The present invention relates to a fuel recovery system for recovering leaks that occur in fuel supply piping in a retail fueling environment.
Managing fuel leaks in fueling environments has become more and more important in recent years as both state and federal agencies impose strict regulations requiring fueling systems to be monitored for leaks. Initially, the regulations required double-walled tanks for storing fuel accompanied by leak detection for the tanks. Subsequently, the regulatory agencies have become concerned with the piping between the underground storage tank and the fuel dispensers and are requiring double-walled piping throughout the fueling environment as well.
Typically, the double-walled piping that extends between fuel handling elements within the fueling environment terminates at each end with a sump that is open to the atmosphere. In the event of a leak, the outer pipe fills and spills into the sump. The sump likewise catches other debris, such as water and contaminants, that contaminate the fuel caught by the sump, thereby making this contaminated fuel unusable. Thus, the sump is isolated from the underground storage tank, and fuel captured by the sump is effectively lost.
Coupled with the regulatory changes in the requirements for the fluid containment vessels are requirements for leak monitoring such that the chances of fuel escaping to the environment are minimized. Typical leak detection devices are positioned in the sumps. These leak detection devices may be probes or the like and may be connected to a control system for the fueling environment such that the fuel dispensing is shut down when a leak is detected.
Until now, fueling environments have been equipped with elements from a myriad of suppliers. Fuel dispensers might be supplied by one company, the underground storage tanks by a second company, the fuel supply piping by a third company, and the tank monitoring equipment by yet a fourth company. This makes the job of the designer and installer of the fueling environment harder as compatibility issues and the like come into play. Further, it is difficult for one company to require a specific leak detection program with its products. Interoperability of components in a fueling environment may provide economic synergies to the company able to effectuate such, and provide better, more integrated leak detection opportunities.
Any fuel piping system that is installed for use in a fueling environment should advantageously reduce the risk of environmental contamination when a leak occurs, and attempt to recapture fuel that leaks for reuse and reduce excavation costs, further reducing the likelihood of environmental contamination. Still further, such a system should include redundancy features and help reduce the costs of clean up.
While the parent application of the present invention capitalizes on the synergies created between the tank monitoring equipment, the submersible turbine pump (STP), and the fuel dispenser in a fueling environment, the present application supplements this disclosure by offering an alternative leaked fuel collection point. However, for continuity, the original, underlying invention is discussed first. A fluid connection that carries a fuel supply for eventual delivery to a vehicle is made between the underground storage tank and the fuel dispensers via double-walled piping. Rather than use the conventional sumps and low point drains, the present invention drains any fuel that has leaked from the main conduit of the double-walled piping back to the underground storage tank. This addresses the need to recapture the fuel for reuse and to reduce fuel that is stored in sumps which must later be retrieved and excavated by costly service personnel.
The fluid in the outer conduit may drain to the underground storage tank by gravity coupled with the appropriately sloping piping arrangements, or a vacuum may be applied to the outer conduit from the vacuum in the underground storage tank. The vacuum will drain the outer conduit. Further, the return path may be fluidly isolated from the sumps, thus protecting the fuel from contamination.
In an exemplary embodiment, the fuel dispensers are connected to one another via a daisy chain fuel piping arrangement rather than by a known main and branch conduit arrangement. Fuel supplied to a first fuel dispenser by the STP and conduit is carried forward to other fuel dispensers coupled to the first fuel dispenser via the daisy chain fuel piping arrangement. The daisy chain is achieved by a T-intersection contained within a manifold in each fuel dispenser. Fuel leaking in the double-walled piping is returned through the piping network through each downstream fuel dispenser before being returned to the underground storage tank.
The daisy chain arrangement allows for leak detection probes to be placed within each fuel dispenser so that leaks between the fuel dispensers may be detected. The multiplicity of probes causes leak detection redundancy and helps pinpoint where the leak is occurring. Further, the multiple probes help detect fuel leaks in the outer conduit of the double-walled piping. This is accomplished by verifying that fuel dispensers downstream of a detected leak also detect a leak. If they do not, a sensor has failed or the outer conduit has failed. A failure in the outer piping is cause for serious concern as fuel may be escaping to the environment and a corresponding alarm may be generated.
Another possibility with the present invention is to isolate sumps, if still present within the fuel dispenser, from this return path of captured leaking fuel such that contaminants are precluded from entering the leaked fuel before being returned to the underground storage tank. In this manner, fuel may potentially be reused since it is not contaminated by other contaminants, such as water, and reclamation efforts are easier. Since the fuel is returned to the underground storage tank, there is less danger that a sump overflows and allows the fuel to escape into the environment.
As another embodiment, and the focus of the present invention, the fuel dispensers may remain in the previously described daisy chain configuration. However, instead of returning the leaked fuel to the underground storage tank, the outer wall of the double-walled piping may terminate at the STP. The STP may capture the returned leaking fuel to a sump within the STP or, in an alternate permutation, to an external sump. In either event, the outer wall terminates prior to the underground storage tank. The leak detection processes of the parent invention are likewise useful in this embodiment. Further, a leak detection sensor may be positioned in the sump so that the sump may be serviced as needed.
Those skilled in the art will appreciate the scope of the present invention and realize additional aspects thereof after reading the following detailed description of the preferred embodiments in association with the accompanying drawing figures.
The accompanying drawing figures incorporated in and forming a part of this specification illustrate several aspects of the invention, and together with the description serve to explain the principles of the invention.
The embodiments set forth below represent the necessary information to enable those skilled in the art to practice the invention and illustrate the best mode of practicing the invention. Upon reading the following description in light of the accompanying drawing figures, those skilled in the art will understand the concepts of the invention and will recognize applications of these concepts not particularly addressed herein. It should be understood that these concepts and applications fall within the scope of the disclosure and the accompanying claims.
Fueling environments come in many different designs. Before describing the particular aspects of the parent application's invention (which begins at the description of
The central building 12 need not be centrally located within the fueling environment 10, but rather is the focus of the fueling environment 10, and may house a convenience store 18 and/or a quick serve restaurant 20 therein. Both the convenience store 18 and the quick serve restaurant 20 may include a point of sale 22, 24, respectively. The central building 12 may further house a site controller (SC) 26, which in an exemplary embodiment may be the G-SITE® sold by Gilbarco Inc. of Greensboro, N.C. The site controller 26 may control the authorization of fueling transactions and other conventional activities as is well understood. The site controller 26 may be incorporated into a point of sale, such as point of sale 22, if needed or desired. Further, the site controller 26 may have an off site communication link 28 allowing communication with a remote location for credit/debit card authorization, content provision, reporting purposes or the like, as needed or desired. The off site communication link 28 may be routed through the Public Switched Telephone Network (PSTN), the Internet, both, or the like, as needed or desired.
The car wash 14 may have a point of sale 30 associated therewith that communicates with the site controller 26 for inventory and/or sales purposes. The carwash 14 alternatively may be a stand alone unit. Note that the car wash 14, the convenience store 18, and the quick serve restaurant 20 are all optional and need not be present in a given fueling environment.
The fueling islands 16 may have one or more fuel dispensers 32 positioned thereon. The fuel dispensers 32 may be, for example, the ECLIPSE® or ENCORE® sold by Gilbarco Inc. of Greensboro, N.C. The fuel dispensers 32 are in electronic communication with the site controller 26 through a LAN or the like.
The fueling environment 10 also has one or more underground storage tanks 34 adapted to hold fuel therein. As such, the underground storage tank 34 may be a double-walled tank. Further, each underground storage tank 34 may include a liquid level sensor or other sensor 35 positioned therein. The sensors 35 may report to a tank monitor (TM) 36 associated therewith. The tank monitor 36 may communicate with the fuel dispensers 32 (either through the site controller 26 or directly, as needed or desired) to determine amounts of fuel dispensed, and compare fuel dispensed to current levels of fuel within the underground storage tanks 34 to determine if the underground storage tanks 34 are leaking. In a typical installation, the tank monitor 36 is also positioned in the central building 12, and may be proximate the site controller 26.
The tank monitor 36 may communicate with the site controller 26 and further may have an off site communication link 38 for leak detection reporting, inventory reporting, or the like. Much like the off site communication link 28, off-site communication link 38 may be through the PSTN, the Internet, both, or the like. If the off site communication link 28 is present, the off site communication link 38 need not be present and vice versa, although both links may be present if needed or desired. As used herein, the tank monitor 36 and the site controller 26 are site communicators to the extent that they allow off site communication and report site data to a remote location.
For further information on how elements of a fueling environment 10 may interact, reference is made to U.S. Pat. No. 5,956,259, which is hereby incorporated by reference in its entirety. Information about fuel dispensers may be found in commonly owned U.S. Pat. Nos. 5,734,851 and 6,052,629, which are hereby incorporated by reference in their entirety. Information about car washes may be found in commonly owned U.S. patent application Ser. No. 60/380,111, filed 6 May 2002, entitled IMPROVED SERVICE STATION CAR WASH, which is hereby incorporated by reference in its entirety. An exemplary tank monitor 36 is the TLS-350R manufactured and sold by Veeder-Root. For more information about tank monitors 36 and their operation, reference is made to U.S. Pat. Nos. 5,423,457; 5,400,253; 5,319,545; and 4,977,528, which are hereby incorporated by reference in their entireties.
In addition to the various conventional communication links between the elements of the fueling environment 10, there are conventional fluid connections to distribute fuel about the fueling environment as illustrated in
Pipes 42 connect the underground storage tanks 34 to the fuel dispensers 32. Pipes 42 may be arranged in a main conduit 44 and branch conduit 46 configuration, where the main conduit 44 carries the fuel to the branch conduits 46, and the branch conduits 46 connect to the fuel dispensers 32. Typically, pipes 42 are double-walled pipes comprising an inner conduit and an outer conduit. Fuel flows in the inner conduit to the fuel dispensers, and the outer conduit insulates the environment from leaks in the inner conduit. For a better explanation of such pipes and concerns about how they are connected, reference is made to Chapter B13 of PIPING HANDBOOK, 7th edition, copyright 2000, published by McGraw-Hill, which is hereby incorporated by reference.
In a typical service station installation, leak detection may be performed by a variety of techniques, including probes and leak detection cables. More information about such devices can be found in the previously incorporated PIPING HANDBOOK. Conventional installations do not return to the underground storage tank 34 fuel that leaks from the inner conduit to the outer conduit, but rather allow the fuel to be captured in low point sumps, trenches, or the like, where the fuel mixes with contaminants such as dirt, water and the like, thereby ruining the fuel for future use without processing.
While not shown, vapor recovery systems may also be integrated into the fueling environment 10 with vapor recovered from fueling operations being returned to the underground storage tanks 34 via separate vapor recovery lines (not shown). For more information on vapor recovery systems, the interested reader is directed to U.S. Pat. Nos. 5,040,577; 6,170,539; and Re. 35,238; and U.S. patent application Ser. No. 09/783,178 filed 14 Feb. 2001, all of which are hereby incorporated by reference in their entireties.
Now turning to the invention of the parent application, the main and branch supply conduit arrangement of
As better illustrated in
A leak detection probe 64 may also be positioned within the manifold 52. This leak detection probe 64 may be any appropriate liquid detection sensor as needed or desired. The fuel dispenser 32 has conventional fuel handling components 66 associated therewith, such as a fuel pump 68, a vapor recovery system 70, a fueling hose 72, a blender 74, a flow meter 76, and a fueling nozzle 78. Other fuel handling components 66 may also be present as is well understood in the art.
With this arrangement, the fuel may flow into the fuel dispenser 32 in the fuel line conduit 56, passing through the inlet aperture 60 of the manifold 52. A check valve 80 may be used if needed or desired as is well understood to prevent fuel from flowing backwards. The fuel handling components 66 draw fuel through the check valve 80 and into the handling area of the fuel dispenser 32. Fuel that is not needed for that fuel dispenser 32 is passed through the manifold 52 upstream to the other fuel dispensers 32 within the daisy chain. A sump (not shown) may still be associated with the fuel dispenser 32, but it is fluidly isolated from the daisy chaining double-walled pipe 50.
A first embodiment of the connection to the daisy chaining double-walled pipe 50 to the underground storage tank 34 is illustrated in
A second embodiment of the connection of the daisy chaining double-walled pipe 50 to the underground storage tank 34 is illustrated in
The fueling environment 10 operates as is conventional, with fuel being dispensed to vehicles, vapor recovered, consumers interacting with the points of sale, and the operator generating revenue (block 104). At some point, a leak occurs between two fuel dispensers 32x and 32x−1. Alternatively, the leak may occur at a fuel dispenser 32x−1 (block 106). The leaking fuel flows towards the underground storage tank 34 (block 108), as a function of the vacuum existent in the outer wall 58, via gravity or the like. The leak is detected at the first downstream leak detection probe 64 (block 110). Thus, in the two examples, the leak would be detected by the leak detection probe 64 positioned within the fuel dispenser 32x−1. This helps in pinpointing the leak. An alarm may be generated (block 112). This alarm may be reported to the site controller 26, the tank monitor 36 or other location as needed or desired.
A second leak detection probe 64, positioned downstream of the first leak detection probe 64 in the fuel dispenser 32x−1, will then detect the leaking fuel as it flows past the second leak detection probe 64 (block 114). This continues, with the leak detection probe 64 in each fuel dispenser 32 downstream of the leak detecting the leak until fuel dispenser 321 detects the leak. The fuel is then returned to the underground storage tank 34 (block 116).
If all downstream leak detection probes 64 detect the leak at query block 118, that is indicative that the system works (block 120). If a downstream leak detection probe 64 fails to detect the leak during the query of block 118, then there is potentially a failure in the outer wall 58 and an alarm may be generated (block 122). Further, if the leak detection probes 64 associated with fuel dispensers 32x−1 and 32x−1 both detect the leak, but the leak detection probe 64 associated with the fuel dispenser 32x does not detect a leak, that is indicative of a sensor failure and a second type of alarm may be generated.
Additionally, once a leak is detected and the alarm is generated, the fueling environment 10 may shut down so that clean up and repair can begin. However, if the double-walled piping system works the way it should, the only repair will be to the leaking section of inner pipe within the daisy chaining double-walled pipe 50 or the leaking fuel dispenser 32. Any fuel caught by the outer wall 58 is returned for reuse, thus saving on clean up.
As an alternative to draining the fuel back to the underground storage tank 34, the present invention also provides for the situation where the fuel drains to a sump associated with the submersible turbine pump. This alternative has two embodiments, one in which the sump is positioned in the distribution head 82 of the submersible turbine pump (illustrated in
In the first embodiment, illustrated in
In the second embodiment, illustrated in
Those skilled in the art will recognize improvements and modifications to the preferred embodiments of the present invention. All such improvements and modifications are considered within the scope of the concepts disclosed herein and the claims that follow.
The present application is a continuation-in-part of U.S. patent application Ser. No. 10/173,990, filed 18 Jun. 2002, which is herein incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
Parent | 10288245 | Nov 2002 | US |
Child | 10890627 | Jul 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10173990 | Jun 2002 | US |
Child | 10288245 | Nov 2002 | US |