The present disclosure generally relates to an apparatus and method for monitoring a presence and time of absence of a utensil. More specifically, the apparatus comprises a monitoring system for alerting a service person when a utensil is removed from a utensil storage location for greater than a predetermined period of time.
Food service establishments, such as restaurants, kitchens, or any other commercial establishment where food is served, employ serving utensils for serving food, ice, salads, bread, condiments, garnishes, and the like. The use of the serving utensils introduces a potential health hazard for the food service facility's patrons. For example, leaving the serving utensil exposed for an extended period of time introduces a potential for contamination from extended exposure to airborne contaminants, bacteria and viruses carried by patrons, etc. In another example, a lack of control of the serving utensils can introduce a potential of cross contamination from different foods. More specifically, a person may inadvertently use a serving utensil designated to serve lettuce for distribution of peanuts. The contact with the peanuts may transfer oils or other residue onto the serving utensil. The serving utensil would be returned for continued use for serving lettuce. The residue may inadvertently be transferred to the lettuce and consumed by a person having allergies to peanuts, exposing the person to a potential allergic health risk.
Health departments mandate that food and serving utensils be protected from unnecessary handling, coughs and sneezes, dust, flies, rodents or other vermin, and other potential sources of contamination. To protect the general public from food related illnesses, many health departments mandate that food preparation and dispensing utensils shall be stored during pauses in food preparation or dispensing. This is complicated when the food serving establishment offers buffets, salad bars, and the like, where the patrons server themselves. The patrons are not aware or educated regarding health department practices; more specifically, the return of serving utensils to dedicated storage locations or serving utensil rests.
Regarding one specific application, ice-dispensing utensils shall be stored on a clean surface or in the ice with the dispensing utensil's handle extended out of the ice. Between uses, ice transfer utensils shall be stored in a way that protects the utensils from contamination. Again, this expectation is generally faltered when the process relies upon the patrons to return the serving utensils to their proper storage location or rest.
Similar can be applied to serving spoons, forks, tongs, and the like.
Therefore, an apparatus and associated process for identifying when a serving utensil is separated from the associated serving utensil rest over a predetermined time is desirable. It would be beneficial if the solution were adaptable to existing installations. Additional advantages are noted when the apparatus identifies and associates a specific serving utensil with a specific serving utensil rest or holster.
The present disclosure is generally directed towards an apparatus and respective method of use for identifying when a serving utensil is removed from a utensil rest or holster and how long the serving utensil is removed therefrom. The utensil storage monitoring system activates an alert when the serving utensil has been removed from the utensil rest or holster for a period of time equal to or greater than a predetermined allowable time period.
One embodiment of the present invention is a utensil storage monitoring system comprising:
a microprocessor;
a serving utensil sensor in signal communication with the microprocessor; and
at least one alerting component,
wherein, the microprocessor operates in accordance with a set of utensil monitoring instructions, the set of utensil monitoring instructions including:
In a second aspect, the set of utensil monitoring instructions further comprises a step of:
In another aspect, the set of utensil monitoring instructions further comprises a step of:
In yet another aspect, the alerting process is escalated if the serving utensil is not returned to the serving utensil storage station.
In yet another aspect, serving utensil storage station is one of a serving utensil rest or a serving utensil holster.
In yet another aspect, the at least one alerting component includes an audible alert.
In yet another aspect, the at least one alerting component includes a visual alert. The visual alert can be any light emitting element, including an incandescent bulb, a light emitting diode (LED), a florescent bulb, and the like. The light emitting element can emit a solid light, a flashing light, a colored light, a red colored light, and the like, or any combination thereof.
In yet another aspect, the utensil storage monitoring system further comprises a stored serving utensil indicator.
In yet another aspect, the stored serving utensil indicator can be a visual indicator. The visual indicator can be any light emitting element, including an incandescent bulb, a light emitting diode (LED), a florescent bulb, and the like. The light emitting element can emit a solid light, a flashing light, a colored light, a green colored light, and the like, or any combination thereof.
In yet another aspect, the serving utensil sensor can be at least one of a proximity sensor, a magnetic read switch, an ultrasonic proximity sensor, an ultraviolet (UV) proximity sensor, an acoustic proximity sensor, and the like.
In yet another aspect, the serving utensil is uniquely identified by the serving utensil sensor.
In yet another aspect, the serving utensil is uniquely identified by the serving utensil sensor by employing a coded radio frequency (RF) communication interface and associated hardware and instruction sets.
In yet another aspect, the serving utensil sensor can utilize a radio frequency (RF) communication provided between a radio frequency (RF) transceiver and a radio frequency (RF) tag, wherein the radio frequency (RF) transceiver is integrated into the utensil storage monitoring system and the radio frequency (RF) tag is attached to the serving utensil.
In yet another aspect, the serving utensil is uniquely identified by the serving utensil sensor by employing a machine readable scanner and associated hardware and instruction set in conjunction with a machine readable label. The machine readable label can be a barcode, a Quick Read (QR) code, or any other suitable machine readable format.
In yet another aspect, the system can include a sterilization component. Each sterilization component would be in operational communication with the microprocessor. One exemplary sterilization component is an ultraviolet light (UV) emitter. A second exemplary sterilization component is heat emitter, such as a steam generator. A third exemplary sterilization component is an ozone emitter.
In yet another aspect, the utensil storage monitoring system further comprises a power supply. The power supply can be provided by a wall outlet, a portable power source, an integrated power generator (such as a solar power converter, a wind driven turbine, a thermo-differential power generator, and the like), or any other power source.
In yet another aspect, the utensil storage monitoring system further comprises a portable power supply. The portable power supply can be batteries, a capacitor, a super-capacitor, a portable power generator (such as a solar power converter, a wind driven turbine, a thermo-differential power generator, and the like), or any other suitable portable power generator.
In yet another aspect, the utensil storage monitoring system further comprises a voltage regulating circuit.
In yet another aspect, the utensil storage monitoring system further comprises each of an external power input and a portable power supply, wherein the system can be power by either power source. The external power input can provide a recharging source to the portable power supply.
In yet another aspect, the utensil storage monitoring system can be integrated into a serving utensil holster.
In yet another aspect, the utensil storage monitoring system can be integrated into a serving utensil rest.
In yet another aspect, the utensil storage monitoring system can be integrated into a utensil storage monitoring system housing, wherein the housing can be inserted into or assembled into any of the serving utensil holster, the serving utensil rest, or any other suitable serving utensil storage station.
In yet another aspect, the utensil storage monitoring system can be used in conjunction with an ice scoop, a serving fork, a serving spoon, a serving knife, a serving tongs, or any other serving utensil.
In yet another aspect, the utensil storage monitoring system can be carried by the utensil.
In yet another aspect, the utensil storage monitoring system can be encased in a water resistant or waterproof case.
In yet another aspect, the utensil storage monitoring system can be carried by a food serving container, such as an ice storage and distribution container. The utensil storage monitoring system would be mounted to the food serving container and adapted to identify when the utensil is inserted into the food serving container and monitor a length of time since the utensil is inserted into the food serving container. The utensil identification system can employ any device suitable for identifying the presence of the utensil within the food serving container.
In yet another aspect, the utensil storage monitoring system can include a communication circuit for communicating with a remotely located apparatus.
In yet another aspect, the utensil storage monitoring system can include a wireless communication circuit for wirelessly communicating with a remotely located apparatus.
In yet another aspect, the utensil storage monitoring system can be adapted to forward an alert to a wireless notification device. The wireless notification device can be a cellular telephone, a Smartphone, a remote server, an email system, a pager, a portable data assistant (PDA), a computing tablet, a point of sale (POS) system), a table seat planning system, and the like.
In yet another aspect, the utensil storage monitoring system can include a utensil status and data acquisition system. The utensil storage monitoring system can be in wired and/or wireless communication with the utensil status and data acquisition system.
In yet another aspect, the utensil status and data acquisition system includes an electronic server in signal communication with a digital storage medium.
In yet another aspect, the utensil status and data acquisition system can includes a utensil status monitor, wherein the utensil status monitor would be adapted to display data associated with the status of at least one monitored utensil. The data can include a utensil identifier, a time when the utensil was removed from the holster, a time when the utensil was returned to the holster, an alarm activation indicator, a current time, and the like.
In yet another aspect, the present invention discloses a method of using the utensil status monitoring system, the method comprising the steps:
In yet another aspect, the method further comprising steps of:
In yet another aspect, the method further comprising steps of:
In yet another aspect, wherein the step of escalating the alert comprises a step of increasing a volume of the audible alert.
In yet another aspect, wherein the step of escalating the alert comprises a step of increasing a frequency of the audible alert tones.
In yet another aspect, wherein the step of escalating the alert comprises a step of modifying a visual alerting method. The visual alerting method can be a strobing light, a solid light, a color changing light, and the like, or any combination thereof.
These and other aspects, features, and advantages of the present invention will become more readily apparent from the attached drawings and the detailed description of the preferred embodiments, which follow.
The invention will now be described, by way of example, with reference to the accompanying drawings, in which:
Like reference numerals refer to like parts throughout the various views of the drawings.
The following detailed description is merely exemplary in nature and is not intended to limit the described embodiments or the application and uses of the described embodiments. As used herein, the word “exemplary” or “illustrative” means “serving as an example, instance, or illustration.” Any implementation described herein as “exemplary” or “illustrative” is not necessarily to be construed as preferred or advantageous over other implementations. All of the implementations described below are exemplary implementations provided to enable persons skilled in the art to make or use the embodiments of the disclosure and are not intended to limit the scope of the disclosure, which is defined by the claims. For purposes of description herein, the terms “upper”, “lower”, “left”, “rear”, “right”, “front”, “vertical”, “horizontal”, and derivatives thereof shall relate to the invention as oriented in
Food serving establishments commonly serve refreshments with ice. The ice 130 is stored within an ice distribution container 100 as illustrated in
In the exemplary illustration, an ice container lower sliding panel 122 is slid under an ice container upper sliding panel 120, providing access to the stored ice 130 stored within the ice storage volume 118 of the ice distribution container 100. An ice container sliding panel hand grip 124 can be integrated into the ice container lower sliding panel 122, aiding the user during the process of sliding the ice container lower sliding panel 122 into an open position. The ice container sliding panel hand grip 124 would be designed to ensure against any interference with the ice container upper sliding panel 120 during the opening and closing sliding processes. It is understood that the ice container upper sliding panel 120 and ice container lower sliding panel 122 can alternatively be pivotally assembled to the ice container upper surface 110.
It is understood that the stored ice 130 can be served by a food serving establishment employee, a food serving establishment patron, or any other individual. The stored ice 130 is collected from and served using an ice scoop 170. To minimize contamination, the ice scoop 170 should be stored in an ice scoop holster 150 at all times other then when used for serving the stored ice 130, as illustrated in
Features of the ice scoop holster 150 and the ice scoop 170 are best identified in the illustration presented in
The exemplary ice scoop holster 150 includes an ice scoop holster attachment panel 152 having a planar surface for attachment to the ice distribution container 100, an ice scoop holster retention panel 154 providing, in combination with the ice scoop holster attachment panel 152, a holster ice scoop receptacle 158 for receiving and storing the ice scoop 170. An ice scoop holster base panel 156 can be integrated defining a lower or base surface of the ice scoop holster 150. It is understood that one or more drain orifices can be integrated into the ice scoop holster base panel 156. The exemplary ice scoop holster 150 is designed to receive and retain the ice scoop 170. The exemplary ice scoop holster 150 is representative of any serving utensil holster or serving utensil rest, wherein the serving utensil holster or serving utensil rest would be shaped to receive and store the associated serving utensil.
A utensil storage monitoring system 200 can be employed to determine when the ice scoop 170 is removed from the ice scoop holster 150 and monitor a time period between when the ice scoop 170 is removed from the ice scoop holster 150 and the ice scoop 170 is returned to the ice scoop holster 150. The utensil storage monitoring system 200 can be designed to be retrofitted into an existing ice scoop holster 150 or integrated into a custom ice scoop holster 150.
Details of the utensil storage monitoring system 200 are best shown in a schematic diagram illustrated in
A monitoring system microprocessor 214 provides the primary operation functionality of the utensil storage monitoring system 200. Storage of digital data and a set of instructions can be stored in a memory portion of the monitoring system microprocessor 214 or in a separate monitoring system digital memory device 216. The monitoring system digital memory device 216 would be in signal communication with the monitoring system microprocessor 214. The set of instructions provides operational instructions to the monitoring system microprocessor 214. The set of instructions define the functionality of the utensil storage monitoring system 200 and are described in a utensil status monitoring system flow diagram 300, as shown in
Power can be provided by either a monitoring system portable power supply 220 or an external power source providing power through an external power source 222. In an alternative configuration (as shown), the external power source 222 can provide externally supplied power to the monitoring system portable power supply 220, enabling recharging of the monitoring system portable power supply 220. Power can be managed using a power regulator 226. External recharging power can alternatively be provided to the monitoring system portable power supply 220 through a passive power charger 224.
The utensil storage monitoring system 200 can include at least one utensil sensing device 230 to determine when the ice scoop 170 is placed onto or within the ice scoop holster 150. The at least one utensil sensing device 230 can be a presence sensor 232 and/or a radio frequency (RF) reader 234. The presence sensor 232 can be any of the following: a mechanical contact switch, a pressure switch, a lever switch, a proximity sensor, a magnetic sensor, a magnetic read switch, a magnetic proximity fuse, a sonar based sensor, an ultrasonic proximity sensor, an ultraviolet (UV) proximity sensor, a passive thermal sensor, a passive thermal infrared sensor, an acoustic proximity sensor, a light sensor, a capacitive sensor, a capacitive displacement sensor, a Doppler effect sensor, an eddy current sensor, an inductive based sensor, a laser based sensor, a photocell sensor, a radar sensor, a hall effect sensor, and the like. Each of the above identified presence sensors 232 senses a physical presence of the ice scoop 170 within the ice scoop holster 150. A portion of the proposed presence sensors 232 can work with any off the shelf ice scoop 170. Others require a component being attached to the presence sensor 232 or a modification to the presence sensor 232. For example, a magnetic switch may require a magnetic material. In this case, the ice scoop 170 would include a magnetically attractive material or a magnetically attractive material can be attached to an appropriate location of the ice scoop 170.
The radio frequency (RF) reader 234 would require attachment of a radio frequency (RF) tag 236 to the ice scoop 170, as shown in
The utensil storage monitoring system 200 preferably monitors a time period when the ice scoop 170 is removed from the ice scoop holster 150. A clocking circuit 218 is included in the monitoring system printed circuit assembly (PCA) 210 to provide an apparatus for measuring time. The clocking circuit 218 is in signal communication with the monitoring system microprocessor 214.
The utensil storage monitoring system 200 can include any suitable alert or communication element or elements, including visual alerts, audible alerts, or any other suitable alerting device. In regards to a visual alert, the utensil storage monitoring system 200 can include a utensil sensed visual indicator 240 and/or a utensil removed visual indicator 242 to identify a status of the ice scoop 170 respective to the ice scoop holster 150. The utensil sensed visual indicator 240 and/or utensil removed visual indicator 242 can be assembled to the monitoring system printed circuit board (PCB) 212, a utensil storage monitoring system housing 208 (
In regards to an audible alert, the utensil storage monitoring system 200 can include a utensil return request audible alert 244. The utensil return request audible alert 244 can be assembled to the monitoring system printed circuit board (PCB) 212, the utensil storage monitoring system housing 208, the ice scoop holster 150, or any other suitable support element. The utensil removed visual indicator 242 would emit an audible alert when the ice scoop 170 has been removed from the ice scoop holster 150 for a period of time that is greater than the predetermined allowable “in-use” time period. The audible alert can be a continuous sound, a fluctuating sound, a cyclic sound, a textual representation, a musical alert, or any other audible alerting mechanism. The audible alert can be modified as the period of time when the ice scoop 170 has been removed from the ice scoop holster 150 continues. For example, the volume of the audible alert can increase as the period of time continues. In a second example, the style of the alert can be modified to become more noticeable.
The utensil storage monitoring system 200 can include other features, such as a sterilization system 250. One exemplary sterilization system 250 is an ultraviolet light (UV) emitter. A second exemplary sterilization system 250 is heat emitter, such as a steam generator. A third exemplary sterilization system 250 is an ozone emitter. The sterilization system 250 would be installed within the ice scoop holster 150 in a manner suitable for the sterilization process. Installation of the sterilization system 250 would be based upon the selected system. In the illustrated embodiment, the sterilization system 250 is placed along the interior surfaces of the ice scoop holster attachment panel 152 and the ice scoop holster retention panel 154 of the ice scoop holster 150. The sterilization system 250 would be oriented directing the eradicating emissions towards the serving surfaces of the ice scoop 170.
Operation of the utensil storage monitoring system 200 is described in a utensil status monitoring system flow diagram 300 presented in
Once installed, the system is activated (step 310). Activation can be accomplished by providing power to the utensil storage monitoring system 200, toggling a switch (not shown), toggling the utensil sensing device 230, or any other suitable method. The utensil storage monitoring system 200 begins to monitor the status of the ice scoop 170 within the ice scoop holster 150 (step 312). The utensil storage monitoring system 200 identifies a change in state of the ice scoop 170, more specifically, the utensil storage monitoring system 200 determines when the ice scoop 170 is removed from the ice scoop holster 150 (step 320). Upon determining when the ice scoop 170 is removed from the ice scoop holster 150, the utensil storage monitoring system 200 initiates the clocking circuit 218 (step 322). The utensil storage monitoring system 200 continues to increment the time period until the utensil storage monitoring system 200 determines that the ice scoop 170 is returned to the ice scoop holster 150 (decision step 324). The utensil storage monitoring system 200 monitors the removed time period following the removal of the ice scoop 170 from the ice scoop holster 150 and compares the removed time period with a predetermined allowable “in-use” time period. The utensil storage monitoring system 200 determines if the removed time period exceeds the predetermined allowable “in-use” time period (decision step 326). In a condition where the removed time period exceeds the predetermined allowable “in-use” time period, the utensil storage monitoring system 200 initiates an alert sequence (step 330). The alert can be a visual alert, an audible alert, or any other suitable alert. The visual alert can be a solid light 242, a flashing light 242, a backlit stencil, a display monitor, an LED display, and the like. The audible alert can be a continuous tone, a beeping sound or cyclic tone, a message, and the like. Following the activation of the alert, the utensil storage monitoring system 200 continues to monitor the status of the ice scoop 170 and to determine if the ice scoop 170 is returned to the ice scoop holster 150 (decision step 334). If the utensil storage monitoring system 200 senses the return of the ice scoop 170 to the ice scoop holster 150, the utensil storage monitoring system 200 deactivates or terminates the alert (step 336) and returns to the initial monitoring state (step 312). As time continues and the ice scoop 170 is not returned to the ice scoop holster 150, the utensil storage monitoring system 200 can include an optional step of escalating the alert (step 340).
The visual alert can be modified as the period of time when the ice scoop 170 has been removed from the ice scoop holster 150 continues. For example, the color can change from an amber color to a red color. In a second example, the light can change from a steady state to a flashing state.
The audible alert can be modified as the period of time when the ice scoop 170 has been removed from the ice scoop holster 150 continues. For example, the volume of the audible alert can increase as the period of time continues. In a second example, the style of the alert can be modified to become more noticeable.
The utensil storage monitoring system 200 would continue to monitor for the return of the ice scoop 170 to the ice scoop holster 150 (decision step 334).
The initially described configuration locates the utensil storage monitoring system 200 within the ice scoop holster 150. It is understood that the utensil storage monitoring system 200 can be adapted for other configurations. One example is presented in
A second example is presented in
The implementation and functionality of the monitoring system can be enhanced by introducing any of a number of additional features, as illustrated in an exemplary schematic diagram representing a wireless utensil monitoring system 500, presented in
It is understood that the reports can be modified to present any historical data in any desired arrangement. For example, another report can present a current status of one or more utensils within the facility. Another report can present a listing of one or more (preferably all) utensils currently in an alarm status. Storage of the historical data can be utilized to support a health inspection of the facility.
The reports can alternatively be forwarded to any desired recipient, such as the manager's wireless notification device 511, the hostess station 520, or any other desired recipient.
Although the above described implementation is directed towards the monitoring of the ice scoop 170. It is understood that the utensil storage monitoring system 200 can be adapted to monitor the status of any serving utensil. One example of another implementation is presented in
The utensil storage station 650 includes features to support the respective utensil 670. In the exemplary embodiment, the utensil storage station 650 includes a utensil storage station utensil rest 658 formed within a utensil storage station base 652 for receiving the utensil functional end 672 and a utensil storage station utensil handle support 659 proud or extending upwards from an upper surface of the utensil storage station base 652 for supporting and elevating the utensil handle 678. A plurality of utensil storage station feet 653 can be integral with a bottom surface of the utensil storage station base 652, wherein the utensil storage station feet 653 provide support when the utensil storage station 650 is placed upon a surface. The inclusion of a spatially arranged series of utensil storage station feet 653 is designed to accommodate a non-planar surface, such as a tiled countertop. In one design, the utensil storage station 650 can include three spatially arranged utensil storage station feet 653, as three points defines a plane against any reasonable uneven surface.
The utensil storage monitoring system 200 is integrated into a utensil storage station 650. The utensil sensing device 230 could be located within or proximate the utensil storage station utensil rest 658 or any other suitable location capable of identifying when the utensil 670 is present or removed from the utensil storage station 650. The radio frequency (RF) reader 234 can be located within or proximate the utensil storage station utensil handle support 659 or any other suitable location for reading the radio frequency (RF) tag 236. Installation of the utensil storage monitoring system 200 into the utensil storage station 650 would be based upon the design and material of the utensil storage station 650. The optional sterilization system 250 can be installed into the utensil storage station 650 according to the selected type of system.
It is understood that the basic concept can be modified while maintaining the spirit and intentions of the present invention. For example, the ice scoop holster 150 can be fabricated of a translucent or transparent material. The visual alert can illuminate a portion of or the entire ice scoop holster 150. In another example, the alert can be wired or wirelessly communicated to a master station or a remote station to inform others of an excessively long use of the serving utensil. The master station or remote station can retain a history of alerts, including which station initiated the alert, a time of the initiation of the alert, a longevity of the alert or any other desired statistic.
Since many modifications, variations, and changes in detail can be made to the described preferred embodiments of the invention, it is intended that all matters in the foregoing description and shown in the accompanying drawings be interpreted as illustrative and not in a limiting sense. Thus, the scope of the invention should be determined by the appended claims and their legal equivalence.
This Non-Provisional patent application claims the benefit of U.S. Provisional Patent Application Ser. No. 62/101,365, filed on Jan. 8, 2015, and U.S. Provisional Patent Application Ser. No. 62/206,180, filed on Aug. 17, 2015, both of which are incorporated herein in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
3217509 | Weil et al. | Nov 1965 | A |
3840261 | Fulkerson | Oct 1974 | A |
4012732 | Herrick | Mar 1977 | A |
4334145 | Norris, Sr. | Jun 1982 | A |
4458960 | Dunst | Jul 1984 | A |
4499368 | Payne | Feb 1985 | A |
4577181 | Lipscher et al. | Mar 1986 | A |
4975682 | Kerr et al. | Dec 1990 | A |
5227765 | Ishizuka | Jul 1993 | A |
5241297 | Goodman | Aug 1993 | A |
5543784 | Mendenhall | Aug 1996 | A |
5613660 | Wyatt | Mar 1997 | A |
5614886 | Snell et al. | Mar 1997 | A |
5939974 | Heagle | Aug 1999 | A |
6411215 | Shnier | Jun 2002 | B1 |
6412398 | Norcross et al. | Jul 2002 | B1 |
6558165 | Curry et al. | May 2003 | B1 |
6591739 | Norcross | Jul 2003 | B2 |
7205894 | Savage | Apr 2007 | B1 |
7673769 | McRorie, III | Mar 2010 | B2 |
7808388 | Kangas | Oct 2010 | B2 |
8297473 | Smith | Oct 2012 | B2 |
8310368 | Hoover et al. | Nov 2012 | B2 |
8429827 | Wetzel | Apr 2013 | B1 |
9477962 | Worrall | Oct 2016 | B2 |
9761100 | Anson | Sep 2017 | B2 |
20040112078 | Kateman et al. | Jun 2004 | A1 |
20040250554 | Kateman et al. | Dec 2004 | A1 |
20050098170 | Raynor | May 2005 | A1 |
20050198990 | Kateman et al. | Sep 2005 | A1 |
20060162348 | Kateman et al. | Jul 2006 | A1 |
20070273513 | White | Nov 2007 | A1 |
20100242497 | Bertone | Sep 2010 | A1 |
20100252626 | Elizondo | Oct 2010 | A1 |
20130081249 | McLean | Apr 2013 | A1 |
20130203024 | Dekar | Aug 2013 | A1 |
20130273508 | Hyde et al. | Oct 2013 | A1 |
20150359387 | Ramirez | Dec 2015 | A1 |
Number | Date | Country |
---|---|---|
202426382 | Sep 2012 | CN |
202714716 | Jun 2013 | CN |
103687517 | Mar 2014 | CN |
H05266358 | Oct 1993 | JP |
2006078056 | Mar 2006 | JP |
200807337 | Jan 2008 | TN |
Number | Date | Country | |
---|---|---|---|
20160203698 A1 | Jul 2016 | US |
Number | Date | Country | |
---|---|---|---|
62101365 | Jan 2015 | US | |
62206180 | Aug 2015 | US |