The invention relates to a servo-valve pilot stage suitable for acting as a first stage in a two-stage servo-valve. The invention also provides a two-stage servo-valve including a pilot stage of the above-specified type.
Jet servo-valves are well known. It is known that they are better at withstanding pollution of the fluid because the distance between the ejector and the deflector is greater than the distance between a nozzle and the flapper.
The pilot stage of a jet servo-valve has an ejector for ejecting a jet of fluid towards a receiver, such as deflector or an orifice. The ejector and the receiver are movable relative to each other. The relative movement between the receiver and the jet leaving the ejector enables the receiver to create pressure differences that are used for obtaining fine control over the movement of the spool of the distribution stage of the servo-valve.
Nevertheless, a known drawback of servo-valves with a jet pilot stage is the need to channel the fluid to the ejector by passing over the moving assembly of the servo-valve. Global standard SAE ARP490E requires servo-valves to be fastened and fed with hydraulic fluid via their bottom faces.
An object of the invention is to provide a pilot stage having a movable ejector that is simpler than known stages.
In order to achieve this object, the invention provides a pilot stage for a jet type servo-valve, the pilot stage comprising an ejector for ejecting a jet of fluid and that is movable facing a deflector suitable for generating a pressure difference that can be used for moving a spool of the servo-valve, and wherein the ejector extends radially projecting from a column, the column has a first end that is embedded in the servo-valve and through which the fluid is introduced into the column, and the column has a second end that is subjected to drive from a torque motor for selectively twisting the column in one direction or the other about a rest position. According to the invention, the column is a single piece and the ejector is fastened at the end of a tube that extends radially from the column while being in fluid-flow communication with a central bore of the column through which the ejector is fed with fluid.
The pilot stage of the invention thus makes use of a member that is deformable in twisting in order to move the ejector by acting directly on the deformable member that carries the ejector by means of a torque motor that acts in constant manner on the column regardless of the angle through which the column has twisted, while maintaining a high degree of proportionality between the action of the motor and the movement of the ejector, thereby making it possible to achieve fine control over the angular position of the ejector. Furthermore, the embedded end may be implanted in a low portion of the servo-valve, thereby eliminating the need to cause an ejector feed duct to pass over the distribution assembly.
A central location for the column contributes to obtaining a balanced design for the servo-valve that can improve its ability to withstand vibration and that can also improve its dynamic response. Designing the twistable column as a single piece reduces the number of moving parts and the number of seals that need to be made between them. The invention also provides a servo-valve including such a pilot stage.
The invention can be better understood in the light of the following description of a particular embodiment of the invention, given with reference to the following figures:
With reference to
The servo-valve shown comprises a body 1 in which a spool 2 is mounted to slide in leaktight manner in a cylindrical bore 3 by forming the distribution stage. The servo-valve rests on a machined bearing face 1000 having a port P for feeding the servo-valve with fluid, two utilization ports U1 and U2, and a return port R. These ports are in fluid-flow communication with corresponding ports of the support on which the servo-valve is fastened. The spool 2 is movable between two extreme positions and it is shaped to define leaktight chambers C1, C2, C3, and C4 inside the bore 3 respectively for use, depending on the extreme position of the spool 2 relative to a central position (or neutral position), for putting:
Facing the central flat 8 there is an ejector 20 that ejects a jet of fluid towards the sharing orifice 9. The ejector 20 is movable facing the sharing orifice 9 so as to move the point of impact of the jet on the central flat 8, thereby having the effect of varying the pressures that exist in the pilot chambers 4 and 5, thus enabling the spool to be moved in response to the movement of the ejector 20. The above is well known and is recalled merely to situate the context of the invention.
According to an essential aspect of the invention, the ejector 20 is secured to a one-piece column 21 that is twistable and has a tube fastened to its end, which tube extends radially therefrom, and is in fluid-flow communication with a central bore 22 of the column, through which the ejector 20 is fed with fluid. The column 21 has a first end 23 that is fastened in leaktight manner in the body 1 in a direction that is substantially perpendicular to the bearing face 1000 and through which the fluid is introduced into the central bore of the column, the fluid coming from the feed port P (the feed duct is drawn in dashed lines and may be drilled directly in the body 1). The first end of the column may be implanted in a low portion of the body 1, close to the pressure feed, thereby avoiding any need to pass feed ducts for the ejector 20 over the distribution assembly.
The column 21 has a second end 24 that is secured to the rotor 25 of a torque motor 26 having its stator 27 fastened on the body 1.
Thus, when the torque motor 26 is powered, it twists the column 21 about its axis Z, thereby causing the ejector 20 to move angularly facing the sharing orifice 9 so that the impact of the jet produced by the ejector 20 moves relative to the sharing orifice 9.
The movement of the point of impact of the jet is small and may be considered to be a movement in translation along the tangent to the trajectory of the ejector 20. A high degree of proportionality is conserved between this movement and the torque that is imposed by the torque motor 26 on the column, and thus with the electric current fed thereto.
When the torque motor 26 is unpowered, the column 21 is at rest, and the jet produced by the ejector 20 impacts the central flat 8 of the deflector at a location for which the pressures in the pilot chambers 4 and 5 are in equilibrium. For this purpose, the deflector 6 is provided with adjustment means enabling its precise positioning in the housing 9 facing the ejector to be adjusted.
With reference below to the second particular embodiment shown in
As can be seen more particularly in
It is advantageous to obtain stiffness that is relatively small, thus making it possible for a required angular stroke of the deflector 120 to make use of a torque motor of smaller power. Thus, the torque to be withstood by the embedded end is made smaller and this may be guaranteed merely by the first end 123 of the column 121 being a tight fit in its housing. Sealing is then guaranteed by a simple static gasket 131.
In this embodiment and according to a particular aspect of the invention, the column 121 is surrounded by a thin-walled tube 127 that extends from a soleplate 128 that is fastened in leaktight manner to the body of the servo-valve to a flange 129 tightly surrounding the end 124 of the column. The flange 129 and said end are fastened together so that during twisting driven by the torque motor 126, the thin-walled tube 127 and the twistable portion 140 work in parallel and are subjected to the twisting. These two parts serve to seal the chamber 145 into which the ejector 120 ejects the fluid, without having recourse to a sealing gasket rubbing against the end of the column that co-operates with the torque motor, which could give rise to hysteresis.
In another particular aspect of the invention, the resilient return force between the spool 102 and the ejector 120 that is secured to the column 121 is provided in this embodiment by a flexible rod 132 connected at one of its ends to the column 121 and extending as far as the spool 102. The rod 132 extends parallel to the column 121.
In another particular embodiment that is shown in
The torque motor 126 is described in detail below with reference to
As can be seen in
Coils 157 and 158, each arranged to surround one of the arms of the flapper 150, are powered in opposition, thereby producing torque on the flapper 150 that is proportional to the product of the currents fed to the coils 157 multiplied by the number of turns in the coils so as to generate a magnetic flux within the flapper that produces a north polarization on the portion 150a and a south polarization on the portion 150b (see
Naturally, this twisting is very small, being of the order of a few tenths of a degree. It suffices to reverse the direction of the current fed to the coils in order to reverse the direction of the twisting.
It should be observed that in the variant shown in
Naturally, the invention is not limited to the above description, but covers any variant coming within the ambit defined by the claims.
In particular, although the above-described column is mounted parallel with a twistable thin-walled tube, such a configuration could be avoided if sealing can be ensured for the chamber into which the ejector sends fluid. In particular, it is possible to use a bellows, or a gasket that is capable of deforming in twisting without sliding and without friction and that does not present hysteresis.
The two stages of the servo-valve may constitute a single module or they may be in the form of separate modules enabling servo-valves to be constructed in modular manner.
Number | Date | Country | Kind |
---|---|---|---|
10 56269 | Jul 2010 | FR | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2011/063153 | 7/29/2011 | WO | 00 | 4/11/2013 |