Embodiments of the present invention relate to the field of servicing software products. In particular, embodiments of this invention relate to updating component-based operating systems and application programs with a service package throughout the software product lifecycle.
An operating system image interacts with hardware in a computer to perform a multitude of functions. Conventional computers generally execute the operating system to manage various aspects of the computer as it is running. Typically, the operating system is responsible for managing access to storage devices as well as input and/or output devices, and controlling the execution of one or more additional applications. Before the operating system may be executed by the computer, it typically must be installed on the computer, a process which usually involves copying multiple files from a distribution medium (e.g., a CDROM) onto a storage device (e.g., a hard disk) of the computer.
A typical operating system includes a large number of files which may include instructions and/or data. These instructions, when executed by the computer, provide the operating system functionality. The operating system may be modified (e.g., updated) in any of a wide variety of manners, such as by adding or replacing one or more particular files, by any of a wide variety of people (e.g., a user, administrator, software developer other than the operating system developer, etc.). It becomes difficult to troubleshoot a malfunctioning computer or update the operating system because it is difficult for the user or administrator to know exactly what functionality is or should be installed on the computer.
In existing systems, servicing the binary files that comprise a software product (e.g., the operating system or an application program) is often the most expensive aspect of a software product lifecycle. An exemplary software product lifecycle includes a pre-deployment phase (e.g., pre-installation), a deployment phase (e.g., installation), and a post-deployment phase (e.g., on the running system). The size of the binary files, the amount of binary files that are typically serviced for any single problem, and the different locations of the binary files during each of the software product lifecycle phases make the distribution and creation of the binary files difficult. Also, servicing multiple binaries across the system fails to provide specific information on the current version of any larger aggregated piece of functionality on the system.
For example, when creating a service package to remedy an issue in software code stored in a binary file, existing systems typically create an updated copy of the binary or a patch that modifies the software code without modifying other software. However, existing systems typically require different versions of both the patches and the binary files based on the current phase of the software product lifecycle: one version for pre-deployment, one version for during deployment, and one version for the running system.
In another example, some prior systems provide a “hot” fix (e.g., a patch) for the end user that replaces a single file or library (e.g., library.dll) on a running system or during predeployment. Other systems provide updates during installation by directing the client machine to obtain the updated file or library (e.g., library.dll) from an installation medium or via a network and install the obtained update. However, such systems require separate scripts for each lifecycle phase of the client machine: pre-deployment, deployment, and post-deployment. Further, a change to a single file may necessitate a change to other dependent files. The prior systems fail to provide for intelligent dependency resolution during the update process.
Accordingly, a system for servicing a software product across the entire software product lifecycle is desired to address one or more of these and other disadvantages.
Embodiments of the invention include updating a software product with a service package. The service package includes one or more files associated with the component and a plurality of instruction sets for installing the files. In an embodiment, the invention determines a state or other operating context associated with the component, selects one of the instruction sets based on the determined state, and applies one or more of the files to the component in accordance with the selected instruction set. For example, the state may correspond to one of the following phases of a software product lifecycle: predeployment of the software product, deployment of the software product, and post-deployment of the software product.
The invention provides a single service package to both consumers and original equipment manufacturers to service a software product during all parts of the software product lifecycle. As software products have more and more binaries to service, the invention reduces the cost of servicing and enables a simple query of the system to determine the version of binaries serviced on the system.
In accordance with one aspect of the invention, a computerized method updates a software product. The method includes defining the software product as a plurality of components. The method also includes accessing one of a plurality of instruction sets associated with a service package based on a lifecycle phase of the software product to be updated. The method also includes modifying at least one of the components in the software product in accordance with the accessed instruction set.
In accordance with another aspect of the invention, a method updates a software product with a service package. The software product includes a plurality of components. Each of the components has a state associated therewith. The state represents an operating context of the component. The service package includes one or more files associated with a selected component. The service package further includes a plurality of instruction sets for installing the files. The method includes determining the state associated with the selected component. The method also includes selecting one of the instruction sets based on the determined state. The method also includes applying one or more of the files to the selected component in accordance with the selected instruction set.
In accordance with yet another aspect of the invention, one or more computer-readable media have computer-executable modules for updating a software product with a service package. The software product includes a plurality of components. Each of the components has a state associated therewith. The state represents an operating context of the component. The service package includes one or more files associated with a selected component. The service package further includes a plurality of instruction sets for installing the files. The modules include a configuration module that determines the state associated with the selected component and selects one of the instruction sets based on the determined state. The modules also include an installation module that modifies the selected component by applying one or more of the files to the selected component in accordance with the instruction set selected by the configuration module.
In accordance with still another aspect of the invention, a method creates a service package for a software product. The software product includes a component that has one of a plurality of lifecycle phases associated therewith. The method includes selecting one or more files for association with the software product. The method also includes storing the selected files on a computer-readable medium. The method also includes storing a plurality of installation scripts on the computer-readable medium. Each of the installation scripts corresponds to one of the lifecycle phases. The installation scripts are executed based on the lifecycle phase of the component to apply the stored, selected files to the software product.
In accordance with yet another aspect of the invention, a service package updates a software product stored on a computer-readable medium. The software product includes a component that has one of a plurality of lifecycle phases associated therewith. The service package includes one or more files for association with the component. The service package also includes a plurality of instruction sets that correspond to the plurality of lifecycle phases of the component. One of the plurality of instruction sets is selected and executed responsive to the lifecycle phase associated with the component to apply the files to the component.
Alternatively, the invention may comprise various other methods and apparatuses.
Other features will be in part apparent and in part pointed out hereinafter.
Corresponding reference characters indicate corresponding parts throughout the drawings.
Referring first to
The service package 104 also includes a plurality of instruction sets 112 (e.g., including a declarative description of installation steps) such as instruction set #1 through instruction set #Z specifying the proper installation of the files 110 at any phase or state associated with the component 108 in the software product lifecycle. For example, the phases of the software product lifecycle include, but are not limited to, predeployment of the software product 106, deployment of the software product 106, and post-deployment of the software product 106. Other lifecycle phases are within the scope of the invention. The invention applies the files 110 in accordance with the instruction set 112 corresponding to the current lifecycle phase of the software product 106. As such, the invention provides a single service package 104 that enable installation of the service package 104 at any phase, state, or operating context or environment of the software product lifecycle.
In an embodiment, the invention determines the state associated with the component 108, accesses and selects one of the instruction sets 112 based on the determined state, and applies one or more of the files 110 to the component 108 in accordance with the selected instruction set 112 to modify the component 108 (e.g., add or remove components or files in the components). The invention also updates the manifests associated with the updated components 108 with data relating to the update process. A user such as an administrator queries the manifest stored for each of the components 108 to obtain a listing of all versions of all components 108 installed with the software product 106 along with a list of changes that have been made to the software product 106.
The system of
Componentized Software Product
Referring next to
Operating system 202 is the fundamental software control program for computing device 201, performing various functions including providing a user interface, managing the execution of one or more applications 204, and controlling the input of data from and output of data to various input/output (I/O) devices. Application programs 204 represent one or more of a wide variety of software application programs that may be executed on computing device 201. Examples of such application programs 204 include educational programs, reference programs, productivity programs (e.g., word processors, spreadsheets, databases), recreational programs, utility programs (e.g., communications programs), etc. Application programs 204 may be installed on computing device 201 by the user, or alternatively pre-installed by the manufacturer and/or distributor of computing device 201.
Operating system 202 separates its functionality into multiple components 206 such as component #1 through component #N. Each component 206 has a corresponding manifest 208 such as manifest #1 through manifest #N, respectively. The components 206 include a collection of one or more files (or file identifiers). The files may include software instructions such as an executable file, a dynamic-link library (DLL), or a component object module (COM). The files may also include data for use by one or more of the components 206. In one implementation, the files (e.g., data and/or instructions) corresponding to particular functionality of the operating system 202 are grouped together in the same component 206. For example, there may be a games component, a communications component, and a file system component. The grouping of files that result in the componentization may be static or alternatively may change over time. In one example, updates to operating system 202 may result in selected files from certain components 206 being removed and added to other components 206.
Each manifest 208 includes information describing the corresponding component 206. Any of a wide variety of metadata regarding the corresponding component 206 may be included in each manifest 208. In one implementation, the manifest 208 identifies the version of the corresponding component 206 as well as which other components 206, if any, the corresponding component 206 is dependent on. By way of example, in order for one or more files in component 206 to properly execute, one or more other files (e.g., a DLL file) from another component may need to be installed on computing device 201. In this example, manifest 208 would indicate that component 206 depends on the other component.
In one form, one or more computer-readable media associated with computing device 201 have computer-executable modules for updating the software product 106 (e.g., operating system 202) with a service package such as service package 104. The computer-executable modules are embodied as a component installer 210. The component installer 210 includes a configuration module 212, an installation module 214, a script module 216, a report module 218, and a dependency module 220. The configuration module 212 determines the state associated with the component 206 to be updated and selects one of the instruction sets based on the determined state. The installation module 214 modifies the component 206 by applying one or more of the files to the component 206 in accordance with the selected instruction set. The script module 216 updates the manifest 208 for the component 206 with data related to applying the one or more of the files. The script module 216 further stores the updated manifest 208 for the component 206 with component 206. The report module 218 receives a request from a user for data in the manifest 208. The report module 218 further queries the manifest 208 in response to the received request to generate query results and provides the query results to the user. The dependency module 220 resolves dependencies between files in the service package and the component 206 in the software product. Those skilled in the art will note that the modules 212-220 may all be part of the component installer 210 or may be stored in separate application programs or any combination in-between. Further, the modules 212-220 may execute locally or remotely to provide the functionality. The component installer 210 may include additional or less functionality than illustrated and is described herein.
Updating a Component Software Product
Referring next to
Service package 302 includes a plurality of installation instruction sets 304. As described previously, each of the instruction sets 304 corresponds to a state or phase of the components to be updated (e.g., components 206) in the software product lifecycle. The instruction sets 304 include computer-executable instructions (e.g., software code or scripts) or declarative installation steps which are followed by an application program such as component installer 210 in
The installation instruction sets 304 identify the components 306 that are updates for operating system 202 (e.g., including the versions of components 306). During an update process, assuming that the new components 306 have not already been installed as one of components 206, the updated components 306 and corresponding manifests 308 replace or supplement the corresponding components 206. By way of example and not limitation, component 306 is a newer version of component 206. In this situation, component 306 and manifest 308 would replace component 206 and manifest 208, respectively, in operating system 202. Component 306 may replace component 206 by simply overwriting one or more of the files in component 206 by one or more of the files in updated component 306 (the overwritten files may optionally be saved elsewhere before being overwritten). In a similar example, if manifest 308 indicates that component 306 lacks a file that currently exists in component 206 (e.g., as indicated by reviewing manifest 208), the file is deleted from the computer-readable medium storing operating system 202 during the update process.
In another embodiment, the files in updated component 306 may simply be a reference to other files. For example, to minimize the size of service package 302 and to ensure that the latest updated components 306 are installed, the updated components 306 may include hyperlinks to the actual files to be installed. The component installer 210 downloads the files associated with the updated components 306 during the update process.
The operating system 202 may be updated for any of a wide variety of reasons. For example, bug fixes to certain files of certain components may be available, new functionality (e.g., replacement or additional files) for component 206 may be available, or new components 306 may be available.
Additionally, a new component 306 may be installed as part of the operating system 202 in addition to a previous component 206 rather than in place of the previous component 206. In this example, the manifest 208 is modified to indicate that both the new component 306 and the previous component 206 are installed. This allows different applications to use whichever version of the components 206, 306 they prefer (or are programmed to use). Those skilled in the art will note that in some embodiments, the instruction sets 304 are part of the manifests 308 for each component. In this manner, the component installer accesses each manifest 308 to determine how to install the component 306 associated therewith.
Operation of the Component Installer
Referring next to
The update process includes receiving the service package, determining the state associated with the component at 402, selecting one of the instruction sets based on the determined state at 404, and applying one or more of the files to the component in accordance with the selected instruction set at 406. Applying the files includes copying each of the files from the service package to the computer-readable medium storing the component and integrating the copied files with the component. Alternatively or in addition, applying the files includes performing a file action and/or a data action. Performing the file action includes copying, deleting, and replacing files. Performing the data action includes updating a system setting such as a registry entry.
The update process further includes updating the manifest for the component with data related to applying the one or more of the files and storing the updated manifest for the component with the component at 408. The stored data comprises at least one of the following: a version number, an update time, a description of the service package, a description of the changes made to the component, the current lifecycle phase of the software product, and a storage location of the component. The update process further includes receiving a request from a user for the data in the manifest at 410, querying the manifest in response to the received request to generate query results at 412, and providing the query results to the user at 414.
The update process also resolves dependencies between the updated components and the existing components in the software product. Dependency resolution includes accessing the selected instruction set to identify one or more additional components dependent on or by the updated component. As a result of the dependency resolution, the component installer may request and receive additional components as needed.
One or more computer-readable media have computer-executable instructions for performing the method illustrated in
Creating the Service Package
Referring next to
Exemplary Operating Environment
The computer 130 typically has at least some form of computer readable media. Computer readable media, which include both volatile and nonvolatile media, removable and non-removable media, may be any available medium that may be accessed by computer 130. By way of example and not limitation, computer readable media comprise computer storage media and communication media. Computer storage media include volatile and nonvolatile, removable and non-removable media implemented in any method or technology for storage of information such as computer readable instructions, data structures, program modules or other data. For example, computer storage media include RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disks (DVD) or other optical disk storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium that may be used to store the desired information and that may be accessed by computer 130. Communication media typically embody computer readable instructions, data structures, program modules, or other data in a modulated data signal such as a carrier wave or other transport mechanism and include any information delivery media. Those skilled in the art are familiar with the modulated data signal, which has one or more of its characteristics set or changed in such a manner as to encode information in the signal. Wired media, such as a wired network or direct-wired connection, and wireless media, such as acoustic, RF, infrared, and other wireless media, are examples of communication media. Combinations of the any of the above are also included within the scope of computer readable media.
The system memory 134 includes computer storage media in the form of removable and/or non-removable, volatile and/or nonvolatile memory. In the illustrated embodiment, system memory 134 includes read only memory (ROM) 138 and random access memory (RAM) 140. A basic input/output system 142 (BIOS), containing the basic routines that help to transfer information between elements within computer 130, such as during start-up, is typically stored in ROM 138. RAM 140 typically contains data and/or program modules that are immediately accessible to and/or presently being operated on by processing unit 132. By way of example, and not limitation,
The computer 130 may also include other removable/non-removable, volatile/nonvolatile computer storage media. For example,
The drives or other mass storage devices and their associated computer storage media discussed above and illustrated in
A user may enter commands and information into computer 130 through input devices or user interface selection devices such as a keyboard 180 and a pointing device 182 (e.g., a mouse, trackball, pen, or touch pad). Other input devices (not shown) may include a microphone, joystick, game pad, satellite dish, scanner, or the like. These and other input devices are connected to processing unit 132 through a user input interface 184 that is coupled to system bus 136, but may be connected by other interface and bus structures, such as a parallel port, game port, or a Universal Serial Bus (USB). A monitor 188 or other type of display device is also connected to system bus 136 via an interface, such as a video interface 190. In addition to the monitor 188, computers often include other peripheral output devices (not shown) such as a printer and speakers, which may be connected through an output peripheral interface (not shown).
The computer 130 may operate in a networked environment using logical connections to one or more remote computers, such as a remote computer 194. The remote computer 194 may be a personal computer, a server, a router, a network PC, a peer device or other common network node, and typically includes many or all of the elements described above relative to computer 130. The logical connections depicted in
When used in a local area networking environment, computer 130 is connected to the LAN 196 through a network interface or adapter 186. When used in a wide area networking environment, computer 130 typically includes a modem 178 or other means for establishing communications over the WAN 198, such as the Internet. The modem 178, which may be internal or external, is connected to system bus 136 via the user input interface 184, or other appropriate mechanism. In a networked environment, program modules depicted relative to computer 130, or portions thereof, may be stored in a remote memory storage device (not shown). By way of example, and not limitation,
Generally, the data processors of computer 130 are programmed by means of instructions stored at different times in the various computer-readable storage media of the computer. Programs and operating systems are typically distributed, for example, on floppy disks or CD-ROMs. From there, they are installed or loaded into the secondary memory of a computer. At execution, they are loaded at least partially into the computer's primary electronic memory. The invention described herein includes these and other various types of computer-readable storage media when such media contain instructions or programs for implementing the steps described below in conjunction with a microprocessor or other data processor. The invention also includes the computer itself when programmed according to the methods and techniques described herein.
For purposes of illustration, programs and other executable program components, such as the operating system, are illustrated herein as discrete blocks. It is recognized, however, that such programs and components reside at various times in different storage components of the computer, and are executed by the data processor(s) of the computer.
Although described in connection with an exemplary computing system environment, including computer 130, the invention is operational with numerous other general purpose or special purpose computing system environments or configurations. The computing system environment is not intended to suggest any limitation as to the scope of use or functionality of the invention. Moreover, the computing system environment should not be interpreted as having any dependency or requirement relating to any one or combination of components illustrated in the exemplary operating environment. Examples of well known computing systems, environments, and/or configurations that may be suitable for use with the invention include, but are not limited to, personal computers, server computers, hand-held or laptop devices, multiprocessor systems, microprocessor-based systems, set top boxes, programmable consumer electronics, mobile telephones, network PCs, minicomputers, mainframe computers, distributed computing environments that include any of the above systems or devices, and the like.
The invention may be described in the general context of computer-executable instructions, such as program modules, executed by one or more computers or other devices. Generally, program modules include, but are not limited to, routines, programs, objects, components, and data structures that perform particular tasks or implement particular abstract data types. The invention may also be practiced in distributed computing environments where tasks are performed by remote processing devices that are linked through a communications network. In a distributed computing environment, program modules may be located in both local and remote computer storage media including memory storage devices.
In operation, computer 130 executes computer-executable instructions such as those illustrated in
The following examples further illustrate the invention. The exemplary manifest listed below defines locations for the file to be updated based on the current state of the installed component (e.g., source or run-time) as determined by the component installer. In the example below, NetworkComponent represents a collection of functionality. Further, version 1.1 indicates that this is an upgrade for NetworkComponent, which is dependent on version 1.0 or later of CoreOperatingSystemComponent.
Those skilled in the art will note that the order of execution or performance of the methods illustrated and described herein is not essential, unless otherwise specified. That is, it is contemplated by the inventors that elements of the methods may be performed in any order, unless otherwise specified, and that the methods may include more or less elements than those disclosed herein.
When introducing elements of the present invention or the embodiment(s) thereof, the articles “a,” “an,” “the,” and “said” are intended to mean that there are one or more of the elements. The terms “comprising,” “including,” and “having” are intended to be inclusive and mean that there may be additional elements other than the listed elements.
In view of the above, it will be seen that the several objects of the invention are achieved and other advantageous results attained.
As various changes could be made in the above constructions, products, and methods without departing from the scope of the invention, it is intended that all matter contained in the above description and shown in the accompanying drawings shall be interpreted as illustrative and not in a limiting sense.
This application is a continuation-in-part of co-pending U.S. patent application Ser. No. 09/561,389, filed Apr. 27, 2000, entitled “A COMPONENTIZED OPERATING SYSTEM,” which is hereby incorporated herein by reference in its entirety for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
5142680 | Ottman et al. | Aug 1992 | A |
5359730 | Marron | Oct 1994 | A |
5469573 | McGill, III et al. | Nov 1995 | A |
5499357 | Sonty et al. | Mar 1996 | A |
5555416 | Owens et al. | Sep 1996 | A |
5579508 | Yoshizawa et al. | Nov 1996 | A |
5649200 | Leblang et al. | Jul 1997 | A |
5713024 | Halladay | Jan 1998 | A |
5794052 | Harding | Aug 1998 | A |
5845077 | Fawcett | Dec 1998 | A |
5878408 | Van Huben et al. | Mar 1999 | A |
5950011 | Albrecht et al. | Sep 1999 | A |
5974572 | Weinberg et al. | Oct 1999 | A |
5999740 | Rowley | Dec 1999 | A |
6006034 | Heath et al. | Dec 1999 | A |
6016400 | Day et al. | Jan 2000 | A |
6038399 | Fisher et al. | Mar 2000 | A |
6073214 | Fawcett | Jun 2000 | A |
6080207 | Kroening et al. | Jun 2000 | A |
6110228 | Albright et al. | Aug 2000 | A |
6138179 | Chrabaszcz et al. | Oct 2000 | A |
6157928 | Sprenger et al. | Dec 2000 | A |
6161051 | Hafemann et al. | Dec 2000 | A |
6188779 | Baum | Feb 2001 | B1 |
6199204 | Donohue | Mar 2001 | B1 |
6202207 | Donohue | Mar 2001 | B1 |
6223345 | Jones et al. | Apr 2001 | B1 |
6247128 | Fisher et al. | Jun 2001 | B1 |
6262726 | Stedman et al. | Jul 2001 | B1 |
6279146 | Evans et al. | Aug 2001 | B1 |
6282711 | Halpern et al. | Aug 2001 | B1 |
6286138 | Purcell | Sep 2001 | B1 |
6292941 | Jollands | Sep 2001 | B1 |
6305015 | Akriche et al. | Oct 2001 | B1 |
6314565 | Kenner et al. | Nov 2001 | B1 |
6327617 | Fawcett | Dec 2001 | B1 |
6367072 | Justice et al. | Apr 2002 | B1 |
6377958 | Orcutt | Apr 2002 | B1 |
6378128 | Edelstein et al. | Apr 2002 | B1 |
6385766 | Doran, Jr. et al. | May 2002 | B1 |
6427236 | Chamberlain et al. | Jul 2002 | B1 |
6434744 | Chamberlain et al. | Aug 2002 | B1 |
6453413 | Chen et al. | Sep 2002 | B1 |
6463584 | Gard et al. | Oct 2002 | B1 |
6487713 | Cohen et al. | Nov 2002 | B1 |
6493871 | McGuire et al. | Dec 2002 | B1 |
6512526 | McGlothlin et al. | Jan 2003 | B1 |
6532474 | Iwamoto et al. | Mar 2003 | B2 |
6560614 | Barboy et al. | May 2003 | B1 |
6564215 | Hsiao et al. | May 2003 | B1 |
6598223 | Vrhel, Jr. et al. | Jul 2003 | B1 |
6681323 | Fontanesi et al. | Jan 2004 | B1 |
6711624 | Narurkar et al. | Mar 2004 | B1 |
6802054 | Faraj | Oct 2004 | B2 |
6832373 | O'Neill | Dec 2004 | B2 |
20010027554 | Imachi et al. | Oct 2001 | A1 |
20010029605 | Forbes et al. | Oct 2001 | A1 |
20010042112 | Slivka et al. | Nov 2001 | A1 |
20020049966 | Lin | Apr 2002 | A1 |
20020073398 | Tinker | Jun 2002 | A1 |
20020144248 | Forbes et al. | Oct 2002 | A1 |
20020156877 | Lu et al. | Oct 2002 | A1 |
20020174329 | Bowler et al. | Nov 2002 | A1 |
20020188941 | Cicciarelli et al. | Dec 2002 | A1 |
20020194398 | Bentley et al. | Dec 2002 | A1 |
20030046681 | Barturen et al. | Mar 2003 | A1 |
20030056102 | Aho et al. | Mar 2003 | A1 |
20030120678 | Hill et al. | Jun 2003 | A1 |
20030120688 | Hill et al. | Jun 2003 | A1 |
20030121024 | Hill et al. | Jun 2003 | A1 |
20030145317 | Chamberlain | Jul 2003 | A1 |
20030182652 | Custodio | Sep 2003 | A1 |
20030233379 | Cohen et al. | Dec 2003 | A1 |
20040015857 | Cornelius et al. | Jan 2004 | A1 |
20040070678 | Toyama et al. | Apr 2004 | A1 |
20040181790 | Herrick | Sep 2004 | A1 |
20040210653 | Kanoor et al. | Oct 2004 | A1 |
20040215755 | O'Neill | Oct 2004 | A1 |
20040218902 | Yanagita | Nov 2004 | A1 |
Number | Date | Country |
---|---|---|
0 817 014 | Jan 1998 | EP |
2 334 354 | Feb 1998 | GB |
WO 9949394 | Sep 1999 | WO |
WO 9959059 | Nov 1999 | WO |
Number | Date | Country | |
---|---|---|---|
20040034850 A1 | Feb 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09561389 | Apr 2000 | US |
Child | 10641800 | US |