The present disclosure relates generally to devices, systems, and methods of mixing. More specifically, the present disclosure relates to devices, systems, and methods of mixing by asymmetric rotation.
Flowable materials, such as, but not limited, to creams or powders, are often a mixture of several components. It can be desirable to mechanically mix the components thoroughly and completely at high speed to provide homogeneity of the resultant mixture. The mixing process can be particularly important for materials which are challenging to handle such as fine materials and/or viscous materials. Asymmetric rotation of the components in a mechanical mixer can provide the appropriate mixing for the desired mixing results.
Yet, conventional asymmetric rotation mixers can present challenges to larger process operations. Although asymmetric rotation mixers can be employed at a modest scale, using manual or semi-manual interfacing, integration of conventional asymmetric rotation mixing into automated manufacturing processes can be challenging.
The following presents a simplified summary in order to provide a basic understanding of some aspects of various invention embodiments. The summary is not an extensive overview of the disclosed invention. It is neither intended to identify key or critical elements of the invention nor to delineate the scope of the invention. The following summary merely presents some concepts of the invention in a simplified form as a prelude to the more detailed description below.
According to an aspect of the present disclosure, an asymmetrical rotation mixer for mixing materials may include a rotational mount for receiving a container housing one or more materials for rotational mixing, a servo motor for providing rotational drive to the rotational mount, the servo motor including a servo motor control system for maintaining angular position control of an output shaft engaged to drive rotation of the rotational mount, and a mixer control system including a user interface for receiving input of a mixing profile, wherein the mixer control system provides indication of the mixing profile to the servo motor for execution.
According to another aspect of this disclosure, a system for automated mixing of one or more containers may include a robotic arm for loading and removing from a mixer a container housing one or more materials to be mixed, a robotic controller coupled to and in communication with the robotic arm and the mixer to control movement of the robotic arm to load and remove the container from the mixer, and a mixer control system including a scanner for scanning mixing profile information from a label, wherein the mixer control system provides the scanned mixing profile to a servo motor of the mixer for execution.
The drawings disclose exemplary embodiments in which like reference characters designate the same or similar parts throughout the figures of which:
Unless otherwise indicated, the drawings are intended to be read (for example, cross-hatching, arrangement of parts, proportion, degree, or the like) together with the specification, and are to be considered a portion of the entire written description of this invention. As used in the following description, the terms “horizontal”, “vertical”, “left”, “right”, “up” and “down”, “upper” and “lower” as well as adjectival and adverbial derivatives thereof (for example, “horizontally”, “upwardly”, or the like), simply refer to the orientation of the illustrated structure as the particular drawing figure faces the reader. Similarly, the terms “inwardly” and “outwardly” generally refer to the orientation of a surface relative to its axis of elongation, or axis of rotation, as appropriate.
Traditional asymmetric rotational mixers often apply an alternating current (AC) induction motor having basic speed controls to drive rotation of the materials to be mixed. However, such motors can lack precision and/or accuracy in rotational position and/or speed. Among the complications inhibiting more precise position and/or speed control in asymmetric rotational mixers, inertial mismatch (e.g., the mismatch of inertia between the load and the motor drive) can be particularly high, creating high barriers to achieving greater speed and/or positional controls. In particular, lack of positional accuracy, for example, to begin, pause, or end a mixing stage can limit and/or strain the use of automation in applying asymmetric rotational mixers.
Referring to
The rotational mount 18 can be connected to receive rotational drive about the axes 14, 16. Referring to
Referring now to
The servo motor 22 includes an output shaft 24 that is directly coupled to drive the rotational mount 18 for rotation about the primary axis 14 with a 1:1 ratio. In the illustrative embodiment, the servo motor 22 is directly coupled to drive the rotational mount 18 by direct connection with the rotational mount 18, without any gear box or other mechanical velocity change element. In some embodiments, the servo motor 22 may be directly coupled with the rotational mount 18 via mechanical interface to change the direction and/or orientation of rotation without change in the speed of rotation. The direct coupling of the output shaft 24 with the rotational mount 18 about the primary axis 14 can enhance the speed and/or position control of the servo motor 22 over the rotational mount 18 and the container 20.
The servo motor 22 includes a servo control system 26 comprising a servo controller 28 and a sensor 30. The servo controller 28 comprises a processor, memory storage, and communication circuitry, wherein the processor executes instructions stored on the memory storage, and issues/receives command signals via the communication circuitry based on the executed instructions.
The sensor 30 is illustratively embodied as a position sensor sensing the angular position of the shaft 24 for feedback control to the servo controller 28. The servo controller 28 is embodied to apply proportional-integral-derivative (PID) control to the angular position of the shaft 24 to provide high accuracy and/or positioning based on the information from the sensor 30. By providing responsive control to the shaft 24 angular position, mismatch in the inertial mismatch can be accommodated, overcoming the barriers of more precise angular control, for example, in AC induction motors.
For example, in asymmetrical rotational mixers, the inertial mismatch can be upwards of 60:1, or even up to 100:1, providing very high inertial mismatches even for common servo motors to accommodate. Yet, particular application of servo motors to asymmetrical rotational mixers can overcome barriers to interfacing with automated robotics as previously mentioned. Indeed, in some embodiments, the servo motor 22 can be arranged to accommodate such inertial mismatch in real-time, overcoming the particular variations in inertial mismatch that can occur in mixing, for example, by variation in mixing profile, and/or movement and/or change in composition of the mixed materials during mixing. Accordingly, asymmetrical rotational mixers can be enhanced in positional acuity for use in automated process, whether fully or partly.
Referring still to
According to
Referring now to
Once the user activates the start button, the HMI 32 sends a command signal to the servo motor providing instruction indicating the mixing profile for execution. The servo motor 22 executes the mixing profile, while performing angular position control as an underlying process control. Referring to
Referring to
In the illustrative embodiment, the servo motor 22 is illustratively coupled to drive rotation of the rotational mount about the primary axis 14, and rotation about the secondary axis 16 is accomplished by secondary take off (e.g., by geared ratio) from the power provided for rotation about the primary axis 14. In the illustrative embodiment, the HMI commands may include PLC by Modbus protocol, although in some embodiments, any suitable arrangement of instructions may apply.
The user-settable mixing parameters and/or profile allow decoupling of the servo motor controls by hierarchal control structure. This tiered system of controls allows the servo control system 26 to be particularly tuned for asymmetrical rotational mixing, allowing the efficient management of the inertial mismatch often experienced. Accordingly, enhanced rotational position control and/or rotational speed control can be provided in the context of asymmetrical rotational mixers using a servo motor control. Moreover, such asymmetrical rotational mixers can be more easily, cost effectively, and safely incorporated into robotic processes such as automated processes.
According to another embodiment in
The robotic controller 40 may be coupled to the robotic arm 38 and the mixer 12 via communication circuitry. The robotic controller 40 may direct the robotic arm 38 to perform one or more functions including, picking up the container 48, holding the container over the scanner 42, placing the container 48 in the mixer 12, and removing the container from the mixer 12. The mixer 12 may be coupled to scanner 42, or barcode scanner. The scanner 42 may scan a label with 2-D barcode 50 affixed on a bottom surface 52 or other surface of the container 48 as shown in
As illustrated in
In a method of automated operation according to
Examples of suitable processors may include one or more microprocessors, integrated circuits, system-on-a-chips (SoC), among others. Examples of suitable memory storage, may include one or more primary storage and/or non-primary storage (e.g., secondary, tertiary, etc., storage); permanent, semi-permanent, and/or temporary storage; and/or memory storage devices including but not limited to hard drives (e.g., magnetic, solid state), optical discs (e.g., CD-ROM, DVD-ROM), RAM (e.g., DRAM, SRAM, DRDRAM), ROM (e.g., PROM, EPROM, EEPROM, Flash EEPROM), volatile, and/or non-volatile memory; among others.
Although the illustrative embodiments disclose the servo motor directly coupling to the rotational mount of the mixer, it is contemplated that the same servo motor can be indirectly coupled via a physical gear reduction system and belt drive to the rotational mount of the mixer. Such an indirect coupling would accommodate larger inertial mismatch experienced when mixing larger mixing masses, for example five-gallon containers.
Although only a number of exemplary embodiments have been described in detail above, those skilled in the art will readily appreciate that many modifications are possible in the exemplary embodiments without materially departing from the novel teachings and advantages. Accordingly, all such modifications are intended to be included within the scope of this disclosure as defined in the following claims. While the methods, equipment and systems have been described in connection with specific embodiments, it is not intended that the scope be limited to the particular embodiments set forth, as the embodiments herein are intended in all respects to be exemplary rather than restrictive. Unless otherwise expressly stated, it is in no way intended that any method set forth herein be construed as requiring that its steps be performed in a specific order. Accordingly, where a method claim does not actually recite an order to be followed by its steps or it is not otherwise specifically stated in the claims or descriptions that the steps are to be limited to a specific order, it is no way intended that an order be inferred, in any respect.
Disclosed are components that can be used to perform the disclosed methods, equipment and systems. These and other components are disclosed herein, and it is understood that when combinations, subsets, interactions, groups, etc., of these components are disclosed that while specific reference of each various individual and collective combinations and permutation of these may not be explicitly disclosed, each is specifically contemplated and described herein, for all methods, equipment and systems. This applies to all aspects of this application including, but not limited to, steps in disclosed methods. Thus, if there are a variety of additional steps that can be performed it is understood that each of these additional steps can be performed with any specific embodiment or combination of embodiments of the disclosed methods. Any patents, applications and publications referred to herein are incorporated by reference in their entirety.
This application claims benefit of co-pending U.S. provisional patent application numbers U.S. 62/902,864, filed Sep. 19, 2019, entitled SERVO-ROBOTIC ASYMMETRIC ROTATIONAL MIXER, and U.S. 63/047,704, filed Jul. 2, 2020, entitled SERVO-ROBOTIC ASYMMETRIC ROTATIONAL MIXER AND SYSTEM, the disclosures of which are incorporated by reference in their entirety herein.
Number | Name | Date | Kind |
---|---|---|---|
7021123 | Wallevik et al. | Apr 2006 | B2 |
9579255 | Eliuk et al. | Feb 2017 | B2 |
20030179646 | Miller | Sep 2003 | A1 |
20070203010 | Kim | Aug 2007 | A1 |
20120135846 | Yao | May 2012 | A1 |
20160136052 | Koike et al. | May 2016 | A1 |
20180085721 | Rinaldis et al. | Mar 2018 | A1 |
20180268641 | Bartholomew et al. | Sep 2018 | A1 |
20210001292 | Takaoka | Jan 2021 | A1 |
Number | Date | Country |
---|---|---|
2001347152 | Dec 2006 | JP |
03084654 | Oct 2003 | WO |
2008043463 | Apr 2008 | WO |
2009137480 | Nov 2009 | WO |
2016088136 | Jun 2016 | WO |
Entry |
---|
International Search Report and Written Opinion for International Application No. PCT/US2020/051808; Feb. 1, 2021. |
Number | Date | Country | |
---|---|---|---|
20210086153 A1 | Mar 2021 | US |
Number | Date | Country | |
---|---|---|---|
63047704 | Jul 2020 | US | |
62902864 | Sep 2019 | US |