Embodiments of the present invention relate to a set of glenoid components for a shoulder prosthesis.
Typically, the body of a glenoid component is not very thick, the two opposite primary faces of said body respectively being adapted to cooperate in a ball-and-socket manner with a humeral head, either natural or prosthetic, and to be pressed against the socket of a shoulder blade so as to be immobilized there. To that end, the first aforementioned face includes a joint surface, generally spherical, while the second face includes a bearing surface, which is also spherical or planar, in the central region of which often at least one bone anchoring element protrudes in the socket, such as a keel or pins. Such glenoid components may be provided in different sizes, but the glenoid components of different sizes often have identical bearing surfaces.
Thus, depending in particular on the patient's morphology, the surgeon has the option of choosing the glenoid component of which the size seems best suited to the patient. As a result, the articular performance of the patient's prosthetic shoulder is quite often satisfactory. At the same time, it has, however, been observed that, during use of glenoid components which did not best suit the patient, the implanted glenoid component tends gradually to come unsealed from the socket, through wear or mechanical alteration of the interface between the body and the socket.
A set of glenoid components for use in a joint according to embodiments of the present invention includes a first glenoid component having a first joint surface and a first bearing surface, and a second glenoid component having a second joint surface and a second bearing surface, wherein each of the first and second joint surfaces is configured to cooperate with a prosthetic or natural bone head, wherein each of the first and second bearing surfaces is configured for placement against a socket of the joint, wherein the first joint surface is substantially the same as the second joint surface, and wherein the first and second bearing surfaces have different dimensional geometries. Both the first and second bearing surfaces may include substantially convex curved surfaces. The first bearing surface may have a first radius of curvature, and the second bearing surface may have a second radius of curvature that is greater than the first radius of curvature. The second radius of curvature is at least 4 mm greater, or 8 mm greater, than the first radius of curvature, according to embodiments of the present invention.
According to some embodiments of the present invention, the first and second glenoid components are of a first size, and the set further includes a third glenoid component having a third joint surface and a third bearing surface, a fourth glenoid component having a fourth joint surface and a fourth bearing surface, wherein each of the third and fourth joint surfaces is also configured to cooperate with the prosthetic or natural bone head, wherein each of the third and fourth bearing surfaces is also configured for placement against the socket of the joint, wherein the third and fourth glenoid components are of a second size larger than the first size, wherein the third joint surface is substantially the same as the fourth joint surface, and wherein the third and fourth bearing surfaces have different dimensional geometries. The first bearing surface may have a first radius of curvature, the second bearing surface may have a second radius of curvature that is greater than the first radius of curvature, the third bearing surface may have a third radius of curvature, and the fourth bearing surface may have a fourth radius of curvature that is greater than the third radius of curvature, according to embodiments of the present invention. In some cases, the first radius of curvature may be the same as the third radius of curvature. In such cases, the second radius of curvature may be the same as the fourth radius of curvature. In other cases, the first radius of curvature may be smaller than the third radius of curvature, and/or the second radius of curvature may be smaller than the fourth radius of curvature.
According to some embodiments of the present invention, the first and third bearing surfaces have identical dimensional geometries. According to other embodiments of the present invention, the different dimensional geometries are two different geometries selected from the group including a planar surface, a convex curved surface, a concave curved surface, and a terraced surface. At least one of the first and second bearing surfaces may include a protruding anchor element configured for engagement with the socket of the joint.
According to some embodiments of the present invention, the first glenoid component includes a first top face and a first bottom face, the first top face including the first joint surface, the first bottom face including the first bearing surface, wherein the first bearing surface occupies most or all of the first bottom face other than an anchor element, if any. According to some embodiments of the present invention, the joint is a shoulder joint, the socket is a shoulder blade socket, and the prosthetic or natural bone head is a prosthetic or natural humeral head.
A set according to embodiments of the present invention may further include a fifth glenoid component having a fifth joint surface and a fifth bearing surface, and a sixth glenoid component having a sixth joint surface and a sixth bearing surface, wherein each of the fifth and sixth joint surfaces is also configured to cooperate with the prosthetic or natural bone head, wherein each of the fifth and sixth bearing surfaces is also configured for placement against the socket of the joint, wherein the fifth and sixth glenoid components are of a third size larger than the second size, wherein the fifth joint surface is substantially the same as the sixth joint surface, and wherein the fifth and sixth bearing surfaces have different dimensional geometries. According to such embodiments, the first, second, third, fourth, fifth, and sixth glenoid components may be packaged together in a kit, for example within a common box or container.
According to some embodiments of the present invention, the first bearing surface has a first radius of curvature, the second bearing surface has a second radius of curvature that is greater than the first radius of curvature, the third bearing surface has a third radius of curvature, the fourth bearing surface has a fourth radius of curvature that is greater than the third radius of curvature, the fifth bearing surface has a fifth radius of curvature, and the sixth bearing surface has a sixth radius of curvature that is greater than the fifth radius of curvature. The first radius of curvature may be the same as the third radius of curvature but less than the fifth radius of curvature; and/or the second radius of curvature may be the same as the fourth radius of curvature but less than the sixth radius of curvature, according to embodiments of the present invention. In some cases, the fifth radius of curvature is at least 4 mm smaller, or at least 8 mm smaller, than the sixth radius of curvature.
A method for glenoid implantation according to embodiments of the present invention includes evaluating a geometrical shape of a patient's bone socket, selecting a glenoid component from a set of glenoid components, the set of glenoid components including at least two different sizes of glenoid components, with at least two glenoid components of each size having geometrically different bearing surfaces but similar joint surfaces, wherein selecting the glenoid component includes first selecting a size of the at least two different sizes, and then within the selected size selecting a best match of the geometrically different bearing surface with the geometrical shape of the patient's bone socket, and implanting the selected glenoid component in the patient's bone socket.
While multiple embodiments are disclosed, still other embodiments of the present invention will become apparent to those skilled in the art from the following detailed description, which shows and describes illustrative embodiments of the invention. Accordingly, the drawings and detailed description are to be regarded as illustrative in nature and not restrictive.
While the invention is amenable to various modifications and alternative forms, specific embodiments have been shown by way of example in the drawings and are described in detail below. The intention, however, is not to limit the invention to the particular embodiments described. On the contrary, the invention is intended to cover all modifications, equivalents, and alternatives falling within the scope of the invention as defined by the appended claims.
A set of glenoid implants according to embodiments of the present invention allows the surgeon to improve the durability of the mechanical cooperation between the implanted glenoid component and the socket of the patient. As such, embodiments of the present invention include a set of glenoid components of a shoulder prosthesis, including glenoid components that each include a body defining, on two of its opposite faces, respectively, a joint surface, intended to cooperate with a humeral head, prosthetic or natural, and a bearing surface bearing against the socket of a shoulder blade, in which set the glenoid components are provided in several different sizes, respectively defined by the dimensions of their respective joint surfaces, the set being characterized in that, in each size, at least two glenoid components are provided with bearing surfaces respectively having different dimensional geometries.
According to one embodiment of the present invention, the surgeon is provided with different sized glenoid components (e.g. at least two different sizes), each of which are available with respective support surfaces provided to be different from each other. In this way, to place a prosthesis in the shoulder of a given patient, the surgeon decides on the size of the glenoid component based on considerations related to the joint to be reestablished with the patient's humeral head, prosthetic or natural, then, given the size that the surgeon has selected, the surgeon chooses the glenoid component with the bearing surface best suited to the patient's glenoid, in its natural actual size or after having surgically prepared it. During surgery, the surgeon strives to keep the greatest possible amount of bone material actually present. Thus, use of embodiments of the present invention is counterintuitive to traditional dogma, according to which the surgeon must perform fairly substantial bone preparation operations for the patient's socket by removing a significant quantity of bone matter from the shoulder blade, to shape, in the patient's shoulder blade, a glenoid cavity adapted to the unique geometry and imposed on the glenoid bearing surface of the component that the surgeon has chosen by its size, e.g., as a function of its joint surface. Conversely, while leaving the surgeon the choice of a size for the glenoid component to be implanted, the glenoid component according to embodiments of the present invention allows the surgeon to take into account the actual state of the patient's glenoid. Furthermore, the bone state of patients' sockets varies within non-negligible proportions, in a manner not correlated to the joint cooperation to be reestablished using a shoulder prosthesis, according to embodiments of the present invention.
According to embodiments of the present invention, the differences between the bearing surfaces of the different glenoid components of a same size can follow the overall geometric size of these surfaces, or, for a given geometric shape, the dimensions of said geometric shape. Of course, the number of sizes present in the set according to embodiments of the invention as well as, within a same size, the number of glenoid components having different respective bearing surfaces, can be as large as desired.
Embodiments of a glenoid component may include a combination of one or more of the following features and/or characteristics, according to embodiments of the present invention:
the dimensional geometries, respectively provided to be different for at least two of the glenoid components having a same size, correspond to a same convex curved surface shape but have as many different curves;
the same convex curved surface shape is substantially spherical, so that said dimensional geometries, respectively provided to be different for at least two of the glenoid components having a same size, correspond to as many different curve radii;
for at least some sizes, the difference between the respective curve radii of the bearing surfaces of said at least two components having a same size is greater than 4 mm, or in some cases greater than 8 mm;
at least one of the curve radii, respectively provided to be different for a same size, has a value that is unchanged at least once when, among the sizes, one goes from a smaller size to a larger size;
at least one of the curve radii, respectively provided to be different for a same size, has a value that increases at least once when, among the sizes, one goes from a smaller size to a larger size;
the dimensional geometries, respectively provided to be different for at least two of the glenoid components having a same size, correspond to as many different geometric shapes selected from the group consisting of: a planar surface, a convex curved surface, a concave curved surface, and a terraced surface;
at least one of said dimensional geometries, respectively provided to be different for at least two of the glenoid components having a same size, is found identically in at least two of the different sizes;
at least one of the glenoid components of the set is provided with at least one anchor element in the socket of the shoulder blade, which protrudes from the bearing surface of said glenoid component;
the bearing surface of each of the glenoid components of the set occupies, outside the anchoring element(s) that may be present, most or all of the corresponding face of the body of the glenoid component.
The body S2.1 can also be a single piece, as shown in
One of the two aforementioned primary faces of the body S2.1 defines a joint surface S2.2 shaped to engage with the substantially complementary surface of the aforementioned humeral head. In practice, this humeral head is either natural, e.g. it corresponds to the natural upper epiphysis of the humerus associated with the shoulder blade, or prosthetic, e.g. it is defined by a humeral component of a shoulder prosthesis to which the glenoid component S2 belongs.
The joint surface S2.2 of the body S2.1 is substantially spherical, according to embodiments of the present invention. The corresponding curve radius is denoted RS. In the glenoid component shown in
As a non-illustrated alternative, bone anchoring elements other than the keel S2.4 can be provided, to replace or complement said keel. Likewise, such anchor elements can be completely absent, according to embodiments of the present invention. In the glenoid component shown in
According to some embodiments of the invention, the glenoid component S2, which is described in detail above with respect to
Each of the components S1, M1, M2, L1 and L2 comprises a body S1.1, M1.1, M2.1, L1.1 and L2.1, which is functionally similar to the body S2.1 of the component S2. In particular, each body S1.1, M1.1, M2.1, L1.1, L2.1 has, opposite one another, a joint surface S1.2, M1.2, M2.2, L1.2 and L.2, functionally similar to the joint surface S2.2 of the component S2, and a bearing surface S1.3, M1.3, M2.3, L1.3, L2.3 functionally similar to the bearing surface S2.3 of the component S2.
Component S1 is the same size as component S2, in that their respective joint surfaces S1.2 and S2.2 have substantially the same dimensions. In particular, as shown in
On the other hand, component S1 differs from component S2 by the dimensional geometry of its bearing surface S1.3 compared to that of the bearing surface S2.3 of component S2. In other words, the bearing surfaces S1.3 and S2.3 both have the same sphere portion shape, but their respective curve radii rS1 and rS2 are different: rS1 is smaller than rS2, according to embodiments of the present invention.
Likewise, components M1 and M2 are the same size and thus form, within the set J, a group of two components, referenced M in
Furthermore, as for components S1 and S2 in the group of size S, the bearing surfaces M1.3 and M2.3 of components M1 and M2 of the group of size M have different dimensional geometries, e.g. these bearing surfaces are both sphere portions for which the respective radii rM1 and rM2 are different, the value of the radius rM1 being smaller than the value of the radius rM2.
The radii rS1 and rM1 illustrated in
Lastly, by transposition of the preceding technical considerations relative to the components S1 and S2 of the group of size S and components M1 and M2 of the group of size M, components L1 and L2 constitute a group of size L, such that:
The radius rL1 may have a value greater than that of the radius rM1, but smaller than that of the radius rM2, according to embodiments of the present invention. And the radius rL2 may have a value greater than that of the radius rM2, according to embodiments of the present invention.
The radii of curvature RS, RM and RL may not only increase from size S to size M to size L, but the joint surfaces of the glenoid components of each of the groups with the same size may also differ by an increase in edge-to-edge expanse, for example in the plane of
The glenoid components of the set J are broken down into three groups of different sizes: S, M and L, according to embodiments of the present invention. Depending on whether the surgeon chooses one of components S1 and S2 or one of components M1 and M2 or one of components L1 and L2, the joint behavior of the selected glenoid component, relative to the humeral head of the patient, is fixed. However, for each of sizes S, M and L, the surgeon's choice of one of the two available components allows him to account for the actual state of the patient's socket: in particular, the surgeon will choose the one of the two available components for which the curvature of the bearing surface is best suited to the actual geometric configuration of the socket, in particular to limit the extent of the prior preparation of the socket, thereby limiting the loss of bone substance, while also optimizing the extent of the bearing interface produced between the socket and the component selected during implantation thereof, according to embodiments of the present invention.
The difference between the radii of curvature of the bearing surfaces of the components of a same size is, for example, greater than or equal to 4 mm, according to embodiments of the present invention. According to other embodiments of the present invention, the difference between the radii of curvature of the bearing surfaces of the components of a same size is greater than or equal to 8 mm. Thus, one non-limiting example of numerical quantification related to the embodiment of the set J shown in
rS1=34 mm,
rS2=38 mm,
rM1=34 mm,
rM2=38 mm,
rL1=36 mm, and
rL2=44 mm.
Various arrangements and alternatives may be utilized for the set of glenoid components J. As one example, at least one of the three groups of different sizes S, M and L may include more than two glenoid components, the respective bearing surfaces of the at least three glenoid components respectively having different dimensional geometries. Likewise, the set can be provided with only two groups of different sizes, for example S and M, or S and L or M and L, according to embodiments of the present invention. The set can also include more than three groups of different sizes, according to embodiments of the present invention.
According to one alternative embodiment of the present invention (not shown), the difference of dimensional geometries between the bearing surfaces of the glenoid components of a same size does not correspond to a dimensional difference of a same geometric shape, as is the case for the set J, but this difference is based on the presence of as many different geometric shapes as there are glenoid components present in the group of a same size. In other words, within each group of a same size, one of the glenoid components has, for example, a planar bearing surface while the other glenoid component has a bearing surface with a convex curve, according to embodiments of the present invention. More generally, the respective bearing surfaces of the at least two glenoid components present in the aforementioned group then have different geometric shapes that are chosen from among at least a planar surface, a convex curved surface, a concave curved surface and a terraced surface, according to embodiments of the present invention.
Optionally, rather than being continuously smooth as in the figures, the bearing surfaces of the components of the set J can have a roughness, or even macro-aspects, such as grooves, pyramidal spurs, conical cells, and the like, to strengthen the immobilization of the component in the socket.
Although embodiments of the present invention are described with respect to shoulder joints, one of ordinary skill in the art, based on the disclosure provided herein, will recognize that similar sets of glenoid components may be used for other joints, for example hip joints, according to embodiments of the present invention.
Various modifications and additions can be made to the exemplary embodiments discussed without departing from the scope of the present invention. For example, while the embodiments described above refer to particular features, the scope of this invention also includes embodiments having different combinations of features and embodiments that do not include all of the described features. Accordingly, the scope of the present invention is intended to embrace all such alternatives, modifications, and variations as fall within the scope of the claims, together with all equivalents thereof.
Number | Date | Country | Kind |
---|---|---|---|
1058647 | Oct 2010 | FR | national |
This application is a continuation of U.S. application Ser. No. 15/145,210, filed Oct. 21, 2011, now U.S. Pat. No. 10,631,993 which is a divisional of U.S. patent application Ser. No. 13/279,070, now U.S. Pat. No. 9,351,844, filed on Oct. 21, 2011, which claims the benefit of U.S. Provisional Patent Application Ser. No. 61/488,102, filed on May 19, 2011, and claims foreign priority to French Patent Application No. FR1058647, filed on Oct. 22, 2010, all of which are incorporated by reference herein in their entireties for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
3694820 | Scales et al. | Oct 1972 | A |
3815157 | Skorecki et al. | Jun 1974 | A |
3842442 | Kolbel | Oct 1974 | A |
3864758 | Yakich | Feb 1975 | A |
3869730 | Skobel | Mar 1975 | A |
3916451 | Buechel et al. | Nov 1975 | A |
3978528 | Crep | Sep 1976 | A |
3979778 | Stroot | Sep 1976 | A |
3992726 | Freeman et al. | Nov 1976 | A |
4003095 | Gristina | Jan 1977 | A |
4030143 | Elloy et al. | Jun 1977 | A |
4040131 | Gristina | Aug 1977 | A |
4054955 | Seppo | Oct 1977 | A |
4135517 | Reale | Jan 1979 | A |
4179758 | Gristina | Dec 1979 | A |
4206517 | Pappas et al. | Jun 1980 | A |
4261062 | Amstutz et al. | Apr 1981 | A |
4550450 | Kinnett | Nov 1985 | A |
4693723 | Gabard | Sep 1987 | A |
4822370 | Schelhas | Apr 1989 | A |
4846840 | Leclercq et al. | Jul 1989 | A |
4865605 | Dines et al. | Sep 1989 | A |
4865609 | Roche | Sep 1989 | A |
4892549 | Figgie, III et al. | Jan 1990 | A |
4919670 | Dale et al. | Apr 1990 | A |
4957510 | Cremascoli | Sep 1990 | A |
4963155 | Lazerri et al. | Oct 1990 | A |
4986833 | Worland | Jan 1991 | A |
5032132 | Matsen, III et al. | Jul 1991 | A |
5080673 | Burkhead et al. | Jan 1992 | A |
5080685 | Bolesky et al. | Jan 1992 | A |
5127920 | MacArthur | Jul 1992 | A |
5135529 | Paxson et al. | Aug 1992 | A |
5152797 | Luckman et al. | Oct 1992 | A |
5163961 | Harwin | Nov 1992 | A |
5171289 | Tornier | Dec 1992 | A |
5181928 | Bolesky et al. | Jan 1993 | A |
5192329 | Christie et al. | Mar 1993 | A |
5201882 | Paxson | Apr 1993 | A |
5206925 | Nakazawa et al. | Apr 1993 | A |
5222984 | Forte | Jun 1993 | A |
5226915 | Bertin | Jul 1993 | A |
5261914 | Warren | Nov 1993 | A |
5314479 | Rockwood, Jr. et al. | May 1994 | A |
5314485 | Judet | May 1994 | A |
5314487 | Schryver et al. | May 1994 | A |
5326359 | Oudard | Jul 1994 | A |
5330531 | Cappana | Jul 1994 | A |
5358526 | Tornier | Oct 1994 | A |
5383936 | Kubein-Meesenburg et al. | Jan 1995 | A |
5405399 | Tornier | Apr 1995 | A |
5425779 | Schlosser et al. | Jun 1995 | A |
5429639 | Judet | Jul 1995 | A |
5443519 | Averill et al. | Aug 1995 | A |
5458650 | Garrett et al. | Oct 1995 | A |
5462563 | Shearer et al. | Oct 1995 | A |
5505731 | Tornier | Apr 1996 | A |
5507817 | Craig et al. | Apr 1996 | A |
5507818 | McLaughlin | Apr 1996 | A |
5507824 | Lennox | Apr 1996 | A |
5531793 | Kelman et al. | Jul 1996 | A |
5549682 | Roy | Aug 1996 | A |
5580352 | Sekel | Dec 1996 | A |
5591168 | Judet et al. | Jan 1997 | A |
5603715 | Kessler | Feb 1997 | A |
5662651 | Tornier et al. | Sep 1997 | A |
5676702 | Ratron | Oct 1997 | A |
5702447 | Walch et al. | Dec 1997 | A |
5702457 | Walch et al. | Dec 1997 | A |
5702478 | Tornier | Dec 1997 | A |
5702486 | Craig et al. | Dec 1997 | A |
5723018 | Cyprien et al. | Mar 1998 | A |
5728161 | Camino et al. | Mar 1998 | A |
5741335 | Gerber et al. | Apr 1998 | A |
5755807 | Anstaett et al. | May 1998 | A |
5766256 | Oudard et al. | Jun 1998 | A |
5800551 | Williamson et al. | Sep 1998 | A |
5824106 | Fournol | Oct 1998 | A |
5879395 | Tornier et al. | Mar 1999 | A |
5879405 | Ries et al. | Mar 1999 | A |
5902340 | White et al. | May 1999 | A |
5910171 | Kummer et al. | Jun 1999 | A |
5928285 | Bigliani | Jul 1999 | A |
5944758 | Mansat et al. | Aug 1999 | A |
5961555 | Huebner | Oct 1999 | A |
5984927 | Wenstrom, Jr. et al. | Nov 1999 | A |
6015437 | Stossel | Jan 2000 | A |
6033439 | Camino et al. | Mar 2000 | A |
6045582 | Prybyla | Apr 2000 | A |
6045583 | Gross et al. | Apr 2000 | A |
6102953 | Huebner | Aug 2000 | A |
6129764 | Servidio | Oct 2000 | A |
6162254 | Timoteo | Dec 2000 | A |
6165224 | Tornier | Dec 2000 | A |
6168629 | Timoteo | Jan 2001 | B1 |
6171341 | Boileau et al. | Jan 2001 | B1 |
6183519 | Bonnin et al. | Feb 2001 | B1 |
6197062 | Fenlin | Mar 2001 | B1 |
6197063 | Dews | Mar 2001 | B1 |
6203575 | Farey | Mar 2001 | B1 |
6206925 | Tornier | Mar 2001 | B1 |
6228120 | Leonard et al. | May 2001 | B1 |
6267767 | Strobel et al. | Jul 2001 | B1 |
6283999 | Rockwood, Jr. | Sep 2001 | B1 |
6299646 | Chambat et al. | Oct 2001 | B1 |
6312467 | McGee | Nov 2001 | B1 |
6328758 | Tornier et al. | Dec 2001 | B1 |
6334874 | Tornier et al. | Jan 2002 | B1 |
6358250 | Orbay | Mar 2002 | B1 |
6364910 | Schultz et al. | Apr 2002 | B1 |
6368352 | Camino et al. | Apr 2002 | B1 |
6368353 | Arcand | Apr 2002 | B1 |
6379387 | Tornier | Apr 2002 | B1 |
6398812 | Masini | Jun 2002 | B1 |
6406495 | Schoch | Jun 2002 | B1 |
6406496 | Rüter | Jun 2002 | B1 |
6436144 | Ahrens | Aug 2002 | B1 |
6436147 | Zweymuller | Aug 2002 | B1 |
6454809 | Tornier | Sep 2002 | B1 |
6458136 | Allard et al. | Oct 2002 | B1 |
6475243 | Sheldon et al. | Nov 2002 | B1 |
6488712 | Tornier et al. | Dec 2002 | B1 |
6494913 | Huebner | Dec 2002 | B1 |
6506214 | Gross | Jan 2003 | B1 |
6508840 | Rockwood, Jr. et al. | Jan 2003 | B1 |
6514287 | Ondrla et al. | Feb 2003 | B2 |
6520994 | Nogarin | Feb 2003 | B2 |
6530957 | Jack | Mar 2003 | B1 |
6540770 | Tornier et al. | Apr 2003 | B1 |
6558425 | Rockwood, Jr. | May 2003 | B2 |
6569202 | Whiteside | May 2003 | B2 |
6582469 | Tornier | Jun 2003 | B1 |
6589281 | Hyde, Jr. | Jul 2003 | B2 |
6599295 | Tornier et al. | Jul 2003 | B1 |
6620197 | Maroney et al. | Sep 2003 | B2 |
6626946 | Walch et al. | Sep 2003 | B1 |
6673114 | Hartdegen et al. | Jan 2004 | B2 |
6673115 | Resch et al. | Jan 2004 | B2 |
6679916 | Frankie et al. | Jan 2004 | B1 |
6699289 | Iannotti et al. | Mar 2004 | B2 |
6736851 | Maroney et al. | May 2004 | B2 |
6746487 | Seifert et al. | Jun 2004 | B2 |
6749637 | Bahler | Jun 2004 | B1 |
6755866 | Southworth | Jun 2004 | B2 |
6761740 | Tornier | Jul 2004 | B2 |
6767368 | Tornier | Jul 2004 | B2 |
6780190 | Maroney | Aug 2004 | B2 |
6783549 | Stone | Aug 2004 | B1 |
6790234 | Frankle | Sep 2004 | B1 |
6802864 | Tornier | Oct 2004 | B2 |
6824567 | Tornier et al. | Nov 2004 | B2 |
6863690 | Ball et al. | Mar 2005 | B2 |
6875234 | Lipman et al. | Apr 2005 | B2 |
6887277 | Rauscher et al. | May 2005 | B2 |
6890357 | Tornier | May 2005 | B2 |
6890358 | Ball et al. | May 2005 | B2 |
6942699 | Stone et al. | Sep 2005 | B2 |
6953478 | Bouttens et al. | Oct 2005 | B2 |
6969406 | Tornier | Nov 2005 | B2 |
7011686 | Ball et al. | Mar 2006 | B2 |
7033396 | Tornier | Apr 2006 | B2 |
7066959 | Errico et al. | Jun 2006 | B2 |
7108719 | Horber | Sep 2006 | B2 |
7166132 | Callaway et al. | Jan 2007 | B2 |
7169184 | Dalla Pria | Jan 2007 | B2 |
7175663 | Stone | Feb 2007 | B1 |
7195645 | Disilvestro et al. | Mar 2007 | B2 |
7238207 | Blatter et al. | Jul 2007 | B2 |
7238208 | Camino et al. | Jul 2007 | B2 |
7297163 | Huebner | Nov 2007 | B2 |
7309360 | Tornier et al. | Dec 2007 | B2 |
7329284 | Maroney et al. | Feb 2008 | B2 |
7338498 | Long et al. | Mar 2008 | B2 |
7338528 | Stone et al. | Mar 2008 | B2 |
7468077 | Rochetin et al. | Dec 2008 | B2 |
7544211 | Rochetin et al. | Jun 2009 | B2 |
7604665 | Iannotti et al. | Oct 2009 | B2 |
7666522 | Justin et al. | Feb 2010 | B2 |
7678150 | Tornier | Mar 2010 | B2 |
7753959 | Berelsman et al. | Jul 2010 | B2 |
7892287 | Deffenbaugh | Feb 2011 | B2 |
8002839 | Rochetin et al. | Aug 2011 | B2 |
8114091 | Ratron et al. | Feb 2012 | B2 |
8231683 | Lappin et al. | Jul 2012 | B2 |
8241365 | Williams, Jr. et al. | Aug 2012 | B2 |
8303665 | Tornier et al. | Nov 2012 | B2 |
8308807 | Seebeck et al. | Nov 2012 | B2 |
8465548 | Long | Jun 2013 | B2 |
8480750 | Long | Jul 2013 | B2 |
8532806 | Masson | Sep 2013 | B1 |
8632597 | Lappin | Jan 2014 | B2 |
8790402 | Monaghan et al. | Jul 2014 | B2 |
8852283 | Tornier et al. | Oct 2014 | B2 |
8864834 | Boileau et al. | Oct 2014 | B2 |
8961611 | Long | Feb 2015 | B2 |
9114017 | Lappin | Aug 2015 | B2 |
9351844 | Walch et al. | May 2016 | B2 |
9545312 | Tornier et al. | Jan 2017 | B2 |
20010032021 | McKinnon | Oct 2001 | A1 |
20010047210 | Wolf | Nov 2001 | A1 |
20010049561 | Dews et al. | Dec 2001 | A1 |
20020032484 | Hyde, Jr. | Mar 2002 | A1 |
20020099381 | Maroney | Jul 2002 | A1 |
20020138148 | Hyde, Jr. | Sep 2002 | A1 |
20020143402 | Steinberg | Oct 2002 | A1 |
20020151982 | Masini | Oct 2002 | A1 |
20030009170 | Tornier | Jan 2003 | A1 |
20030009171 | Tornier | Jan 2003 | A1 |
20030028198 | Tornier et al. | Feb 2003 | A1 |
20030074072 | Errico et al. | Apr 2003 | A1 |
20030097183 | Rauscher et al. | May 2003 | A1 |
20030114933 | Bouttens et al. | Jun 2003 | A1 |
20030125809 | Iannotti et al. | Jul 2003 | A1 |
20030149485 | Tornier | Aug 2003 | A1 |
20030158605 | Tornier | Aug 2003 | A1 |
20040002765 | Maroney et al. | Jan 2004 | A1 |
20040006392 | Grusin et al. | Jan 2004 | A1 |
20040030394 | Horber | Feb 2004 | A1 |
20040034431 | Maroney et al. | Feb 2004 | A1 |
20040039449 | Tornier | Feb 2004 | A1 |
20040064189 | Maroney et al. | Apr 2004 | A1 |
20040064190 | Ball et al. | Apr 2004 | A1 |
20040133276 | Lang et al. | Jul 2004 | A1 |
20040134821 | Tornier | Jul 2004 | A1 |
20040138754 | Lang et al. | Jul 2004 | A1 |
20040148033 | Schroeder | Jul 2004 | A1 |
20040193276 | Maroney et al. | Sep 2004 | A1 |
20040193277 | Long et al. | Sep 2004 | A1 |
20040193278 | Maroney et al. | Sep 2004 | A1 |
20040210217 | Baynham et al. | Oct 2004 | A1 |
20040210317 | Maroney et al. | Oct 2004 | A1 |
20040215200 | Tornier et al. | Oct 2004 | A1 |
20040220673 | Pria | Nov 2004 | A1 |
20040220674 | Pria | Nov 2004 | A1 |
20040225367 | Glien et al. | Nov 2004 | A1 |
20040230197 | Tornier et al. | Nov 2004 | A1 |
20040210220 | Tornier | Dec 2004 | A1 |
20040267370 | Ondria | Dec 2004 | A1 |
20050008672 | Winterbottom et al. | Jan 2005 | A1 |
20050015154 | Lindsey et al. | Jan 2005 | A1 |
20050043805 | Chudik | Feb 2005 | A1 |
20050049709 | Tornier | Mar 2005 | A1 |
20050055102 | Tornier et al. | Mar 2005 | A1 |
20050065612 | Winslow | Mar 2005 | A1 |
20050085919 | Durand-Allen et al. | Apr 2005 | A1 |
20050085921 | Gupta et al. | Apr 2005 | A1 |
20050090902 | Masini | Apr 2005 | A1 |
20050107882 | Stone et al. | May 2005 | A1 |
20050113931 | Horber | May 2005 | A1 |
20050119531 | Sharratt | Jun 2005 | A1 |
20050143829 | Ondria et al. | Jun 2005 | A1 |
20050165490 | Tornier | Jul 2005 | A1 |
20050177241 | Angibaud et al. | Aug 2005 | A1 |
20050197708 | Stone et al. | Sep 2005 | A1 |
20050203536 | Laffargue et al. | Sep 2005 | A1 |
20050209700 | Rockwood et al. | Sep 2005 | A1 |
20050216092 | Marik et al. | Sep 2005 | A1 |
20050251263 | Forrer et al. | Nov 2005 | A1 |
20050256584 | Farrar | Nov 2005 | A1 |
20050267590 | Lee | Dec 2005 | A1 |
20050278031 | Tornier et al. | Dec 2005 | A1 |
20050278032 | Tornier et al. | Dec 2005 | A1 |
20050278033 | Tornier et al. | Dec 2005 | A1 |
20050288681 | Klotz et al. | Dec 2005 | A1 |
20050288791 | Tornier et al. | Dec 2005 | A1 |
20060004462 | Gupta | Jan 2006 | A1 |
20060009852 | Winslow et al. | Jan 2006 | A1 |
20060015185 | Chambat | Jan 2006 | A1 |
20060020344 | Schultz et al. | Jan 2006 | A1 |
20060030946 | Ball et al. | Feb 2006 | A1 |
20060074353 | Deffenbaugh et al. | Apr 2006 | A1 |
20060122705 | Morgan | Jun 2006 | A1 |
20060149388 | Smith et al. | Jul 2006 | A1 |
20060173457 | Tornier | Aug 2006 | A1 |
20060235538 | Rochetin et al. | Oct 2006 | A1 |
20060241775 | Buss | Oct 2006 | A1 |
20070016304 | Chudik | Jan 2007 | A1 |
20070142918 | Stone | Jun 2007 | A1 |
20070225817 | Reubelt et al. | Sep 2007 | A1 |
20070225818 | Reubelt et al. | Sep 2007 | A1 |
20070225821 | Reubelt et al. | Sep 2007 | A1 |
20070244564 | Ferrand et al. | Oct 2007 | A1 |
20070250174 | Tornier et al. | Oct 2007 | A1 |
20080195108 | Bhatnagar et al. | Aug 2008 | A1 |
20090149961 | Dallmann | Jun 2009 | A1 |
20100016975 | Iannotti et al. | Jan 2010 | A1 |
20100161066 | Iannotti et al. | Jun 2010 | A1 |
20100217399 | Groh | Aug 2010 | A1 |
20110190899 | Pierce et al. | Aug 2011 | A1 |
20130110470 | Vanasse et al. | May 2013 | A1 |
20130253656 | Long | Sep 2013 | A1 |
20130261752 | Lappin et al. | Oct 2013 | A1 |
20140142711 | Maroney et al. | May 2014 | A1 |
20140257499 | Winslow et al. | Sep 2014 | A1 |
20140371863 | Vanasse et al. | Dec 2014 | A1 |
20150150688 | Vanasse et al. | Jun 2015 | A1 |
20160242921 | Walch et al. | Aug 2016 | A1 |
20170095336 | Tornier et al. | Apr 2017 | A1 |
Number | Date | Country |
---|---|---|
426096 | Dec 1966 | CH |
507704 | May 1971 | CH |
101340862 | Jan 2009 | CN |
19509037 | Sep 1996 | DE |
19630298 | Jan 1998 | DE |
0299889 | Jan 1989 | EP |
0257359 | Nov 1991 | EP |
0524857 | Jan 1993 | EP |
0617934 | Oct 1994 | EP |
0549480 | Aug 1997 | EP |
0599429 | Oct 1997 | EP |
0797964 | Oct 1997 | EP |
0679375 | Sep 1998 | EP |
0864306 | Sep 1998 | EP |
0712617 | Sep 1999 | EP |
0715836 | Oct 2001 | EP |
0664108 | Aug 2002 | EP |
0809986 | Oct 2002 | EP |
0927548 | May 2003 | EP |
0807426 | Oct 2003 | EP |
1380274 | Jan 2004 | EP |
1402854 | Mar 2004 | EP |
0903128 | May 2004 | EP |
1195149 | Jul 2005 | EP |
1064890 | Sep 2005 | EP |
1607067 | Dec 2005 | EP |
1062923 | Jul 2006 | EP |
1782765 | May 2007 | EP |
0903127 | Jun 2007 | EP |
1844737 | Oct 2007 | EP |
1515758 | Mar 2009 | EP |
1639966 | Sep 2009 | EP |
1902689 | Nov 2011 | EP |
1996125 | May 2013 | EP |
2335655 | Jul 2013 | EP |
1973498 | Apr 2014 | EP |
1844737 | Jun 2015 | EP |
2248820 | May 1975 | FR |
2545352 | Nov 1984 | FR |
2574283 | Jun 1986 | FR |
2652498 | Apr 1991 | FR |
2664809 | Jan 1992 | FR |
2699400 | Jun 1994 | FR |
2721200 | Dec 1995 | FR |
2726994 | May 1996 | FR |
2737107 | Jan 1997 | FR |
2835425 | Aug 2003 | FR |
2836039 | Aug 2003 | FR |
2848099 | Jun 2004 | FR |
2848099 | Jun 2004 | FR |
2009-513285 | Apr 2009 | JP |
749392 | Jul 1980 | SU |
WO 9107932 | Jun 1991 | WO |
WO 9309733 | May 1993 | WO |
WO 9617553 | Jun 1996 | WO |
WO 97025943 | Jul 1997 | WO |
WO 9846172 | Oct 1998 | WO |
WO 9949792 | Oct 1999 | WO |
WO 9965413 | Dec 1999 | WO |
WO 0015154 | Mar 2000 | WO |
WO 0041653 | Jul 2000 | WO |
WO 0147442 | Jul 2001 | WO |
WO 02039931 | May 2002 | WO |
WO 02039933 | May 2002 | WO |
WO 02067821 | Sep 2002 | WO |
WO 03005933 | Jan 2003 | WO |
WO 03094806 | Nov 2003 | WO |
WO 03101320 | Dec 2003 | WO |
WO 07109291 | Sep 2007 | WO |
WO 07109319 | Sep 2007 | WO |
WO 07109340 | Sep 2007 | WO |
WO 2015068035 | May 2015 | WO |
Entry |
---|
“Aequalis-Fracture Shoulder Prosthesis—Surgical Technique,” Tornier, Inc., 2002, in 32 pages. |
“Aequalis-Glenoid Keeled and Pegged—Surgical Technique Brochure,” Tornier, Inc., 2003 in 12 pages. |
“Aequalis-Reversed™ Shoulder Prosthesis, Surgical Technique,” Tornier, Inc., 2004, in 24 pages. |
“Anatomic Glenoid, Surgical Technique,” Smith & Nephew, Inc., Feb. 2000 in 6 pages. |
“Anatomical Shoulder™—Cemented Shoulder Prosthesis Product Information and Surgical Technique,” Sulzer Medica, 2000, in 30 pages. |
“Anatomical Shoulder™—System—The new removable head option,” Zimmer Inc., 2004 in 6 pages. |
“Anatomical Shoulder™—System Surgical Technique—Removable head option for improved surgical results,” Zimmer, Inc., 2004, in 33 pages. |
Apoil, A., “A Condyle for the Rotator Cuff Muscles: The Total Shoulder Prosthesis,” Aesculap—ICP S.A., Feb. 1994, in 4 pages. |
Bigliani/Flatow®—The Complete Shoulder Solution, Designed by Shoulder Surgeons for Shoulder Surgery, Zimmer, Inc., 2001 in 6 pages. |
“Bigliani/Flatow®—The Complete Shoulder Solution, Total Shoulder Arthroplasty Surgical Technique,” Zimmer, Inc., 2003, in 30 pages. |
Bigliani/Flatow®—The Complete Shoulder Solution, 4-Part Fracture of the Humerus Surgical Technique, Zimmer, Inc., 2001. |
“Bio-Modular® / Bi-Polar Shoulder Arthroplasty,” Biomet, Inc., 1997, in 2 pages. |
“Bio-Modular® Choice—Shoulder System—Surgical Technique,” Biomet Orthopedics, Inc., 2004, in 16 pages. |
Boileau, P., et al. “Adaptability and modularity of shoulder prosthese, ” Maitrise Orthopédique, https://www.maitriseorthop.com/corpusmaitri/orthopaedic/prothese_epaule_orthop/boileau_us.shtml, downloaded Jan. 3, 2006. |
Boileau, P., et al. “Arthroscopic Repair of Full-Thickness Tears of the Supraspinatus: Does the Tendon Really Heal?” The Journal of Bone and Joint Surgery, Inc., Jun. 2005, 87A(6): 1229-1240. |
Boileau, P., “Technique de synthèse des tubérosités,” Tornier, Inc., 2005, in 2 pages. |
Boileau, P., “The technique of Tuberosities Fixation,” Tornier, Inc., 2007, in 2 pages. |
Buechel, F.F., “Buechel-Pappas™ Modular Salvage Shoulder System, Surgical Procedure,” Endotec, Inc., Aug. 2001, in 8 pages. |
Buechel, F.F., “Buechel-Pappas™ Resurfacing Shoulder System, Surgical Procedure” Endotec, Inc., Aug. 2000, in 8 pages. |
Buechel, F.F., “Buechel-Pappas™ Total Shoulder System, Surgical Procedure,” Endotec, Inc., Aug. 2000, in 16 pages. |
Cofield, R.H., “Cofield2 Total Shoulder System, Surgical Technique,” Smith & Nephew, 1997, in 32 pages. |
“Copeland™ Humeral Resurfacing Head,” Biomet Orthopedics, Inc., 2001, in 12 pages. |
“Delta CTA™ Reverse Shoulder Prosthesis—Surgical Technique,” DePuy International Ltd., revised Aug. 2004, in 28 pages. |
Fenlin, Jr., J.M., “Total Glenohumeral Joint Replacement,” Symposium on Surgery of the Shoulder, Orthopedic Clinics of North America, Apr. 1975, 6(2): 565-583. |
“Global C.A.P.™ Surgical Technique, Resurfacing Humeral Head Implant,” DePuy International, Ltd., revised Oct. 2004, in 23 pages. |
Hertel, R., “Technical considerations for implantation of EPOCA glenoid components (Leseprobe),” Epoca Newsletter, May 14, 2001, in 1 page. |
Search Report and Written Opinion issued in EP 11185537.5 dated Feb. 14, 2012, in 5 pages. |
Klein, T.J., et al., “Mechanically Favorable Bone Remodeling in Rotator Cuff Arthropathy Patients with Good Function,” presented at the 23rd Annual Meeting of the American Society of Biomechanics University of Pittsburgh, Oct. 21-23, 1999, in 2 pages. |
“Latitude Total Elbow Prosthesis Surgical Technique,” Tornier Implants, 2004, in 40 pages. |
“Latitude Total Elbow Prosthesis Surgical Technique,” Tornier Implants, 2007, in 44 pages. |
Mansat, M., “Neer 3™, Surgical Technique for Fractures,” Smith & Nephew, Sep. 2000, in 19 pages. |
Nicholson, G.P., “Chapter 7: Arthroplasty and Rotator Cuff Deficiency,” Shoulder Arthroplasty, 2005, pp. 149-166. |
“Offset Head: Bio-Modular® Total Shoulder,” Biomet, Inc. 2000 in 2 pages. |
“The FOUNDATION® Total Shoulder System,” Encore Orthopedics, Inc., Apr. 1996, in 3 pages. |
“FDA Summary of Safety and Effectiveness: Glenoid Component for the FoundationTM Total Shoulder System,” Encore Orthopedics, Inc., Apr. 15, 1996, in 1 page. |
“Tornier Surgical Technique Addendum, Aequalis® Reversed Shoulder Polyethylene Insert,” Tornier, Inc., Oct. 8, 2005, in 1 page. |
“Zimmer® Shoulder Retractors,” Zimmer, Inc., 2000, in 2 pages. |
Number | Date | Country | |
---|---|---|---|
20200229935 A1 | Jul 2020 | US |
Number | Date | Country | |
---|---|---|---|
61488102 | May 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13279070 | Oct 2011 | US |
Child | 15145210 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15145210 | May 2016 | US |
Child | 16840791 | US |