predetermined thrust level THPRE for the second duration of time Δt2. After about 12 hours, controller 120 may orient the first pair of thrusters 36 and 38 in the P5 position and fire thrusters 36 and 38 at the predetermined thrust level THPRE for the second duration of time Δt2. Additionally, controller 120 may orient the second pair of thrusters 40 and 42 in the P4 position and fire thrusters 40 and 42 at the predetermined thrust level THPRE for the first duration of time Δt1. Controller 120 may repeat these steps after a predetermined period of time to help ensure that the host satellite remains in its allocated geostationary slot.
While the above disclosure describes method steps 1002-1018 in terms of first pair of thrusters 36, 38 and second pair of thrusters 40, 42, neither the method 1000 nor the disclosure in its broadest sense are not limited to that configuration. For example, in some embodiments according to this disclosure, controller may select thrusters 36 and 40 as the first pair of thrusters and thrusters 38 and 40 as the second pair of thrusters to perform method steps 1002-1018.
Some of the disclosed embodiments, depending on implementation, may provide several advantages over conventional station keeping methods. For example, in the embodiments of the present disclosure, it is not necessary to determine the exact location of a combined center of mass of the interconnected unit, including the service satellite and the host satellite. Instead, the thruster positions P2, P3, P4, and P5 corresponding to angular displacements θ2, θ3, θ4, θ5, respectively, may be predetermined and may be the same regardless of the size and/or mass of the host satellite. In particular, the thruster positions P2, P3, P4, and P5 may be selected such that the thrust vectors from any of the thrusters of the service satellite do not pass through any of the combined centers of mass of interconnected units, including the service satellite and a plurality of host satellites with which the service satellite may be able to dock in space. Instead the thrust vectors from thrusters oriented in any of the thruster positions P2, P3, P4, and P5 may be offset (i.e. spatially separated) from all of the combined centers of mass of the plurality of interconnected units.
The disclosed embodiments may also be based on the recognition that it may be difficult to accurately determine a combined center of mass of the interconnected unit. For example, as the fuel in the service satellite or the host satellite is expended, the combined center of mass may change. Additionally, errors in determining an accurate mass distribution of the service satellite and the host satellite may introduce errors in determining the combined center of mass. The disclosed service satellite may advantageously provide station keeping services without relying on the combined center of mass of the service satellite and the host satellite.
The disclosed service satellite may provide station keeping services via a variable thrust method (e.g. method 900 of
The service satellite may then position a pair of thrusters on one side (north, south, east, or west) in positions P2 and P3, respectively. The service satellite may fire the selected thrusters at thrust level TH1, switch the thruster positions and fire the thrusters at thrust level TH2, and repeat the process to provide the necessary translational movement to the interconnected unit while zeroing out any residual torques. The service satellite may repeat this procedure with thrusters on an opposite side every 12 hours. Thus, the service satellite may advantageously provide station keeping services to a host satellite without determining a combined center of mass of the service satellite and the host satellite, and without firing the thrusters through the combined center of mass.
As discussed in detail in the above disclosure, in the variable time method, the service satellite may position both thrusters of a first pair of thrusters on one side (north, south, east, or west) in, for example, a P4 positon. The service satellite may position a second pair of thrusters different from the first pair of thrusters in, for example, a P5 position. The second pair of thrusters may be located on an opposite site relative to the first pair of thrusters. Both thrusters of the first pair of thrusters may be fired at a predetermined thrust level THPRE for a first time duration T1 until one or more reaction wheels of the service satellite or the host satellite are fully loaded. After first time duration T1 has elapsed, firing from the first pair of thrusters may cease. The service satellite may then fire the second pair of thrusters at the predetermined thrust level THPRE. The service satellite may determine the second time duration T2 required to unload the one or more reaction wheels. It is to be noted that neither the thrust vectors from the first pair of thrusters nor the thrust vectors from the second pair of thrusters pass through a combined center of mass of the service satellite and the host satellite.
The service satellite may fire the first pair of thrusters at a thrust level THPRE for the first time duration T1, and the second pair of thrusters at a thrust level THPRE for the second time duration T2. After about 12 hours, the service satellite may switch the positions of the first and second pairs of thrusters. That is the first pair of thrusters previously oriented at the P4 position may be re-oriented so that the first pair of thrusters are in the P5 position. Likewise, the second pair of thrusters previously oriented at the P5 position may be re-oriented so that the second pair of thrusters are in the P4 position. The service satellite may then fire the first pair of thrusters at a thrust level THPRE for the second time duration T2, and the first pair of thrusters at a thrust level THPRE for the first time duration T1. The service satellite may repeat this procedure after a predetermined period of time. Thus, the service satellite may provide station keeping services to a host satellite without determining a combined center of mass of the service satellite and the host satellite, and without firing the thrusters through the combined center of mass.
Various alterations and modifications may be made to the disclosed exemplary embodiments without departing from the spirit or scope of the disclosure as embodied in the following claims. It is intended that the specification and examples be considered as exemplary only, with a true scope and spirit of the invention being indicated by the following claims.
This application is a continuation of U.S. patent application Ser. No. 16/815,349, filed Mar. 11, 2020 and titled “Service Satellite for Providing In-Orbit Services Using Variable Thruster Control,” which is a continuation of U.S. patent application Ser. No. 15/450,601, filed Mar. 6, 2017 and titled “Service Satellite for Providing In-Orbit Services Using Variable Thruster Control,” the disclosures of which are hereby incorporated herein by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
3910533 | Cheatham et al. | Oct 1975 | A |
3948470 | Perkins | Apr 1976 | A |
4018409 | Burch et al. | Apr 1977 | A |
4173324 | Rudmann | Nov 1979 | A |
4177964 | Hujsak et al. | Dec 1979 | A |
4195804 | Hujsak et al. | Apr 1980 | A |
4219171 | Rudmann | Aug 1980 | A |
4260187 | Bejczy | Apr 1981 | A |
4295740 | Sturges, Jr. | Oct 1981 | A |
4298178 | Hujsak | Nov 1981 | A |
4381092 | Barker | Apr 1983 | A |
4500057 | Duwelz | Feb 1985 | A |
4588150 | Bock et al. | May 1986 | A |
4607815 | Turci et al. | Aug 1986 | A |
4635885 | Hujsak | Jan 1987 | A |
4730798 | Wertz | Mar 1988 | A |
4834531 | Ward | May 1989 | A |
4881809 | Thierry | Nov 1989 | A |
4890918 | Monford | Jan 1990 | A |
5046691 | Hart | Sep 1991 | A |
5109345 | Dabney et al. | Apr 1992 | A |
5120243 | Mee | Jun 1992 | A |
5253944 | Preston | Oct 1993 | A |
5294079 | Draznin et al. | Mar 1994 | A |
5299764 | Scott | Apr 1994 | A |
5302816 | Tulet | Apr 1994 | A |
5334848 | Grimm | Aug 1994 | A |
5340060 | Shindo | Aug 1994 | A |
5349532 | Tilley et al. | Sep 1994 | A |
5364046 | Dobbs et al. | Nov 1994 | A |
5411227 | Basuthakur et al. | May 1995 | A |
5436841 | Ferro | Jul 1995 | A |
5443231 | Anzel | Aug 1995 | A |
5466025 | Mee | Nov 1995 | A |
5490075 | Howard et al. | Feb 1996 | A |
5511748 | Scott | Apr 1996 | A |
5617335 | Hashima et al. | Apr 1997 | A |
5734736 | Palmer et al. | Mar 1998 | A |
5735488 | Schneider | Apr 1998 | A |
5765780 | Barskey et al. | Jun 1998 | A |
5803407 | Scott | Sep 1998 | A |
5806802 | Scott | Sep 1998 | A |
5850993 | Hubert | Dec 1998 | A |
6017000 | Scott | Jan 2000 | A |
6032904 | Hosick et al. | Mar 2000 | A |
6053455 | Price et al. | Apr 2000 | A |
6091345 | Howard et al. | Jul 2000 | A |
6102337 | Quartararo | Aug 2000 | A |
6213432 | Koppel | Apr 2001 | B1 |
6227495 | Howard et al. | May 2001 | B1 |
6254035 | Howard et al. | Jul 2001 | B1 |
6260805 | Yocum, Jr. et al. | Jul 2001 | B1 |
6296207 | Tilley et al. | Oct 2001 | B1 |
6299107 | Kong et al. | Oct 2001 | B1 |
6330987 | Scott | Dec 2001 | B1 |
6360995 | Nygren, Jr. | Mar 2002 | B1 |
6445981 | Higham et al. | Sep 2002 | B1 |
6481672 | Goodzeit et al. | Nov 2002 | B1 |
6484973 | Scott | Nov 2002 | B1 |
6523784 | Steinsiek et al. | Feb 2003 | B2 |
6595469 | Li et al. | Jul 2003 | B2 |
6634603 | Cooper | Oct 2003 | B2 |
6637701 | Glogowski et al. | Oct 2003 | B1 |
6658329 | Howard et al. | Dec 2003 | B1 |
6669148 | Anderman et al. | Dec 2003 | B2 |
6677941 | Lin | Jan 2004 | B2 |
6742745 | Tchoryk et al. | Jun 2004 | B2 |
6840481 | Gurevich | Jan 2005 | B1 |
6843446 | Scott | Jan 2005 | B2 |
6866232 | Finney | Mar 2005 | B1 |
6896441 | Champagne et al. | May 2005 | B1 |
6910660 | LeCroy, Jr. | Jun 2005 | B2 |
6945500 | Wingo | Sep 2005 | B2 |
6969030 | Jones et al. | Nov 2005 | B1 |
7070151 | D'Ausilio et al. | Jul 2006 | B2 |
7104505 | Tchoryk et al. | Sep 2006 | B2 |
7114682 | Kistler et al. | Oct 2006 | B1 |
7133815 | Zentgraf | Nov 2006 | B2 |
7142981 | Hablani | Nov 2006 | B2 |
7195206 | Kerstein | Mar 2007 | B2 |
7207525 | Bischof et al. | Apr 2007 | B2 |
7216833 | D'Ausilio et al. | May 2007 | B2 |
7216834 | D'Ausilio et al. | May 2007 | B2 |
7240879 | Cepollina et al. | Jul 2007 | B1 |
7293743 | Cepollina et al. | Nov 2007 | B2 |
7365832 | Kase | Apr 2008 | B2 |
7370834 | Scott | May 2008 | B2 |
7387279 | Anderman et al. | Jun 2008 | B2 |
7438264 | Cepollina et al. | Oct 2008 | B2 |
7461818 | D'Ausilio et al. | Dec 2008 | B2 |
7484690 | D'Ausilio et al. | Feb 2009 | B2 |
7513459 | Cepollina et al. | Apr 2009 | B2 |
7513460 | Cepollina et al. | Apr 2009 | B2 |
7515257 | Roe et al. | Apr 2009 | B1 |
7535706 | Herberholt et al. | May 2009 | B2 |
7575199 | D'Ausilio et al. | Aug 2009 | B2 |
7575200 | Behrens et al. | Aug 2009 | B2 |
7588213 | D'Ausilio et al. | Sep 2009 | B2 |
7607616 | Lundgren | Oct 2009 | B2 |
7611096 | D'Ausilio et al. | Nov 2009 | B2 |
7611097 | D'Ausilio et al. | Nov 2009 | B2 |
7624950 | D'Ausilio et al. | Dec 2009 | B2 |
7669804 | Strack et al. | Mar 2010 | B2 |
7823837 | Behrens et al. | Nov 2010 | B2 |
7828249 | Ritter et al. | Nov 2010 | B2 |
7850388 | Khoshnevis | Dec 2010 | B2 |
7857261 | Tchoryk, Jr. et al. | Dec 2010 | B2 |
7861974 | Hays et al. | Jan 2011 | B2 |
7861975 | Behrens et al. | Jan 2011 | B2 |
7961301 | Earhart et al. | Jun 2011 | B2 |
7992824 | Tchoryk, Jr. et al. | Aug 2011 | B2 |
8006937 | Romano et al. | Aug 2011 | B1 |
8006938 | Behrens et al. | Aug 2011 | B2 |
8016242 | Baumann | Sep 2011 | B2 |
8019493 | Weigl et al. | Sep 2011 | B1 |
8033508 | Baumann et al. | Oct 2011 | B2 |
8056864 | Hays et al. | Nov 2011 | B2 |
8074935 | Gryniewski et al. | Dec 2011 | B2 |
8091835 | Behrens et al. | Jan 2012 | B2 |
8132761 | Gruber et al. | Mar 2012 | B2 |
8181911 | Gryniewski et al. | May 2012 | B1 |
8196870 | Gryniewski et al. | Jun 2012 | B2 |
8205838 | Moorer, Jr. et al. | Jun 2012 | B2 |
8210480 | Moorer et al. | Jul 2012 | B2 |
8240613 | Ritter et al. | Aug 2012 | B2 |
8245370 | Ritter et al. | Aug 2012 | B2 |
8282043 | Ho | Oct 2012 | B2 |
8306273 | Gryniewski et al. | Nov 2012 | B1 |
8326523 | Stimac et al. | Dec 2012 | B2 |
8333347 | Ritter et al. | Dec 2012 | B2 |
8352100 | Stimac et al. | Jan 2013 | B2 |
8386096 | Stimac et al. | Feb 2013 | B2 |
8412391 | Paluszek et al. | Apr 2013 | B2 |
8439312 | Ho et al. | May 2013 | B2 |
8448904 | Gryniewski et al. | May 2013 | B2 |
8464983 | Knirsch | Jun 2013 | B2 |
8820353 | Yandle et al. | Sep 2014 | B2 |
8899527 | Allen et al. | Dec 2014 | B2 |
8976340 | Gilliland et al. | Mar 2015 | B2 |
9001313 | Kameyama et al. | Apr 2015 | B2 |
9041915 | Earhart et al. | May 2015 | B2 |
9108747 | Roberts et al. | Aug 2015 | B2 |
9231323 | Jaeger | Jan 2016 | B1 |
9260206 | Allen et al. | Feb 2016 | B2 |
9284069 | Bigelow | Mar 2016 | B2 |
9284072 | Horie | Mar 2016 | B2 |
9284073 | Bigelow | Mar 2016 | B2 |
9302793 | Ghofranian et al. | Apr 2016 | B2 |
9399295 | Roberts et al. | Jul 2016 | B2 |
9522746 | Ih et al. | Dec 2016 | B1 |
20020179775 | Turner | Dec 2002 | A1 |
20030029969 | Turner | Feb 2003 | A1 |
20030183726 | Lounge et al. | Oct 2003 | A1 |
20040026571 | Scott | Feb 2004 | A1 |
20040031885 | D'Ausilio et al. | Feb 2004 | A1 |
20040164205 | Kellberg | Aug 2004 | A1 |
20040245405 | Tchoryk et al. | Dec 2004 | A1 |
20050001102 | Schubert | Jan 2005 | A1 |
20050040282 | Wingo | Feb 2005 | A1 |
20050263649 | Ritter et al. | Dec 2005 | A1 |
20060145024 | Kosmas | Jul 2006 | A1 |
20070129879 | Fedora | Jun 2007 | A1 |
20070228219 | Behrens | Oct 2007 | A1 |
20070228220 | Behrens et al. | Oct 2007 | A1 |
20080011903 | D'Ausilio et al. | Jan 2008 | A1 |
20080029651 | D'Ausilio et al. | Feb 2008 | A1 |
20080078886 | Foster et al. | Apr 2008 | A1 |
20090164055 | Kosmas | Jun 2009 | A1 |
20090166476 | Termini | Jul 2009 | A1 |
20100038491 | Cepollina et al. | Feb 2010 | A1 |
20110180670 | D'Ausilio et al. | Jul 2011 | A1 |
20120097797 | Woo et al. | Apr 2012 | A1 |
20130126678 | Romney, Jr. | May 2013 | A1 |
20130249229 | Roberts | Sep 2013 | A1 |
20130292516 | Celerier | Nov 2013 | A1 |
20140032022 | Caullier | Jan 2014 | A1 |
20140061386 | Peterka, III | Mar 2014 | A1 |
20140158830 | Rossettini et al. | Jun 2014 | A1 |
20140361123 | Celerier | Dec 2014 | A1 |
20150000250 | Vial et al. | Jan 2015 | A1 |
20150001345 | Polle | Jan 2015 | A1 |
20150008290 | Bigelow | Jan 2015 | A1 |
20150053823 | Bigelow | Feb 2015 | A1 |
20150115107 | Andoh | Apr 2015 | A1 |
20150166202 | Maediger | Jun 2015 | A1 |
20150307214 | Amalric | Oct 2015 | A1 |
20150314893 | Rembala | Nov 2015 | A1 |
20150346344 | Gilliland et al. | Dec 2015 | A1 |
20160039543 | Roberts et al. | Feb 2016 | A1 |
20160039544 | Roberts et al. | Feb 2016 | A1 |
20160046395 | Mansour et al. | Feb 2016 | A1 |
20160114908 | Knirsch et al. | Apr 2016 | A1 |
20160130020 | Chambert | May 2016 | A1 |
20160176545 | Munir | Jun 2016 | A1 |
20160194095 | Weiss et al. | Jul 2016 | A1 |
20160207640 | Kaltenbach | Jul 2016 | A1 |
20160288928 | Smith | Oct 2016 | A1 |
20170029138 | Bultel | Feb 2017 | A1 |
20170081048 | Glogowski et al. | Mar 2017 | A1 |
20170225805 | Wang et al. | Aug 2017 | A1 |
20170283094 | Ho | Oct 2017 | A1 |
20170349302 | Bibighaus | Dec 2017 | A1 |
20180029727 | Doubrere | Feb 2018 | A1 |
20180148197 | Halsband | May 2018 | A1 |
20180155064 | Haertel et al. | Jun 2018 | A1 |
20180186476 | Poncet et al. | Jul 2018 | A1 |
20190300207 | Izumisawa | Oct 2019 | A1 |
Number | Date | Country |
---|---|---|
3244211 | May 1984 | DE |
0369065 | May 1990 | EP |
2530018 | Dec 2012 | EP |
2660154 | Nov 2013 | EP |
H01-282098 | Nov 1989 | JP |
H03-118299 | May 1991 | JP |
WO 9731822 | Sep 1997 | WO |
WO 2005073085 | Aug 2005 | WO |
WO 2005110847 | Nov 2005 | WO |
WO 2005118394 | Dec 2005 | WO |
WO 2008066512 | Jun 2008 | WO |
WO 2011110701 | Sep 2011 | WO |
WO 2014006478 | Jan 2014 | WO |
WO 2014024199 | Feb 2014 | WO |
WO 2015158932 | Oct 2015 | WO |
WO 2016020390 | Feb 2016 | WO |
WO 2016030890 | Mar 2016 | WO |
Entry |
---|
Bergmann et al., “Mass Property Estimation for Control of Asymmetrical Satellites,” J. Guidance, vol. 10, No. 5, Sep.-Oct. 1987 (pp. 483-491). |
Collins et al., “Small Orbit Transfer Vehicle (OTV) for On-Orbit Satellite Servicing and Resupply,” 15th Annual/USU Conference on Small Satellites, Aug. 2001 (pp. 1-17). |
Dabney, “Automatic Rendezvous and Docking: A Parametric Study,” NASA Technical Paper 2314, May, 1984 (35 pages). |
English-language International Search Report from the Israel Patent Office for International Application No. PCT/IL2015/050856, dated Dec. 14, 2015. |
European Search Report dated Apr. 18, 2018, in Application No. 15835340.0-1010 / 3186151—PCT/IL2015/050856 (10 pages). |
European Search Report dated Jul. 26, 2018 in European Application No. 18160022.2 (9 pages). |
Fehse, “Autonomous Rendezvous and Docking of Spacecraft,” Chapter 1, Cambridge University Press, 2003, pp. 1-7 (15 pages total). |
Hirzinger, Gerd, “West Germany's First Space Robot,” Aerospace America, American Institute of Aeronautics & Astronautics, New York, vol. 27, No. 8, Aug. 1, 1989 (pp. 42-46). |
Inaba et al., “Rescuing a Stranded Satellite in Space—Experimental Robotic Capture of Non-Cooperative Satellites,” Trans. Japan Soc. Aero. Space Sol., vol. 48, No. 162, pp. 213-220, 2006. |
Machida, Kazuo et al., “Maneuvering and Manipulation of Flying Space Telerobotics System,” Proceedings of the 1992 IEEE/RSJ International Conference on Intelligent Robots and Systems, Raleigh, NC (Jul. 7-10, 1992) (pp. 3-10). |
Maediger et al., “Robotics Servicing Tool for Large Satellites,” Airbus Defence and Space, Bremen, Germany, 2014, available at http://robotics.estec.esa.int/i-SAIRAS/isairas2014/Data/Session%205b/ISAIRAS_FinalPaper_0028.pdf (8 pages). |
Masek et al., “Technical Memorandum 33-510,” National Aeronautics and Space Administration, Nov. 15, 1971 (28 pages). |
Meissinger et al., “Mission Design and System Requirements for a Multiple-Function Orbital Transfer Vehicle,” American Institute of Aeronautics and Astronautics, Sep. 1999 (11 pages). |
Mugnuolo, R., et al., “The SPIDER manipulation system (SMS); The Italian approach to space automation,” Robotics and Autonomous Systems, (Mar. 1, 1998) (pp. 79-88). |
LeRoy et al, “Spacecraft Attitude Control for a Solar Electric Geosynchronous Transfer Mission,” NASA Technical Memorandum, Mar. 19, 1975 (15 pages). |
Wertz et al., “Autonomous Rendezvous and Docking Technologies—Status and Prospects,” SPIE AeroSense Symposium, Paper No. 5088-3, Apr. 21, 2003 (11 pages). |
Written Opinion of the International Searching Authority from the Israel Patent Office for International Application No. PCT/IL2015/050856, dated Dec. 14, 2015. |
Yoshida, Kazuya et al., “Dual Arm Coordination in Space Free-Flying Robot,” Proceedings of the 1991 IEEE, International Conference on Robotics and Automation, Sacramento, California, Apr. 9-11, 1991 (pp. 2516-2520). |
Number | Date | Country | |
---|---|---|---|
20210078732 A1 | Mar 2021 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16815349 | Mar 2020 | US |
Child | 17104343 | US | |
Parent | 15450601 | Mar 2017 | US |
Child | 16815349 | US |