The present invention relates to a set of nozzles for a spray gun, especially a compressed-air atomizing paint spray gun, a spray gun system, a method for embodying a nozzle module, a method for selecting a nozzle module from set of nozzles for a paint job, a selection system, especially a “slide gate system,” and a computer program product.
According to the prior art, spray gun, especially a paint spray gun, in particular a compressed-air atomizing paint spray gun which is also referred to as compressed-air atomizing paint gun, comprises a spray medium nozzle disposed on the head thereof, which is also known as a paint nozzle and which is screwed into the gun body. On its front end, the spray medium nozzle frequently has a small hollow-cylindrical peg, i.e., a substantially hollow-cylindrical front section, from the front muzzle, i.e., from the spray medium outlet of which the medium to be sprayed exits during operation. However, the front portion of the spray medium nozzle can also have a conical shape. As a rule, the head of the gun has an external thread, by means of which an air nozzle ring with an integrated air cap is screwed onto the head of the gun. The air cap has a central aperture, the diameter of which is larger than the outside diameter of the peg of the spray medium nozzle or the outside diameter of the front end of a conical spray medium nozzle. The central aperture of the air cap and the small peg or the front end of the spray medium nozzle together form an annular gap. Exiting from this annular gap is the so-called atomizing air which, in the above-described nozzle configuration, generates a vacuum on the front face surface of the spray medium nozzle, which causes the medium to be sprayed to be sucked out of the spray medium nozzle. The atomizing air strikes the paint jet, which causes the paint jet to be sheared into strings and ribbons. Due to their hydrodynamic instability, the interaction between the rapidly flowing compressed air and the ambient air, and due to aerodynamic disturbances, these strings and ribbons disintegrate into droplets which are blown away from the nozzle by the atomizing air.
Further, the air cap frequently has two horns which are disposed diametrically opposite to one another and which, in the outflow direction, project beyond the aforementioned annular gap and the spray medium outlet aperture. From the rear surface of the air cap, two supply bores, i.e., horn air inlet channels, extend to horn air outlet apertures in the horns. As a rule, each horn has at least one horn air outlet aperture; preferably, however, each horn has at least two horn air outlet apertures, from which the horn air exits. As a rule, the horn air outlet apertures are oriented such that they point to the longitudinal axis of the nozzle in the exit direction after the annular gap so that the so-called horn air exiting from the horn air outlet apertures is able to influence the air or the paint jet that has already exited from the annular gap or the paint mist which has at least in part already been generated. As a result, the paint jet or spray jet with an originally round cross section (round jet) is compressed along the sides that face the horns and is lengthened in a direction perpendicular thereto. This creates a so-called wide jet which makes it possible to paint large surfaces at a higher speed. In addition to deforming the spray jet, the horn air has the purpose of further atomizing the spray jet.
As a rule, the above-mentioned spray medium nozzle comprises a hollow main section and a substantially hollow-cylindrical front section with an outlet aperture for the spray medium, with the medium to be sprayed flowing through said outlet aperture. Depending on the type of medium to be sprayed and the preference of the user of the spray gun, the spray gun can be fitted with spray medium nozzles having spray medium outlet apertures of different sizes, i.e., spray medium outlet apertures having inside diameters of different sizes. As a rule, if the medium to be sprayed, e.g., paint, is a relatively high-viscosity medium, for example, a filler, a spray medium nozzle having a spray medium outlet aperture with an inside diameter larger than that for a low-viscosity material such as varnish should be used. Generally, the inside diameter of a spray medium outlet aperture of a spray medium nozzle measures between a few tenths of a millimeter and several millimeters. A spray medium nozzle with a spray medium outlet aperture having a defined inside diameter is frequently referred to as a spray medium nozzle having a defined “nozzle size,” with the value of this nominal nozzle size not necessarily having to correspond exactly to the value of the inside diameter of the spray medium outlet aperture.
Depending on the nozzle size, i.e., depending on the size of the inside diameter of the spray medium outlet aperture of the spray medium nozzle, the spray medium nozzle or the spray gun fitted with the spray medium nozzle, can have a defined medium flow rate. The medium flow rate is the amount of medium which exits from the spray medium nozzle of the spray gun within a defined period of time at a defined inlet flow pressure and a fully actuated trigger position. The value is given in grams per minute (g/min). With all other parameters remaining the same, the medium flow rate increases with increasing nozzle size, with the medium flow rate being influenced not only by the inside diameter of the spray medium outlet aperture but also by the length of the hollow-cylindrical front section, the configuration of the various surface areas inside the spray medium nozzle, especially by the angles at which the surface areas are arranged relative to each other, and by different embodiments of the spray medium nozzle.
In spray guns according to the prior art, the size of the spray jet generated by the spray gun, especially the height and/or the width of the spray jet or the spray jet section, changes as the medium flow rate increases. The spray jet section can be visualized by means of a so-called spray image. A spray image is generally generated in that, using a spray gun at a defined distance, for example, 15 cm to 20 cm from a substrate, for example, paper, a sheet of scaled paper provided for generating a spray image, or a metal sheet, paint or varnish is applied to this sheet of paper or metal sheet without moving the spray gun. The spraying time measures approximately 1 to 2 seconds. The shape of the spray image thus generated and the size of the droplets on the substrate provide information about the quality of the spray gun, especially about the quality of the nozzles.
The coating thickness of the spray image can be measured by means of the procedures known from the prior art, for example, by means of coating thickness gauges before or after the spray image has dried, or the paint droplets and their size and position are determined while they are still traveling to the substrate, e.g., by means of laser diffraction methods.
A spray image like the one described above does not have a uniform coating thickness across the length and width thereof. The central core of the spray image has a high coating thickness; outside the core, the coating thickness generated is lower. The coating thickness transition from the core to the outer zone is fluid. Plotting the coating thickness across the length of the spray image from left to right results in an initially flat slope which marks the outermost edge of the outer zone. In the vicinity of the core, the coating thickness increases relatively sharply and, in the ideal case, remains substantially constant along the linear extension of the core, i.e., it reaches a plateau. At the edge of the core, the coating thickness drops relatively sharply, followed by a flattening of the curve toward the end of the outer zone. It has been shown that a uniform, higher quality coating can be obtained, the sharper the transition from the core to the outer zone, i.e., the steeper the profile of the coating thickness along the length of the spray image in the transition area from the outer zone into the core zone. During the painting procedure, the painter moves the actuated spray gun in meandering paths, which overlap over approximately between 30% to 50% of their height, i.e., approximately the lower or upper third of a path overlaps the upper or lower third of the preceding path. A more sharply defined core zone allows the painter to coat the core zones of the spraying paths during the painting procedure as contiguously as possible so that a uniform overall coating thickness is obtained. However, in order to avoid the risk of overcoating, e.g., by unintentionally applying twice the coating thickness, which can lead to so-called paint runs, the transition should not be overly abrupt. The tests have also shown that it is beneficial if the above-mentioned plateau is as wide as possible, i.e., if the core zone of the spray image with the maximum coating thickness is as long as possible.
In the case at hand, the spray image is intended to constitute the spray jet section. Hereinafter, whenever the terms spray jet section height, spray jet section width or cross-sectional shape of the spray jet are used, these terms shall be deemed to refer to the height, the width and the shape of the spray image, especially the height, the width and the shape of the core zone of the spray image.
As already mentioned above, in prior-art spray guns, the size of the spray jet generated by the spray gun, especially the height and/or the width of the spray jet or the spray jet section or the spray jet core section changes as the medium flow rate increases. With increasing nozzle size and/or increasing medium flow rate, the spray jet not only becomes “wetter” as desired, i.e., more spray medium per surface area is applied, but the spray jet section increases in height and/or in width. Further, the medium flow rate does not uniformly increase with increasing nozzle size, especially nominal nozzle size. For example, a so-called 1.2 nozzle can have a medium flow rate that is higher by 10 g/min than that of a 1.1 nozzle, but a medium flow rate that is lower by 20 g/min than that of a 1.3 nozzle. Thus, anytime a nozzle is replaced, users of the spray gun must adapt their mode of operation to the new nozzle. For example, if the user wishes to spray a spray medium having a defined viscosity and subsequently a spray medium having a different viscosity and therefore switches from one nozzle size to a different nozzle size, the user will have to adjust, for example, the distance of the spray gun relative to the surface area to be coated or the painting speed, i.e., the speed at which the user moves the spray gun across the surface area to be coated, to the new nozzle. This can complicate the job of the user of the spray gun. In addition, users of prior-art spray guns do not have the option to use a jet shape best suited to them and their mode of operation, i.e., a spray jet section best suited to them.
Thus, one aspect of the invention relates to a set of nozzles for a spray gun, in particular a compressed-air atomizing paint spray gun, and a spray gun system, which offer the user greater consistency in the painting results.
Another aspect of the present invention relates to an efficient method for embodying a nozzle module.
Another aspect of the present invention relates to an efficient method for selecting a nozzle module.
Yet another aspect of the present invention relates to an efficient selection system, especially a “slide gate system.”
An additional aspect of the present invention relates to a functionally reliable computer program product.
Disclosed is a set of nozzles for a spray gun, in particular a compressed-air atomizing paint spray gun, which comprises at least one nozzle module group with at least two, preferable at least four, different nozzle modules for optional mounting in or on one and the same base module of a spray gun, with the nozzle modules being designed such that they have a different medium flow rate under the same spray conditions and with the spray jets generated by means of the nozzle modules having substantially the same spray jet height and the same spray jet section width, in particular, with the spray jet sections of the different nozzle modules being congruent.
The nozzle modules within the nozzle module group each have a different medium flow rate, in particular, the nozzles have different nozzle sizes, especially nominal nozzle sizes. The nozzle module group can comprise, for example, a 1.1 nozzle module, a 1.2 nozzle module, a 1.3 nozzle module, a 1.4 nozzle module and a 1.5 nozzle module, the medium flow rate of which modules increases as the nominal nozzle size increases. The nominal nozzle size can be substantially equivalent to the actual nozzle size, i.e., to the actual inside diameter of the outlet aperture of the paint nozzle of the nozzle module in millimeters. Thus, for example, the inside diameter of the 1.5 nozzle module can measure 1.5 mm. However, the inside diameter of the spray medium outlet aperture of the paint nozzle of the 1.3 nozzle module can, for example, measure 1.4 mm, with the possibility of reducing the medium flow rate, as compared to that of the 1.4 nozzle module, for example, by using different geometries and/or dimensions, especially angles and lengths, especially the length of a substantially hollow-cylindrical front section of the paint nozzle. At the same time or as an alternative, the spray medium outlet aperture of the paint nozzle of the 1.4 nozzle module can have an inside diameter greater than 1.4 mm.
The at least two, preferably at least four different nozzle modules of the nozzle module group of the set of nozzles according to the invention can optionally be mounted in or on one and the same base module of a spray gun. This means that a first nozzle module mounted on the base module, for example, a nozzle module with a first medium flow rate, for example, a 1.2 nozzle module with a medium flow rate of 150 g/min, can be removed, in particular unscrewed, from the base module, preferably by means of a quick screw cap, and a different nozzle module from the nozzle module group of set of nozzles according to the invention with a second medium flow rate, for example, a 1.5 nozzle module with a medium flow rate of 195 g/min, can be mounted on the same base module, preferably by means of the same quick screw cap.
Under the same spray conditions, the nozzle modules of the nozzle module group of the set of nozzles according to the invention have different medium flow rates, and the spray jets generated by means of the nozzle modules have substantially the same spray jet section height and spray jet section width. The spray conditions referred to being the same include, for example, the inlet flow pressure, the air pressure at the inlet of the spray gun, the distance and angle of the spray gun relative to the object to be coated, the medium to be sprayed, the extent of trigger actuation, the setting of a round or wide jet control, as well as ambient conditions, such as temperature, air humidity and ambient pressure. As mentioned above, in the case at hand, the spray image is intended to constitute the spray jet section. In this context, reference to the spray jet section height and the spray jet section width as being substantially the same means that the height and the width of the spray image, especially the core of the spray image, i.e., the zone of the spray image with the greatest coating thickness, are substantially the same. Most preferably, the spray jet sections of the different nozzle modules are congruent, i.e., with respect to shape and size, the spray images are substantially identical. Because of the different medium flow rates of the nozzle modules, the coating thickness of the spray images differs.
A nozzle module can especially comprise a spray medium nozzle and an air cap. In addition, it can comprise an air nozzle ring, by means of which the nozzle module can be screwed onto the base module, and a paint needle for closing and opening the spray medium outlet aperture of the spray medium nozzle.
The advantage of the set of nozzles according to the invention is that the user of the spray gun, for example, a vehicle painter, when changing the nozzle size, i.e., when replacing the nozzle module, which is mounted on the base module of the spray gun and which has a first medium flow rate, with a nozzle module having a second medium flow rate, does not have to change the spray jet section height and spray jet section width. Using the newly mounted nozzle, the user preferably achieves a spray jet having the same cross-sectional shape and dimension achieved with the removed nozzle. Therefore, after replacing the nozzle, the painter does not have to change the mode of operation previously used, especially the distance of the spray gun from the object to be coated.
The spray gun system according to the invention is characterized in that it comprises at least one set of nozzles described above and further described below and a base module, said nozzle modules of the set of nozzles being interchangeably mounted on the base module.
Each of the different nozzle modules from the different nozzle module groups can be interchangeably mounted on one and the same base module. The different nozzle modules preferably have the same connecting means so that they can be directly mounted on the base module, for example, by means of a thread, in particular a trapezoidal thread which can be configured in the form of a quick screw cap or connector, or by means of a bayonet lock, a plug-in connector, or by means of another connecting means known in the prior art. It is, however, also conceivable for a first nozzle module to have a type of connecting means different from that of a second nozzle module, and for one of the nozzle modules to be mounted on the base module by means of an adapter.
The method according to the invention for embodying a nozzle module, especially a nozzle module for a set of nozzles described above and further described below, comprises, as at least one step, the specification of at least one spray jet section height and/or one spray jet section width and/or one spray jet section to be generated by the nozzle module, and, as at least one additional step, the construction of the nozzle module which generates a spray jet with the defined spray jet section height and/or spray jet section width and/or spray jet section, with the method comprising the construction of an air cap, in particular the adjustment of an external horn air outflow angle and/or an internal horn air outflow angle and/or a control bore distance to a medium flow rate and/or to an internal nozzle pressure of the nozzle module, with the external horn air outflow angle being the angle at which horn air flows out of an external horn air outlet aperture of the air cap relative to a vertical axis, with the vertical axis extending perpendicularly relative to a central axis of the air cap, with the internal horn air outflow angle being the angle at which horn air flows out of an internal horn air outlet aperture of the air cap relative to the vertical axis, and with the control bore distance being the distance between at least one control bore in the air cap and a central aperture in the air cap.
For example, in the first step, it can be defined that the spray jet to be generated by the nozzle module should have a spray jet section height of approximately 27 cm and/or a spray jet section width of approximately 4 cm and/or an oval, in particular an elliptical cross-sectional shape. Again, this refers to the height, the width and the shape of the spray image, especially the core of the spray image. Next, the nozzle module is constructed, which generates a spray jet with the defined spray jet section height, spray jet section width and/or shape of the spray jet section. In particular, this involves the construction of an air cap for the nozzle module. Such an air cap can especially have two horns which are disposed diametrically opposite to one another and which project in the forward direction, i.e., in the spray direction, beyond a central aperture in the air cap. From the rear surface of the air cap, two supply bores, i.e., horn air inlet channels, extend to horn air outlet apertures in the horns. Preferably, each horn has at least two horn air outlet apertures, from which the horn air exits. As already described above, the horn air outlet apertures are typically oriented such that the horn air exiting from the horn air outlet apertures can influence the air, which has already exited from the above-mentioned annular gap, and the paint jet or the paint mist which has at least in part already been generated. Such an air cap can also have control apertures in the zone next to the central aperture. However, these control apertures, which hereinafter will be referred to as control bores although they do not necessarily have to be configured as bores, but which preferably are bores, extend into the inside of the air cap and, from there, are supplied with air when the spray gun is being operated. The air exiting from the control bores, the so-called control air, strikes and deflects the horn air exiting from the horn air outlet apertures and fans out the horn air jet, i.e., it widens and weakens the horn air jet. The control air also acts on the round jet and causes a slight preliminary deformation as well as further atomization. In both cases, the control air contributes to further atomizing the paint jet and reduces the contamination of the air cap by spray mist since it carries this mist away from the air cap. In particular, the air cap can have three control bores disposed on two oppositely lying sides of the central aperture, which control bores are arranged in the shape of a triangle, with a apex of the triangle being oriented in the direction of the internal or external horn air outlet apertures, i.e., the bore, which forms the apex of the triangle, is preferably located in line with the internal horn air outlet apertures, the external horn air outlet apertures and the center of the central aperture in the air cap. The control bores can have the same diameter, preferably measuring between 0.45 mm and 0.65 mm. However, the air cap can also have only two control bores disposed on two oppositely lying sides of the central aperture, which control bores are preferably located in line and in line with the internal horn air outlet apertures, the external horn air outlet apertures and the center of the central aperture in the air cap.
The method according to the invention comprises, in particular, adjusting an external horn air outflow angle and/or an internal horn air outflow angle and/or a control bore distance to a medium flow rate and/or to an internal nozzle pressure of the nozzle module, with the external horn air outflow angle being the angle at which horn air flows out of an external horn air outlet aperture of the air cap relative to a vertical axis, with the vertical axis extending perpendicularly relative to a central axis of the air cap, with the internal horn air outflow angle being the angle at which horn air flows out of an internal horn air outlet aperture of the air cap relative to the vertical axis, and with the control bore distance being the distance between at least one control bore in the air cap and a central aperture in the air cap.
It is obvious that the horn air, after exiting from horn air outlet aperture, spreads and fans out slightly. In the case at hand, the horn air outflow angle is defined as the angle at which the major portion of the horn air or the center of the horn air jet exits relative to the vertical axis described. In particular, the horn air outflow angle can be the angle of the central axis of the horn air outlet channel, especially of the horn air outlet bore, the end of which forms the horn air outlet aperture, relative to the vertical axis. The central axis of the air cap, relative to which the vertical axis extends perpendicularly, extends especially through the center of the central aperture in the air cap.
If a control bore is located in line with the horn air outlet apertures, the control bore distance is here defined as the distance between the above-mentioned central axis of the air cap and an axis parallel to this central axis through the center of the respective control bore. Alternatively, the control bore distance is here defined as the distance between the above-mentioned central axis and an axis extending parallel to this central axis through a projection of the center of the respective control bore onto the sectional plane. The sectional plane preferably extends especially along the central axis of the air cap and through the centers of the horn air outlet apertures.
In the context of the method according to the invention, adjusting an external horn air outflow angle and/or an internal horn air outflow angle and/or a control bore distance to a medium flow rate and/or to an internal nozzle pressure of the nozzle module means that the external horn air outflow angle, the internal horn air outflow angle and/or the control bore distance must be dimensioned as a function of a medium flow rate and/or an internal nozzle pressure. For example, if a nozzle module with a first medium flow rate and/or a first internal nozzle pressure generates a spray jet with the defined spray jet section height and/or spray jet section width and/or cross-sectional shape because it has a suitable external horn air outflow angle, a suitable internal horn air outflow angle and/or a suitable control bore distance, it will be necessary to change the external horn air outflow angle, the internal horn air outflow angle and/or the control bore distance for a second median flow rate different from the first medium flow rate and/or a second internal nozzle pressure different from the first internal nozzle pressure in order to obtain a spray jet with the defined spray jet section height and/or spray jet section width and/or cross-sectional shape. The medium flow rate will be different especially if a nozzle with a different nozzle size is used. The internal nozzle pressure will be different especially if first a low-pressure nozzle module and subsequently a high-pressure nozzle module is used, or if first a low-pressure base module and subsequently a high-pressure base module is used. However, changes to the air cap can also have an influence on the internal nozzle pressure.
In the context of the present method, an external horn air outflow angle, an internal horn air outflow angle and/or a control bore distance of the air cap are precisely adjusted to the medium flow rate and/or the internal nozzle pressure of the nozzle module so as to ensure that the nozzle module generates a spray jet with the defined, i.e., desired, spray jet section height and/or spray jet section width and/or cross-sectional shape. The external horn air outflow angle of the first horn is preferably identical to the external horn air outflow angle of the second horn, the internal horn air outflow angle of the first horn is identical to the internal horn air outflow angle of the second horn, and the control bore distance or the control bore distances of the control bores on one side of the central aperture is/are identical to the control bore distance or the control bore distances of the control bores on the opposite side of the central aperture.
The method according to the invention for selecting a nozzle module from a set of nozzles described above and further described below for use for a paint job is characterized in that the method comprises at least the selection and/or specification of one or a plurality of the following attributes of the paint job: the previously used nozzle module of a set of nozzles as in one of claims 1 to 8, the previously used nozzle module of a different set of nozzles, the type of pressure spray painting technique, the spray gun model, the spray gun manufacturer, the type of medium to be sprayed, the viscosity of the medium to be sprayed, the recommendation of the manufacturer of the medium to be sprayed, the shape of the spray jet, the coating thickness, the ambient condition, the painting speed, the controllability and the nozzle size, and in that, based on the selection and/or specification, a proposal for a nozzle module of the set of nozzles is generated. The method can include a number of different steps in which different selection and specification options are considered. For example, in a first step, the selection and/or specification can focus on whether the proposal for a nozzle module of the set of nozzles should be generated based on a previously used nozzle module of a set of nozzles described above and further described below, a previously used nozzle module of a different set of nozzles, the type of medium to be sprayed and/or based on the coating thickness to be achieved, especially on the coating thickness to be achieved per spraying pass. Depending on the selection and/or specification, a number of different additional attributes of the paint job can be selected and/or specified. As an option of the type of medium to be sprayed, for example, a water-based paint, a solvent-based paint, a varnish or a 2-component paint can be selected or specified. As an option of the type of pressure spray painting technique, e.g., low-pressure techniques, in particular HVLP, or high-pressure techniques, in particular compliant technology can be selected or specified. As an option for the used nozzle size, a single nozzle size, for example, 1.1, 1.2 or 1.3, a range of nozzle sizes, for example, 1.0 to 1.2, 1.3 to 1.5, etc., can be selected or specified. The viscosity of the medium to be sprayed can be selected or defined as a numerical value or as a viscosity range, e.g., low viscosity, normal viscosity or high viscosity, preferably specifying a value range, especially the time in seconds it takes for the medium to completely drain from a standard size container, especially a DIN4 cup. As an option for the desired shape of the spray jet section, e.g., a spray jet with a cross section having, an at least in certain areas, a substantially constant width (I-jet) or a spray jet with a cross section having a substantially oval, in particular substantially elliptical shape (O-jet) can be specified or selected. The ambient conditions to be selected or specified can include, in particular, the temperature and/or the relative air humidity in the paint spray booth in which the nozzle module is to be used. The specification of the painting speed and the controllability can preferably be designed as mutually influencing slide controls which indicate whether the user attaches greater importance to high painting speed or to good controllability of the application. The sum of the value for the importance of the painting speed and the value for the importance of the controllability can, in particular, always equal 100%. If the user of the method according to the invention moves the slide control for painting speed up, the slide control for controllability automatically moves down. Thus, the settings can be, e.g., 0% painting speed and 100% controllability if the user attaches importance only to good controllability; it can be 100% painting speed and 0% controllability if the user attaches importance only to painting speed; or it can be 25% painting speed and 75% controllability, 50% painting speed and 50% controllability, 75% painting speed and 25% controllability. The specification can, in particular, be made in 1% increments. The proposal for a nozzle module of the set of nozzles, which is generated based on the selection and/or specification of one or a plurality of attributes of the paint job, is preferably output, especially displayed. Preferably, the method according to the invention provides for sending the proposal for a nozzle module of the set of nozzles by email or by means of another data transmission system.
The selection system according to the invention, especially a “slide-gate system,” for implementing the aforementioned method, is characterized in that it comprises selection and/or input means for selecting and inputting the attributes of the paint job as well as means for generating and presenting a proposal for a nozzle module of the set of nozzles. The selection system can consist, for example, of a plurality of elements which can be moved relative to each other, for example, elements made of paper or cardboard, which constitute the selection and/or input means for selecting and/or inputting the attributes of the paint job. Once the selection and input of the attributes of the paint job have been completed, the selection system according to the invention then presents the proposal for a nozzle module of the set of nozzles.
The computer program product according to the present invention is characterized in that it includes commands which, during the execution of the program by a data processing device, cause this program to generate a method and/or the steps of the selection system described above and further described below. In particular, the computer program product according to the invention can have a menu navigation which, complementary to the selection system described above and further described below and the method described above and further described below for selecting a nozzle module from a set of nozzles for a paint job, includes different steps with different selection and/or specification options. For example, in a first step, the selection and/or specification here again can focus on whether the proposal for a nozzle module of the set of nozzles should be generated based on a previously used nozzle module of a set of nozzles described above and further described below, a previously used nozzle module of a different set of nozzles, the type of medium to be sprayed, and/or based on the coating thickness to be achieved, especially on the coating thickness to be achieved per spraying pass. Depending on the selection and/or specification, a number of different additional menu items can appear, by means of which the attributes of the paint job can be selected and/or defined. Issues discussed above in the context of the description of the method according to the invention apply mutatis mutandis to the computer program product according to the invention. The data processing device mentioned can especially be a smartphone or a desktop, notebook or tablet computer. The computer program product according to the invention can be designed such that the proposal for a nozzle module of the set of nozzles, which is generated based on the selection and/or specification of one or a plurality of attributes of the paint job, is output and, in particular, displayed. Most preferably, the computer program product according to the invention is designed such that the proposal for a nozzle module of the set of nozzles can be sent per email or by means of another data transmission system.
Advantageous embodiments are also disclosed.
The set of nozzles according to the invention preferably includes at least one additional (second) nozzle module group which comprises at least two, preferably at least four, different nozzle modules for optional mounting in or on one and the same base module, with the nozzle modules of the additional nozzle module group also being designed such that they have different medium flow rates under the same spray conditions and that the spray jets generated by means of the nozzle modules have substantially the same spray jet section height and the same spray jet section width, and that, in particular, the spray jet of the different nozzle modules are congruent, with the spray jets generated by means of the nozzle modules of the two nozzle module groups each having different cross-sectional shapes, in particular such that the spray jets generated by means of the nozzle modules of one nozzle module group have a cross section having, in an at least certain areas, a substantially constant width (I-nozzle modules) and the spray jets generated by means of the nozzle modules of the different nozzle module group have a cross section with a substantially oval, in particular substantially elliptical shape (O-nozzle modules).
The above explanations in respect of the set of nozzles according to the invention here apply mutatis mutandis.
Like the above-described nozzle module group of the set of nozzles according to the invention, which will hereinafter be referred to as the first nozzle module group, the additional, or more specifically second, nozzle module group also comprises at least two, preferably at least four, different nozzle modules for optional mounting in or on one and the same base module, with the nozzle modules of the additional nozzle module group also being designed such that they have different medium flow rates under the same spray conditions and that the spray jets generated by means of the nozzle modules have substantially the same spray jet section height and the same spray jet section width, and that, in particular, the spray jets sections of the different nozzle modules are congruent.
Further, the spray jets generated by means of the nozzle modules of the two nozzle module groups, i.e., the first nozzle module group and the additional, or more specifically second, nozzle module group, each have different cross-sectional shapes, in particular such that the spray jets generated by means of the nozzle modules of one nozzle module group have a cross section having, in an at least certain areas, a substantially constant width (I-nozzle modules) and the spray jets generated by the other nozzle module group have a cross section with a substantially oval, in particular substantially elliptical shape (O-nozzle modules). The nozzle modules generating spray jets with a cross section having, at least in certain areas, a substantially constant width will hereinafter be referred to as I-nozzle modules, and a spray jet generated by means of an I-nozzle module will be referred to as I-jet. The nozzle modules with spray jets having a substantially oval, in particular substantially elliptical shape will hereinafter be referred to as O-nozzle modules, and a spray jet generated by means of an O-nozzle module will be referred to as O-jet. An I-jet is distinguished by an elongated jet shape with short tapered zones at the top and bottom in the spray image, which is the reason why an I-jet is especially well suited for a controlled application, in particular because, at a defined painting speed, a smaller amount of paint per surface area is applied. An O-jet with its substantially oval, in particular substantially elliptical jet shape has a longer tapered zone at the top and bottom in the spray image and is well suited mainly for quick applications, in particular because a greater amount of paint per surface area is applied than with the same painting speed.
This special configuration allows users of the set of nozzles according to the invention to choose the jet shape suitable for their mode of operation. If the user attaches greater importance to good controllability of the application, the user will choose one of the I-nozzle modules; if the user attaches greater importance to high painting speed, the user will choose one of the O-nozzle modules.
Both the first nozzle module group and the additional, or more specifically second, nozzle module group each have different nozzle modules which have different medium flow rates under the same spray conditions. At the same time, under the same spray conditions, the nozzle modules within one nozzle module group generate spray jets with substantially the same spray jet section height and the same spray jet section width, and in particular, the cross-sectional shape of the spray jet generated by means of the different nozzle modules within one group are congruent. Across multiple groups, the spray jet section height, the spray jet section width and/or shape of the cross sections of the spray jets can differ.
The set of nozzles preferably has at least one additional (third) nozzle module group which comprises at least two, preferably at least four, different nozzle modules for optional mounting in or on one and the same base module, with the nozzle modules of the additional nozzle module group also being designed such that they have different medium flow rates under the same spray conditions and that the spray jets generated by means of the nozzle modules have substantially the same spray jet section height and the same spray jet section width, and that, in particular, the spray jet sections of the different nozzle modules are congruent, with the nozzle modules of one nozzle module group being configured as low-pressure nozzle modules and the nozzle modules of the additional nozzle module group being configured as high-pressure nozzle modules.
Spray guns, especially paint spray guns, operate according to different pressure spray painting techniques. Conventional spray guns operate at relatively high spray pressures of several bar. In so-called HVLP guns, the internal nozzle pressure is at most 10 psi or 0.7 bar, which achieves transmission rates considerably higher than 65%. Compliant spray guns, on the other hand, have an internal nozzle pressure higher than 10 psi or 0.7 bar; however, they also achieve a transmission rate higher than 65%.
The internal nozzle pressure of the spray gun is defined as the pressure which exists in the air cap of the spray gun. Frequently, the atomizing air zone is separated from the horn air zone, and in the atomizing air zone, the pressure can be different from the pressure existing in the horn air zone. However, the pressures in the atomizing air zone and in the horn air zone can also be the same. The internal nozzle pressure can be measured, for example, by means of a so-called test air cap. This test air cap is a special air cap which is mounted on the spray gun instead of the conventional air cap. As a rule, the test air cap has two manometers, one of which is connected to the atomizing air zone via a bore in the test air cap, and the other manometer is connected to the horn air zone via an additional bore in the test air cap.
In this context, the terms low-pressure nozzle module and high-pressure nozzle module are not intended to suggest that the respective nozzle module is used only in conventional low-pressure or high-pressure spray guns or that by using the respective nozzle module, the spray gun is turned into a conventional low-pressure spray gun, in particular a HVLP spray gun, or into a conventional high-pressure gun. Instead, it only means that the spray gun, when fitted with a high-pressure nozzle module, has a higher internal nozzle pressure than when fitted with a low-pressure nozzle module. Preferably, a spray gun fitted with a low-pressure nozzle module or a base module fitted with a low-pressure nozzle module meets the criteria of an HVLP spray gun, and the spray gun fitted with a high-pressure nozzle module or a base module fitted with a high-pressure nozzle module meets the criteria of a compliant spray gun.
The fact that the nozzle modules of one nozzle module group are configured as low-pressure nozzle modules and the nozzle modules of the additional nozzle module group as high-pressure nozzle modules allows users to choose the nozzle module best suited to their mode of operation. If they attach more importance to high transmission rates and thus to a reduction of the amount of spray medium used, they will choose one of the low-pressure nozzle modules, in particular HVLP nozzle modules. If they attach more importance to a higher painting speed and/or if the compressor available to them is too small for the HVLP method, which requires a higher air volume than the compliant guns, they will choose one of the high-pressure nozzle modules, in particular compliant nozzle modules.
Most preferably, the spray jets generated by means of the low-pressure nozzle modules and the spray jets generated by means of the high-pressure nozzle modules have the same cross-sectional shape such that the spray jets generated by means of the low-pressure nozzle modules and the spray jets generated by means of the high-pressure nozzle modules have a cross section with, at least in certain areas, a substantially constant width (I-nozzle modules) or a cross section with a substantially oval, in particular substantially elliptical shape (O-nozzle modules). In this context, the term “same cross-sectional shape” refers to a same basic shape, or more specifically, the cross-sectional shape having, in at least in certain areas, a substantially constant width is a shape which is independent of different spray jet section heights, spray jet section widths or ratios of spray jet section height to spray jet section width. Similarly, the cross-sectional shape with a substantially oval, in particular substantially elliptical shape is a shape which is independent of different spray jet section heights, spray jet section widths or ratios of spray jet section height to spray jet section width.
As a result, a user who prefers an above-described I-jet has the option to choose between a low-pressure nozzle module and a high-pressure nozzle module, without having to give up a particularly preferred jet shape. The same applies mutatis mutandis to users who prefer an above-described O-jet.
Most preferably, the set of nozzles comprises at least two, preferably at least four, different nozzle module groups, with the nozzle modules of the nozzle module groups preferably being configured such that it is possible to dedicate, to each nozzle module of one nozzle module group, a nozzle module of at least one different nozzle module group or different nozzle module groups, which nozzle module has the same medium flow rate under the same spray conditions.
One of the nozzle module groups mentioned can comprise at least two, preferably at least four, different nozzle modules for optional mounting in or on one and the same base module, with all of the nozzle modules of this nozzle module group being configured as low-pressure nozzle modules, especially HVLP nozzle modules, and as I-nozzle modules, and with all of the spray jets, especially the spray jet sections, having the same spray jet section height, the same spray jet section width and the same cross-sectional shape, in particular with their spray jet sections being congruent. The individual nozzle modules within the nozzle module group each have different medium flow rates, especially different nozzle sizes, in particular different nominal nozzle sizes.
Another one of the nozzle module groups mentioned can comprise at least two, preferably at least four, different nozzle modules for optional mounting in or on one and the same base module, with all of the nozzle modules of this nozzle module group also being configured as low-pressure nozzle modules, especially HVLP nozzle modules, however not as I-nozzle modules but as O-nozzle modules, and with all of the spray jets of these nozzle modules, especially the spray jet sections, also having the same spray jet section height, the same spray jet section width and the same cross-sectional shape, in particular with their spray jet sections being congruent. The individual nozzle modules within the nozzle module group each have different medium flow rates, especially different nozzle sizes, in particular different nominal nozzle sizes.
Another one of the nozzle module groups mentioned can comprise at least two, preferably at least four, different nozzle modules for optional mounting in or on one and the same base module, with the nozzle modules of this nozzle module group not being configured as low-pressure nozzle modules, especially HVLP nozzle modules, but as high-pressure nozzle modules, especially compliant nozzle modules and also as O-nozzle modules, and with all of the spray jets of these nozzle modules, especially the spray jet sections, having the same spray jet section height, the same spray jet section width and the same cross-sectional shape, in particular with their spray jet sections being congruent. The individual nozzle modules within the nozzle module group each have different medium flow rates, especially different nozzle sizes, in particular different nominal nozzle sizes.
Yet another one of the nozzle module groups mentioned can comprise at least two, preferably at least four, different nozzle modules for optional mounting in or on one and the same base module, with the nozzle modules of this nozzle module group also being configured as high-pressure nozzle modules, especially compliant nozzle modules, however not has O-nozzle modules but as I-nozzle modules, and with all of the spray jets of these nozzle modules, especially the spray jet sections, having the same spray jet section height, the same spray jet section width and the same cross-sectional shape, in particular with their spray jet sections being congruent. The individual nozzle modules within the nozzle module group each have different medium flow rates, especially different nozzle sizes, in particular different nominal nozzle sizes.
The individual nozzle module groups can also stand alone and form a set of nozzles, or they can be combined with any other nozzle module group and as such form a set of nozzles. For example, the above nozzle module group referred to as the second nozzle module group can stand alone without the above-mentioned first nozzle module group and by itself form a set of nozzles, or the second nozzle module group and the third and/or fourth nozzle module group can form a set of nozzles without the first nozzle module group. The third and the fourth nozzle module group together can also form a set of nozzles without the first and second nozzle module group.
Configuring the nozzle modules of the nozzle module groups preferably such that, to each nozzle module of a nozzle module group, a nozzle module of at least one different nozzle module group or nozzle module groups can be dedicated, which nozzle module has the same medium flow rate under the same spray conditions, means that, for example, in at least two of the nozzle module groups, one nozzle module has a medium flow rate of 150 g/min.
Most preferably, the nozzle modules of the nozzle module groups are configured in such a way that, to each nozzle module of a nozzle module group, a nozzle module of at least one different nozzle module group or groups can be dedicated, which nozzle module has the same nozzle size, especially the same nominal nozzle size. For example, at least two, preferably four, of the nozzle module groups can have a 1.1 nozzle module, a 1.2 nozzle module, a 1.3 nozzle module and a 1.4 nozzle module.
The nozzle modules of a set of nozzles according to the invention preferably comprise at least one air cap, each with at least one internal horn air outlet aperture and one external horn air outlet aperture, wherein, from the at least one external horn air outlet aperture, horn air exits at a defined external horn air outflow angle relative to a vertical axis, with the vertical axis extending perpendicularly relative to a central axis of the first air cap, wherein, from the at least one internal horn air outlet aperture, horn air exits at a defined internal horn air outflow angle relative to the vertical axis, and wherein, in the different nozzle modules of at least one nozzle module group, the sums of the external horn air outflow angle and the internal horn air outflow angle within one nozzle module differ.
The above explanations in respect of the method according to the invention for embodying a nozzle module here apply mutatis mutandis. If in a first nozzle module of a nozzle module group, for example, the external horn air outflow angle relative to the vertical axis measures 16° and the internal horn air outflow angle relative to the vertical axis measures 21.5°, the sum of the external horn air outflow angle and the internal horn air outflow angle measures 37.5°. If in a second nozzle module of the same nozzle module group, for example, the external horn air outflow angle relative to the vertical axis measures 17° and the internal horn air outflow angle relative to the vertical axis measures 22°, the sum of the external horn air outflow angle and the internal horn air outflow angle measures 39°. For the sum of the external horn air outflow angle and the internal horn air outflow angle to be changed, it is obviously not necessary to change both the external horn air outflow angle and the internal horn air outflow angle; instead, it suffices to change only one of the angles. Most preferably, the sum of the external horn air outflow angle and the internal horn air outflow angle increases as the medium flow rate increases. More specifically, in the HVLP-nozzle modules with an I-jet, the sum mentioned can be between 37° and 44°, in the HVLP-nozzle modules with an O-jet, it can be between 36° and 41.5°, in the compliant nozzle modules with an I-jet, it can be between 44° and 46.5°, and in the compliant nozzle modules with an O-jet, it can be between 44.5° and 48.5°.
The nozzle modules of a set of nozzles according to the invention preferably each have at least one air cap, each with at least one central aperture and at least two control bores, with the control bores on opposite sides of the at least one central aperture being disposed, in particular, diametrically to each other and at a defined control bore distance relative to the at least one central aperture, characterized in that the control bore distance in the different nozzle modules of at least one nozzle module group is different.
The above explanations in respect of the method according to the invention for embodying a nozzle module here apply mutatis mutandis, especially the explanations in respect of the number and configuration of the control bores and the measurement of the control bore distance between the control bores and the central aperture.
The nozzle modules of a set of nozzles according to the invention preferably each have at least one spray medium nozzle with a substantially hollow-cylindrical front section and a spray medium outlet aperture, with the inside diameter of said outlet aperture and/or the axial extension of the substantially hollow-cylindrical front section of the spray medium nozzle being different in the different nozzle modules of at least one nozzle module group. Thus, a different medium flow rate is achieved.
The nozzle modules of a nozzle module group of a set of nozzles according to the invention are preferably configured in a such a way that the medium flow rate between nozzle modules consecutively following each other at increasing medium flow rates increases by an equidistant value, preferably by a value between 10 and 20 g/min, especially by a value of 15 g/min. This means that a nozzle module group comprises, for example, a 1.2 nozzle module and a 1.3 nozzle module, with the 1.2 nozzle module and the 1.3 nozzle module following one another at an increasing medium flow rate, which means that within the nozzle module group, the 1.3 nozzle module has the next higher medium flow rate relative to the 1.2 nozzle module, which means that within the nozzle module group, no nozzle module has a medium flow rate which is between the medium flow rate of the 1.2 nozzle module and the medium flow rate of the 1.3 nozzle module, and with the 1.3 nozzle, under the same spray conditions, having a medium flow rate which is higher by 10 to 20 g/min, preferably by 15 g/min. Most preferably, a nozzle module group comprises at least four nozzle modules which are configured such that under the same spray conditions, the medium flow rate between nozzle modules, which consecutively follow each other at an increasing medium flow rate, increases by an equidistant value, preferably by a value between 10 and 20 g/min, especially by a value of 15 g/min. A nozzle module group, for example, comprises a 1.1, a 1.2, a 1.3 and a 1.4 nozzle module, which nozzle modules follow each other at an increasing medium flow rate, with the medium flow rate, for example, of the 1.1 nozzle being 135 g/min, the medium flow rate of the 1.2 nozzle being 150 g/min, the medium flow rate of the 1.3 nozzle being 165 g/min and the medium flow rate of the 1.4 nozzle being 180 g/min. Such a medium flow rate which evenly increases with increasing nozzle size offers the user considerably advantages.
The method according to the invention for embodying a nozzle module preferably includes the production of the nozzle module. Most preferably, the method also includes the shipment of the nozzle module to the customer and the use of the nozzle module.
Embodiments of the invention will be explained in more detail below by way of example, with reference to the 5 figures. The figures show:
The spray jet 3 illustrated in
Thus, the user of an embodiment of a set of nozzles according to the invention, which comprises at least two nozzle modules of the nozzle module group 10, can change the nozzle size of the spray gun used, i.e., the user can remove the first nozzle module having a first nozzle size, in particular nominal nozzle size, mounted on the base module of the spray gun and mount a different nozzle module of the nozzle module group 10 having a different nozzle size, in particular nominal nozzle size, on the same base module, and achieve a spray jet with the same spray jet section height, spray jet section width and cross-sectional shape at a defined changed medium flow rate.
Another nozzle module group 20 also comprises five nozzle modules with different nozzle sizes, in particular different nominal nozzle sizes. The medium flow rate of the five nozzle modules within the nozzle module group 20 increases from one nozzle size to the next by an equidistant value, i.e., 15 g/min. The 1.1 nozzle module has a medium flow rate of 135 g/min, the 1.2 nozzle module has a medium flow rate of 150 g/min, the 1.3 nozzle module has a medium flow rate of 165 g/min, the 1.4 nozzle module has a medium flow rate of 180 g/min, and the 1.5 nozzle module has a medium flow rate of 195 g/min. All nozzle modules within the nozzle module group 20 are configured in the form of HVLP nozzle modules, i.e., as low-pressure nozzle modules, and all nozzle modules have the same spray jet section height and the same spray jet section width, which, as already mentioned above, are here defined as the spray jet section height h and the spray jet section width b of a core zone 5 illustrated in
Thus, the user of an embodiment of a set of nozzles according to the invention, which comprises at least two nozzle modules of the nozzle module group 20, can change the nozzle size of the spray gun used, i.e., the user can remove the first nozzle module having a first nozzle size, in particular nominal nozzle size, disposed on the base module of the spray gun and mount a different nozzle module of the nozzle module group 20 having a different nozzle size, in particular nominal nozzle size, on the same base module, and achieve a spray jet with the same spray jet section height, spray jet section width and cross-sectional shape at a defined changed medium flow rate.
Another nozzle module group 30 also comprises five nozzle modules with different nozzle sizes, in particular different nominal nozzle sizes. The medium flow rate of the five nozzle modules within the nozzle module group 30 increases from one nozzle size to the next by an equidistant value, i.e., 15 g/min. The 1.1 nozzle module has a medium flow rate of 155 g/min, the 1.2 nozzle module has a medium flow rate of 170 g/min, the 1.3 nozzle module has a medium flow rate of 185 g/min, the 1.4 nozzle module has a medium flow rate of 200 g/min, and the 1.5 nozzle module has a medium flow rate of 215 g/min. All nozzle modules within the nozzle module group 30 are configured as compliant nozzle modules, i.e., in the above understanding as high-pressure nozzle modules, and all nozzle modules have the same spray jet section height and the same spray jet section width, which, as already mentioned above, are here again defined as the spray jet section height h and the spray jet section width b of a core zone 5 illustrated in
Thus, the user of an embodiment of a set of nozzles according to the invention, which comprises at least two nozzle modules of the nozzle module group 30, can change the nozzle size of the spray guns used, i.e., the user can remove the first nozzle module having a first nozzle size, in particular nominal nozzle size, mounted on the base module of the spray gun and mount a different nozzle module of the nozzle module group 30 having a different nozzle size, in particular nominal nozzle size, on the same base module, and achieve a spray jet with the same spray jet section height, spray jet section width and cross-sectional shape at a defined changed medium flow rate.
Another nozzle module group 40 also comprises five nozzle modules with different nozzle sizes, in particular different nominal nozzle sizes. The medium flow rate of the five nozzle modules within the nozzle module group 40 increases from one nozzle size to the next by an equidistant value, i.e., by 15 g/min. The 1.1 nozzle module has a medium flow rate of 155 g/min, the 1.2 nozzle module has a medium flow rate of 170 g/min, the 1.3 nozzle module has a medium flow rate of 185 g/min, the 1.4 nozzle module has a medium flow rate of 200 g/min, and the 1.5 nozzle module has a medium flow rate of 215 g/min. All nozzle modules within the nozzle module group 40 are configured as compliant nozzle modules, i.e., in the above understanding as high-pressure nozzle modules, and all nozzle modules have the same spray jet section height and the same spray jet section width, which, as already mentioned above, are here again defined as the spray jet section height h and the spray jet section width b of a core zone 5 illustrated in
Thus, the user of an embodiment of a set of nozzles according to the invention, which comprises at least two nozzle modules of the nozzle module group 40, can change the nozzle size of the spray guns used, i.e., the user can remove the first nozzle module having a first nozzle size, in particular nominal nozzle size, mounted on the base module of the spray gun and mount a different nozzle module of the nozzle module group 40 having a different nozzle size, in particular nominal nozzle size, on the same base module, and achieve a spray jet with the same spray jet section height, spray jet section width and cross-sectional shape at a defined changed medium flow rate.
A set of nozzles according to the invention for a spray gun, in particular a compressed-air atomizing paint spray gun, can comprise at least two, preferably at least four, different nozzle modules from the same nozzle module group for optional mounting in or on one and the same base module of a spray gun, which offers the user the advantages mentioned.
In addition, however, a set of nozzles according to the invention can each also have at least two, preferably at least four, different nozzle modules from one or a plurality of different nozzle module groups for optional mounting in or on one and the same base module. For example, a set of nozzles according to the invention can comprise at least two, preferably at least four, different nozzle modules from the nozzle module group 10 and at least two, preferably at least four, different nozzle modules from the nozzle module group 20 and/or at least two, preferably at least four, different nozzle modules from the nozzle module group 30 and/or at least two, preferably at least four, different nozzle modules from the nozzle module group 40.
Alternatively, a set of nozzles according to the invention can comprise, for example, at least two, preferably at least four, different nozzle modules from the nozzle module group 20 and at least two, preferably at least four, different nozzle modules from the nozzle module group 30 and/or at least two, preferably at least four, different nozzle modules from the nozzle module group 40.
Alternatively, a set of nozzles according to the invention can comprise, for example, at least two, preferably at least four, different nozzle modules from the nozzle module group 30 and at least two, preferably at least four, different nozzle modules from the nozzle module group 40.
A set of nozzles according to the invention can preferably comprise at least two, preferably at least four, different nozzle modules from three different nozzle module groups; most preferably, however, a set of nozzles according to the invention comprises at least two, preferably at least four, different nozzle modules from all four different nozzle module groups.
Each of the different nozzle modules from the different nozzle module groups can be interchangeably mounted on one and the same base module. To this end, most preferably, all of the nozzle modules from the different nozzle module groups have the same connecting means.
As the table indicates, in the set of nozzles according to the invention, to each nozzle module of a nozzle module group, a nozzle module of at least one different nozzle module group can be dedicated, which nozzle module has the same medium flow rate under the same spray conditions. The nozzle modules with the same nozzle size have the same medium flow rate, especially within one pressure spray painting technique. For example, the 1.1 HVLP O-nozzle module has the same medium flow rate of 135 g/min as the 1.1 HVLP I-nozzle module, the 1.2 HVLP O-nozzle module has the same medium flow rate as the 1.2 HVLP I-nozzle module and so on. The same applies to the compliant nozzle modules. For example, the 1.1 compliant O-nozzle module has the same medium flow rate of 155 g/min as the 1.1 compliant I-nozzle module, the 1.2 compliant O-nozzle module has the same medium flow rate as the 1.2 compliant I-nozzle module and so on.
The table further indicates that the spray jets generated by means of the low-pressure nozzle modules, here HVLP-nozzle modules, and the spray jets generated by means of the high-pressure nozzle modules, here compliant nozzle modules, can have the same cross-sectional shape, in particular such that the spray jets generated by means of the low-pressure nozzle modules and the spray jets generated by means of the high-pressure nozzle modules have a cross section with, at least in certain parts, a substantially constant width (I-nozzle modules) or a cross section with a substantially oval, in particular substantially elliptical shape (O-nozzle modules). This allows the user to exchange, for example, a nozzle module from the nozzle module group 10 for a nozzle module from the nozzle module group 30, and thus to switch from the low-pressure spraying method, in particular HVLP spraying method, to the high-pressure spraying method, in particular compliant spraying method, without having to do without the O-jet, which is ideal for the user's mode of operation. Similarly, the user can exchange a nozzle module from the nozzle module group 20 for a nozzle module from the nozzle module group 40, and thus to switch from the low-pressure spraying method, in particular HVLP spraying method, to the high-pressure spraying method, in particular compliant spraying method, without having to do without the I-jet, which is ideal for the user's mode of operation.
In addition to the advantages mentioned above, the set of nozzles according to the present invention has the additional advantage that the user can exchange, for example, a nozzle module from the nozzle module group 10 for a nozzle module from the nozzle module group 20, and thus is able to replace a nozzle module which generates an O-jet, which allows a fast coating application, for a nozzle module which generates an even more readily controllable I-jet, without having to give up working with the desired HVLP type of pressure spray painting technique and, in particular, without having to accept changes in the medium flow rate as a tradeoff. Similarly, it is possible to switch from a nozzle module from the nozzle module group 30 to a nozzle module from the nozzle module group 40, without having to give up the desired compliant pressure spray painting technique and, in particular, without having to accept changes in the medium flow rate as a tradeoff. Vice versa switches are, of course, possible as well.
Using the set of nozzles according to the invention, the user can choose the nozzle module ideal for the painting job at hand and/or the mode of operation desired. As a rule, the ideal nozzle module can be selected based on a number of different attributes, especially based on the previously used nozzle module of a set of nozzles according to the invention, on the previously used nozzle module of a different set of nozzles, on the type of pressure spray painting technique desired, on the spray gun model to be used, the manufacturer of the spray gun to be used, the type of medium to be sprayed, the viscosity of the medium to be sprayed, the recommendation of the manufacturer of the medium to be sprayed, the desired shape of the spray jet, the coating thickness required, the ambient conditions, especially the temperature and the relative air humidity inside the painting booth, based on whether the user attaches greater importance to the painting speed or to good controllability of the coating application, and/or on the nozzle size desired. When making this selection, in particular, the method according to the invention for selecting a nozzle module from a set of nozzles for a paint job, the selection system and/or the inventive computer program product according to the invention is/are helpful.
In a nozzle module with the air cap 55, the sum of the angles W1 plus W3 can differ from the sum of the angles W101 plus W103 in a different nozzle module with the air cap 155. The nozzle modules can be part of the same nozzle module group.
Finally, it should be noted that the illustrative embodiments discussed describe only a limited number of possible embodiments and therefore in no way constitute a limitation of the present invention.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/DE2018/100679 | 8/1/2018 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2018/184636 | 10/11/2018 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
40433 | Sees | Oct 1863 | A |
327260 | Hart | Sep 1885 | A |
459432 | Anderson | Sep 1891 | A |
459433 | Avery | Sep 1891 | A |
548816 | Paul | Oct 1895 | A |
552213 | Troy | Dec 1895 | A |
552715 | Lugrin | Jan 1896 | A |
563505 | McCornack | Jul 1896 | A |
581107 | Emery | Apr 1897 | A |
644803 | Justi | Mar 1900 | A |
672012 | Ruper | Apr 1901 | A |
574880 | Schmidt et al. | May 1901 | A |
1662496 | Forsgard | Mar 1928 | A |
1703383 | Birkenmaier | Feb 1929 | A |
1703384 | Birkenmaier | Feb 1929 | A |
1711221 | Blakeslee | Apr 1929 | A |
1751787 | Binks | Mar 1930 | A |
1889201 | Holveck | Nov 1932 | A |
2004303 | Wahlin | Jun 1935 | A |
2008381 | Beeg | Jul 1935 | A |
2049700 | Gustafson | Aug 1936 | A |
2051210 | Gustafsson | Aug 1936 | A |
2070696 | Tracy | Feb 1937 | A |
2116036 | Money | May 1938 | A |
2125445 | Holveck | Aug 1938 | A |
2198441 | Mollart | Apr 1940 | A |
2204599 | Jenkins | Jun 1940 | A |
2269057 | Jenkins | Jan 1942 | A |
D133223 | Tammen | Jul 1942 | S |
2356865 | Mason | Aug 1944 | A |
2416856 | Thomsen | Mar 1947 | A |
2416923 | Jenkins | Mar 1947 | A |
2470718 | Peeps | May 1949 | A |
2533953 | Peeps | Dec 1950 | A |
2557593 | Bjorkman | Jun 1951 | A |
2557606 | Liedberg | Jun 1951 | A |
2559091 | Reasenberg | Jul 1951 | A |
2609961 | Sapien | Sep 1952 | A |
2612899 | Webb | Oct 1952 | A |
2646314 | Peeps | Jul 1953 | A |
2721004 | Schultz | Oct 1955 | A |
2743963 | Peeps | May 1956 | A |
2844267 | Petriccione | Jul 1958 | A |
2886252 | Ehrensperger | May 1959 | A |
3090530 | Peeps | May 1963 | A |
D196477 | Kelly | Oct 1963 | S |
3159472 | Revell | Dec 1964 | A |
D200594 | Sass | Mar 1965 | S |
3240398 | Dalton, Jr. | Mar 1966 | A |
D204306 | Hamm | Apr 1966 | S |
D205760 | Hocutt et al. | Sep 1966 | S |
D208903 | Zadron et al. | Oct 1967 | S |
3344992 | Norris | Oct 1967 | A |
3381845 | MacDonald | May 1968 | A |
3417650 | Varrin | Dec 1968 | A |
3420106 | Keller et al. | Jan 1969 | A |
3435683 | Keller et al. | Apr 1969 | A |
3482781 | Sharpe | Dec 1969 | A |
D217928 | Felske | Jun 1970 | S |
3524589 | Pelton, Jr. | Aug 1970 | A |
3527372 | Manning | Sep 1970 | A |
3583632 | Schaffer | Jun 1971 | A |
3622078 | Gronert | Nov 1971 | A |
3645562 | Fandetti et al. | Feb 1972 | A |
3656493 | Black et al. | Apr 1972 | A |
3714967 | Zupan et al. | Feb 1973 | A |
3746253 | Walberg | Jul 1973 | A |
3747850 | Hastings et al. | Jul 1973 | A |
3771539 | De Santis | Nov 1973 | A |
3840143 | Davis et al. | Oct 1974 | A |
3848807 | Partida | Nov 1974 | A |
3857511 | Govindan | Dec 1974 | A |
3870223 | Wyant | Mar 1975 | A |
3873023 | Moss et al. | Mar 1975 | A |
3938739 | Bertilsson et al. | Feb 1976 | A |
4000915 | Strom | Jan 1977 | A |
D245048 | Pool | Jul 1977 | S |
D252097 | Probst et al. | Jun 1979 | S |
4160525 | Wagner | Jul 1979 | A |
4171091 | van Hardeveld et al. | Oct 1979 | A |
4210263 | Bos | Jul 1980 | A |
4273293 | Hastings | Jun 1981 | A |
4278276 | Ekman | Jul 1981 | A |
4411387 | Stern et al. | Oct 1983 | A |
4478370 | Hastings | Oct 1984 | A |
D276472 | Harrison | Nov 1984 | S |
D278543 | Gintz | Apr 1985 | S |
4545536 | Avidon | Oct 1985 | A |
4562965 | Ihmels et al. | Jan 1986 | A |
4572437 | Huber et al. | Feb 1986 | A |
4580035 | Luscher | Apr 1986 | A |
4585168 | Even et al. | Apr 1986 | A |
4614300 | Falcoff | Sep 1986 | A |
4643330 | Kennedy | Feb 1987 | A |
4653661 | Buchner et al. | Mar 1987 | A |
4667878 | Behr | May 1987 | A |
4713257 | Luttermoeller | Dec 1987 | A |
D293950 | Ogden et al. | Jan 1988 | S |
4730753 | Grime | Mar 1988 | A |
4767057 | Degli et al. | Aug 1988 | A |
D298372 | Taylor, Jr. | Nov 1988 | S |
4784184 | Gates | Nov 1988 | A |
4806736 | Schirico | Feb 1989 | A |
4826539 | Harpold | May 1989 | A |
4832232 | Broccoli | May 1989 | A |
4844347 | Konhäuser | Jul 1989 | A |
4854504 | Hedger, Jr. et al. | Aug 1989 | A |
4863781 | Kronzer | Sep 1989 | A |
4877144 | Thanisch | Oct 1989 | A |
D305057 | Morgan | Dec 1989 | S |
4887747 | Ostrowsky et al. | Dec 1989 | A |
4901761 | Taylor | Feb 1990 | A |
4906151 | Kubis | Mar 1990 | A |
4917300 | Gloviak et al. | Apr 1990 | A |
4946075 | Lundback | Aug 1990 | A |
4964361 | Aebersold | Oct 1990 | A |
4967600 | Keller | Nov 1990 | A |
4969603 | Norman | Nov 1990 | A |
4973184 | La Salle | Nov 1990 | A |
D314421 | Tajima et al. | Feb 1991 | S |
D314588 | Denham | Feb 1991 | S |
4989787 | Nikkel et al. | Feb 1991 | A |
5020700 | Krzywdziak et al. | Jun 1991 | A |
D318877 | Miranda et al. | Aug 1991 | S |
5042840 | Rieple et al. | Aug 1991 | A |
D321597 | Cerny | Nov 1991 | S |
5064119 | Mellette | Nov 1991 | A |
5071074 | Lind | Dec 1991 | A |
5074334 | Onodera | Dec 1991 | A |
5078323 | Frank | Jan 1992 | A |
5080285 | Toth | Jan 1992 | A |
5088648 | Schmon | Feb 1992 | A |
5090623 | Burns et al. | Feb 1992 | A |
5102045 | Diana | Apr 1992 | A |
5119992 | Grime | Jun 1992 | A |
5125391 | Srivastava et al. | Jun 1992 | A |
5135124 | Wobser | Aug 1992 | A |
5143102 | Blaul | Sep 1992 | A |
5165605 | Morita | Nov 1992 | A |
5170941 | Morita et al. | Dec 1992 | A |
5190219 | Copp, Jr. | Mar 1993 | A |
5191797 | Smith | Mar 1993 | A |
5209405 | Robinson | May 1993 | A |
5228488 | Fletcher | Jul 1993 | A |
5232299 | Hiss | Aug 1993 | A |
5236128 | Morita et al. | Aug 1993 | A |
5249746 | Kaneko et al. | Oct 1993 | A |
D341186 | Albers | Nov 1993 | S |
5289974 | Grime et al. | Mar 1994 | A |
5322221 | Anderson | Jun 1994 | A |
5325473 | Monroe et al. | Jun 1994 | A |
5332156 | Wheeler | Jul 1994 | A |
5333506 | Smith et al. | Aug 1994 | A |
5333908 | Dorney et al. | Aug 1994 | A |
5344078 | Fritz et al. | Sep 1994 | A |
5367148 | Storch et al. | Nov 1994 | A |
D353836 | Carvelli et al. | Dec 1994 | S |
5381962 | Teague | Jan 1995 | A |
5435491 | Sakuma | Jul 1995 | A |
5443642 | Bienduga | Aug 1995 | A |
5456414 | Burns et al. | Oct 1995 | A |
D365952 | Gagnon et al. | Jan 1996 | S |
5503439 | LaJeunesse et al. | Apr 1996 | A |
5529245 | Brown | Jun 1996 | A |
5533674 | Feyrer et al. | Jul 1996 | A |
5540385 | Garlick | Jul 1996 | A |
5540386 | Roman | Jul 1996 | A |
D376637 | Kieffer | Dec 1996 | S |
5582350 | Kosmyna et al. | Dec 1996 | A |
5584899 | Shorts | Dec 1996 | A |
5588562 | Sander et al. | Dec 1996 | A |
5592597 | Kiss | Jan 1997 | A |
5609302 | Smith | Mar 1997 | A |
5613637 | Schmon | Mar 1997 | A |
D380301 | Kogutt | Jul 1997 | S |
5655714 | Kieffer et al. | Aug 1997 | A |
5662444 | Schmidt, Jr. | Sep 1997 | A |
5667143 | Sebion et al. | Sep 1997 | A |
5695125 | Kumar | Dec 1997 | A |
5704381 | Millan et al. | Jan 1998 | A |
5718767 | Crum et al. | Feb 1998 | A |
D391403 | Josephs | Mar 1998 | S |
5725161 | Hartle | Mar 1998 | A |
RE35769 | Grime et al. | Apr 1998 | E |
5755363 | Gantner et al. | May 1998 | A |
5762228 | Morgan et al. | Jun 1998 | A |
5803360 | Spitznagel | Sep 1998 | A |
5816501 | LoPresti et al. | Oct 1998 | A |
5829682 | Haruch | Nov 1998 | A |
5836517 | Burns et al. | Nov 1998 | A |
D402820 | Morison et al. | Dec 1998 | S |
5843515 | Crum et al. | Dec 1998 | A |
5853014 | Rosenauer | Dec 1998 | A |
D405503 | Edo | Feb 1999 | S |
5874680 | Moore | Feb 1999 | A |
5884006 | Frohlich et al. | Mar 1999 | A |
D409719 | Kaneko | May 1999 | S |
5941461 | Akin et al. | Aug 1999 | A |
5951190 | Wilson | Sep 1999 | A |
5951296 | Klein | Sep 1999 | A |
5954268 | Joshi et al. | Sep 1999 | A |
D414636 | Wiese | Oct 1999 | S |
5979797 | Castellano | Nov 1999 | A |
5992763 | Smith et al. | Nov 1999 | A |
6006930 | Dreyer et al. | Dec 1999 | A |
6010082 | Peterson | Jan 2000 | A |
6017394 | Crum et al. | Jan 2000 | A |
6019294 | Anderson | Feb 2000 | A |
6036109 | DeYoung | Mar 2000 | A |
6039218 | Beck | Mar 2000 | A |
6050499 | Takayama | Apr 2000 | A |
6053429 | Chang | Apr 2000 | A |
6056213 | Ruta et al. | May 2000 | A |
6056215 | Hansinger | May 2000 | A |
6089471 | Scholl | Jul 2000 | A |
6089607 | Keeney et al. | Jul 2000 | A |
6091053 | Aonuma | Jul 2000 | A |
6092740 | Liu | Jul 2000 | A |
6132511 | Crum et al. | Oct 2000 | A |
D435379 | Nguyen | Dec 2000 | S |
6230986 | Vacher et al. | May 2001 | B1 |
6250567 | Lewis et al. | Jun 2001 | B1 |
6267301 | Haruch | Jul 2001 | B1 |
6276616 | Jenkins | Aug 2001 | B1 |
D448451 | Turnbull et al. | Sep 2001 | S |
6308991 | Royer | Oct 2001 | B1 |
D457599 | Karwoski et al. | May 2002 | S |
D459432 | Schmon | Jun 2002 | S |
D459433 | Schmon | Jun 2002 | S |
6402058 | Kaneko et al. | Jun 2002 | B2 |
6402062 | Bending et al. | Jun 2002 | B1 |
6431466 | Kitajima | Aug 2002 | B1 |
6435426 | Copp, Jr. | Aug 2002 | B1 |
6442276 | Doljack | Aug 2002 | B1 |
6450422 | Maggio | Sep 2002 | B1 |
6494387 | Kaneko | Dec 2002 | B1 |
6536684 | Wei | Mar 2003 | B1 |
6536687 | Navis et al. | Mar 2003 | B1 |
D472730 | Sparkowski | Apr 2003 | S |
6540114 | Popovich et al. | Apr 2003 | B1 |
6543632 | McIntyre et al. | Apr 2003 | B1 |
6547160 | Huang | Apr 2003 | B1 |
6547884 | Crum et al. | Apr 2003 | B1 |
6553712 | Majerowski et al. | Apr 2003 | B1 |
6554009 | Beijbom et al. | Apr 2003 | B1 |
D474528 | Huang | May 2003 | S |
6585173 | Schmon et al. | Jul 2003 | B2 |
6595441 | Petrie et al. | Jul 2003 | B2 |
6612506 | Huang | Sep 2003 | B1 |
6626382 | Liu | Sep 2003 | B1 |
6626383 | Campbell | Sep 2003 | B1 |
6647997 | Mohn | Nov 2003 | B2 |
6661438 | Shiraishi et al. | Dec 2003 | B1 |
D485685 | Zupkofska et al. | Jan 2004 | S |
6675845 | Volpenheim et al. | Jan 2004 | B2 |
6692118 | Michele et al. | Feb 2004 | B2 |
6712292 | Gosis et al. | Mar 2004 | B1 |
6717584 | Kulczycka | Apr 2004 | B2 |
6732751 | Chiang | May 2004 | B2 |
6763964 | Hurlbut et al. | Jul 2004 | B1 |
6766763 | Crum et al. | Jul 2004 | B2 |
6786345 | Richards | Sep 2004 | B2 |
6796514 | Schwartz | Sep 2004 | B1 |
6801211 | Forsline et al. | Oct 2004 | B2 |
6820824 | Joseph et al. | Nov 2004 | B1 |
6843390 | Bristor | Jan 2005 | B1 |
6845924 | Schmon | Jan 2005 | B2 |
6855173 | Ehrnsperger et al. | Feb 2005 | B2 |
6863310 | Petkovsek | Mar 2005 | B1 |
6863920 | Crum et al. | Mar 2005 | B2 |
6874656 | Rohr et al. | Apr 2005 | B2 |
6874664 | Montgomery | Apr 2005 | B1 |
6874708 | Reetz, III | Apr 2005 | B2 |
6877677 | Schmon et al. | Apr 2005 | B2 |
6929019 | Weinmann et al. | Aug 2005 | B2 |
6945429 | Gosis et al. | Sep 2005 | B2 |
6955180 | Kocherlakota et al. | Oct 2005 | B2 |
6962432 | Hofeldt | Nov 2005 | B2 |
6963331 | Kobayashi et al. | Nov 2005 | B1 |
7017838 | Schmon | Mar 2006 | B2 |
7018154 | Schmon | Mar 2006 | B2 |
D519687 | Zahav | Apr 2006 | S |
7032839 | Biette | Apr 2006 | B2 |
7036752 | Hsiang | May 2006 | B1 |
7083119 | Bouic et al. | Aug 2006 | B2 |
7090148 | Petrie et al. | Aug 2006 | B2 |
7097118 | Huang | Aug 2006 | B1 |
D528192 | Nicholson | Sep 2006 | S |
7106343 | Hickman | Sep 2006 | B1 |
7165732 | Kosmyna et al. | Jan 2007 | B2 |
7172139 | Bouic et al. | Feb 2007 | B2 |
7175110 | Vicentini | Feb 2007 | B2 |
7182213 | King | Feb 2007 | B2 |
D538050 | Tardif | Mar 2007 | S |
D538493 | Zimmerle et al. | Mar 2007 | S |
D538886 | Huang | Mar 2007 | S |
7194829 | Boire et al. | Mar 2007 | B2 |
D541053 | Sanders | Apr 2007 | S |
D541088 | Nesci | Apr 2007 | S |
7201336 | Blette et al. | Apr 2007 | B2 |
7216813 | Rogers | May 2007 | B2 |
D545943 | Rodgers et al. | Jul 2007 | S |
7246713 | King | Jul 2007 | B2 |
7249519 | Rogers | Jul 2007 | B2 |
D548816 | Schmon | Aug 2007 | S |
7255293 | Dodd | Aug 2007 | B2 |
7264131 | Tsutsumi et al. | Sep 2007 | B2 |
D552213 | Schmon | Oct 2007 | S |
D552715 | Schmon | Oct 2007 | S |
D554703 | Josephson | Nov 2007 | S |
7328855 | Chatron et al. | Feb 2008 | B2 |
D563505 | Schmon | Mar 2008 | S |
7374111 | Joseph et al. | May 2008 | B2 |
D571463 | Chesnin | Jun 2008 | S |
7384004 | Rogers | Jun 2008 | B2 |
RE40433 | Schmon | Jul 2008 | E |
D573227 | Mirazita et al. | Jul 2008 | S |
D574926 | Huang | Aug 2008 | S |
D575374 | Huang | Aug 2008 | S |
7410106 | Escoto, Jr. et al. | Aug 2008 | B2 |
7416140 | Camilleri et al. | Aug 2008 | B2 |
7422164 | Matsumoto | Sep 2008 | B2 |
D579213 | Aipa | Oct 2008 | S |
D581107 | Schmon | Nov 2008 | S |
D581483 | Bass et al. | Nov 2008 | S |
D583013 | Wang | Dec 2008 | S |
7458612 | Bennett | Dec 2008 | B1 |
7472840 | Gregory | Jan 2009 | B2 |
D588231 | Pellin | Mar 2009 | S |
7533678 | Rosa | May 2009 | B2 |
7540434 | Gohring et al. | Jun 2009 | B2 |
7542032 | Kruse | Jun 2009 | B2 |
7568638 | Gehrung | Aug 2009 | B2 |
D604394 | Wang | Nov 2009 | S |
7614571 | Camilleri et al. | Nov 2009 | B2 |
D607086 | Kosaka | Dec 2009 | S |
7624869 | Primer | Dec 2009 | B2 |
D607972 | Wang | Jan 2010 | S |
D608858 | Baltz et al. | Jan 2010 | S |
D614731 | Wang | Apr 2010 | S |
7694893 | Zittel et al. | Apr 2010 | B2 |
7694896 | Turnbull et al. | Apr 2010 | B2 |
D615586 | Kudimi | May 2010 | S |
D616022 | Kudimi | May 2010 | S |
D616527 | Anderson et al. | May 2010 | S |
7765876 | Chen | Aug 2010 | B1 |
D624668 | Noppe | Sep 2010 | S |
7810744 | Schmon et al. | Oct 2010 | B2 |
7819341 | Schmon et al. | Oct 2010 | B2 |
D627039 | Yu | Nov 2010 | S |
D627432 | Escoto et al. | Nov 2010 | S |
7823806 | Schmon | Nov 2010 | B2 |
D629623 | Lampe | Dec 2010 | S |
7856940 | Wendler | Dec 2010 | B2 |
7913938 | Cooper | Mar 2011 | B2 |
7922107 | Fox | Apr 2011 | B2 |
D637269 | Wang | May 2011 | S |
D638121 | Villasana | May 2011 | S |
D639863 | Langan | Jun 2011 | S |
D641067 | Wang | Jul 2011 | S |
D644716 | Gehrung | Sep 2011 | S |
D644803 | Schmon | Sep 2011 | S |
D645094 | Langan | Sep 2011 | S |
8042402 | Brown et al. | Oct 2011 | B2 |
D649196 | Langan | Nov 2011 | S |
8052071 | Kruse | Nov 2011 | B2 |
D655347 | Gehrung | Mar 2012 | S |
8127963 | Gerson et al. | Mar 2012 | B2 |
D657276 | Brose | Apr 2012 | S |
D661492 | Ranschau | Jun 2012 | S |
D661742 | Clark | Jun 2012 | S |
D663960 | Jeronimo | Jul 2012 | S |
8225892 | Ben-Tzvi | Jul 2012 | B2 |
D664773 | Papin | Aug 2012 | S |
8240579 | Bennett | Aug 2012 | B1 |
8297536 | Ruda | Oct 2012 | B2 |
D670085 | Brookman et al. | Nov 2012 | S |
D671988 | Leipold | Dec 2012 | S |
D672012 | Brose et al. | Dec 2012 | S |
D674880 | Schmon | Jan 2013 | S |
8352744 | Kruse | Jan 2013 | B2 |
8360345 | Micheli | Jan 2013 | B2 |
D681162 | Kruse | Apr 2013 | S |
8444067 | Schmon et al. | May 2013 | B2 |
8454759 | Selsvik | Jun 2013 | B2 |
8481124 | Nolte et al. | Jul 2013 | B2 |
D689590 | Brose | Sep 2013 | S |
D689593 | Schmon | Sep 2013 | S |
D690799 | Maier | Oct 2013 | S |
D692530 | Gehrung | Oct 2013 | S |
D692532 | Li et al. | Oct 2013 | S |
8616434 | Wilen | Dec 2013 | B2 |
D697584 | Schmon | Jan 2014 | S |
D698008 | Schmon et al. | Jan 2014 | S |
8626674 | Whitehouse | Jan 2014 | B2 |
8642131 | Nolte et al. | Feb 2014 | B2 |
D704300 | Li et al. | May 2014 | S |
8757182 | Schmon | Jun 2014 | B2 |
8807460 | Charpie et al. | Aug 2014 | B2 |
8857732 | Brose | Oct 2014 | B2 |
D720015 | Kruse | Dec 2014 | S |
D720041 | Robinson | Dec 2014 | S |
8899501 | Fox et al. | Dec 2014 | B2 |
D721785 | Gehrung | Jan 2015 | S |
8925836 | Dettlaff | Jan 2015 | B2 |
D733369 | Tschan | Jun 2015 | S |
D733453 | Tschan | Jul 2015 | S |
D734428 | Wang | Jul 2015 | S |
D734429 | Wang | Jul 2015 | S |
D734571 | Tschan | Jul 2015 | S |
9073068 | Krayer et al. | Jul 2015 | B2 |
D737126 | Tschan | Aug 2015 | S |
D740393 | Gehrung | Oct 2015 | S |
D745636 | Lin | Dec 2015 | S |
9220853 | Vogt | Dec 2015 | B2 |
D757216 | Gherung | May 2016 | S |
D758533 | Dettlaff | Jun 2016 | S |
D758537 | Gehrung | Jun 2016 | S |
D768820 | Binz | Oct 2016 | S |
D770593 | Gehrung | Nov 2016 | S |
9498788 | Kosaka | Nov 2016 | B2 |
9533317 | Gehrung | Jan 2017 | B2 |
D792557 | Wang | Jul 2017 | S |
D794756 | Wang | Aug 2017 | S |
9782784 | Schmon et al. | Oct 2017 | B2 |
9878336 | Gehrung | Jan 2018 | B2 |
9878340 | Schmon et al. | Jan 2018 | B2 |
D835235 | Gehrung et al. | Dec 2018 | S |
10189037 | Schmon et al. | Jan 2019 | B2 |
10247313 | Chien | Apr 2019 | B2 |
10464076 | Sata | Nov 2019 | B2 |
10471449 | Gehrung | Nov 2019 | B2 |
10702879 | Gehrung | Jul 2020 | B2 |
D929838 | Tschan | Sep 2021 | S |
11141747 | Schmon | Oct 2021 | B2 |
20010004996 | Schmon | Jun 2001 | A1 |
20010040192 | Kaneko et al. | Nov 2001 | A1 |
20020092928 | Conroy | Jul 2002 | A1 |
20020134861 | Petrie et al. | Sep 2002 | A1 |
20020148501 | Shieh | Oct 2002 | A1 |
20020170978 | Mohn | Nov 2002 | A1 |
20030006322 | Hartle et al. | Jan 2003 | A1 |
20030025000 | Schmon | Feb 2003 | A1 |
20030066218 | Schweikert | Apr 2003 | A1 |
20030121476 | McIntyre et al. | Jul 2003 | A1 |
20030127046 | Zehner et al. | Jul 2003 | A1 |
20030164408 | Schmon | Sep 2003 | A1 |
20030173419 | Huang | Sep 2003 | A1 |
20030177979 | Crum et al. | Sep 2003 | A1 |
20030189105 | Schmon | Oct 2003 | A1 |
20030209568 | Douglas et al. | Nov 2003 | A1 |
20030213857 | Schmon et al. | Nov 2003 | A1 |
20030218596 | Eschler | Nov 2003 | A1 |
20030230636 | Rogers | Dec 2003 | A1 |
20040046051 | Santa Cruz et al. | Mar 2004 | A1 |
20040050432 | Breda | Mar 2004 | A1 |
20040104194 | Dennison | Jun 2004 | A1 |
20040129738 | Stukas | Jul 2004 | A1 |
20040140373 | Joseph et al. | Jul 2004 | A1 |
20040155063 | Hofeldt | Aug 2004 | A1 |
20040159720 | Komornicki | Aug 2004 | A1 |
20040177890 | Weinmann | Sep 2004 | A1 |
20040191406 | Crum et al. | Sep 2004 | A1 |
20040217201 | Ruda | Nov 2004 | A1 |
20040233223 | Schkolne et al. | Nov 2004 | A1 |
20040245208 | Dennison | Dec 2004 | A1 |
20050001060 | Robinson | Jan 2005 | A1 |
20050056613 | King | Mar 2005 | A1 |
20050082249 | King | Apr 2005 | A1 |
20050127201 | Matsumoto | Jun 2005 | A1 |
20050145723 | Blette et al. | Jul 2005 | A1 |
20050145724 | Blette et al. | Jul 2005 | A1 |
20050161525 | Johansson | Jul 2005 | A1 |
20050178854 | Dodd | Aug 2005 | A1 |
20050189445 | Hartle et al. | Sep 2005 | A1 |
20050215284 | Su | Sep 2005 | A1 |
20050218246 | Chatron | Oct 2005 | A1 |
20050220943 | Abrams et al. | Oct 2005 | A1 |
20050248148 | Schenck et al. | Nov 2005 | A1 |
20050252993 | Rogers | Nov 2005 | A1 |
20050252994 | Rogers | Nov 2005 | A1 |
20050268949 | Rosa | Dec 2005 | A1 |
20050284963 | Reedy | Dec 2005 | A1 |
20060000927 | Ruda | Jan 2006 | A1 |
20060007123 | Wilson et al. | Jan 2006 | A1 |
20060048803 | Jessup et al. | Mar 2006 | A1 |
20060081060 | Forster | Apr 2006 | A1 |
20060108449 | Sodemann | May 2006 | A1 |
20060113409 | Camilleri et al. | Jun 2006 | A1 |
20060118661 | Hartle | Jun 2006 | A1 |
20060131151 | Marchand | Jun 2006 | A1 |
20060171771 | Kruse | Aug 2006 | A1 |
20060192377 | Bauer et al. | Aug 2006 | A1 |
20060196891 | Gerson et al. | Sep 2006 | A1 |
20070029788 | Adler | Feb 2007 | A1 |
20070055883 | Kruse | Mar 2007 | A1 |
20070131795 | Abbale et al. | Jun 2007 | A1 |
20070158349 | Schmon et al. | Jul 2007 | A1 |
20070205305 | Vagedes | Sep 2007 | A1 |
20070221754 | Gehrung | Sep 2007 | A1 |
20070228190 | Tanner | Oct 2007 | A1 |
20070252378 | Chambers | Nov 2007 | A1 |
20070262169 | Wang | Nov 2007 | A1 |
20070262172 | Huffman | Nov 2007 | A1 |
20080011879 | Gerson et al. | Jan 2008 | A1 |
20080019789 | Dunaway et al. | Jan 2008 | A1 |
20080029619 | Gohring et al. | Feb 2008 | A1 |
20080128533 | Gehrung | Jun 2008 | A1 |
20080179763 | Schmon et al. | Jul 2008 | A1 |
20080251607 | Krayer et al. | Oct 2008 | A1 |
20080251977 | Naruse et al. | Oct 2008 | A1 |
20080264892 | Nozawa | Oct 2008 | A1 |
20080272213 | Ting | Nov 2008 | A1 |
20080296410 | Carey et al. | Dec 2008 | A1 |
20090014557 | Schmon et al. | Jan 2009 | A1 |
20090026288 | Shih | Jan 2009 | A1 |
20090026290 | Fox | Jan 2009 | A1 |
20090045623 | Schmon | Feb 2009 | A1 |
20090072050 | Ruda | Mar 2009 | A1 |
20090078789 | Kruse | Mar 2009 | A1 |
20090078790 | Camilleri et al. | Mar 2009 | A1 |
20090143745 | Langan et al. | Jun 2009 | A1 |
20090152382 | Charpie | Jun 2009 | A1 |
20090179081 | Charpie | Jul 2009 | A1 |
20090183516 | Appler et al. | Jul 2009 | A1 |
20090235864 | Khoury et al. | Sep 2009 | A1 |
20090266915 | Fedorov | Oct 2009 | A1 |
20100021646 | Nolte et al. | Jan 2010 | A1 |
20100059533 | Unger et al. | Mar 2010 | A1 |
20100084493 | Troudt | Apr 2010 | A1 |
20100108783 | Joseph et al. | May 2010 | A1 |
20100126541 | Schmon | May 2010 | A1 |
20100163649 | Bass et al. | Jul 2010 | A1 |
20100206963 | Huang | Aug 2010 | A1 |
20100270390 | Reitz | Oct 2010 | A1 |
20100270400 | Evar et al. | Oct 2010 | A1 |
20110024524 | Fox | Feb 2011 | A1 |
20110125607 | Wilen | May 2011 | A1 |
20110121103 | Carleton et al. | Jun 2011 | A1 |
20110127767 | Wicks et al. | Jun 2011 | A1 |
20110168811 | Fox et al. | Jul 2011 | A1 |
20110174901 | Dettlaff et al. | Jul 2011 | A1 |
20120012671 | Brose et al. | Jan 2012 | A1 |
20120097762 | Gehrung et al. | Apr 2012 | A1 |
20120132550 | Gerson et al. | May 2012 | A1 |
20120160935 | Krayer et al. | Jun 2012 | A1 |
20120187220 | Micheli et al. | Jul 2012 | A1 |
20130056556 | Schmon et al. | Mar 2013 | A1 |
20130074864 | Nuzzo et al. | Mar 2013 | A1 |
20130092760 | Joseph | Apr 2013 | A1 |
20130266734 | Nolte et al. | Oct 2013 | A1 |
20130320110 | Brose et al. | Dec 2013 | A1 |
20130327850 | Joseph | Dec 2013 | A1 |
20140034757 | Kaneko et al. | Feb 2014 | A1 |
20140048627 | Schmon et al. | Feb 2014 | A1 |
20140059905 | Raming | Mar 2014 | A1 |
20140145003 | Schmon et al. | May 2014 | A1 |
20140263686 | Hedger | Sep 2014 | A1 |
20140305962 | Tschan | Oct 2014 | A1 |
20140339322 | Freers | Nov 2014 | A1 |
20140346257 | Reetz, III et al. | Nov 2014 | A1 |
20150108254 | Commette | Apr 2015 | A1 |
20150165463 | Gehrung | Jun 2015 | A1 |
20150231655 | Adams et al. | Aug 2015 | A1 |
20160030960 | Gehrung | Feb 2016 | A1 |
20170252771 | Young, II | Sep 2017 | A1 |
20170304852 | Bierie | Oct 2017 | A1 |
20180050355 | Delsard | Feb 2018 | A1 |
20180050356 | Gehrung et al. | Feb 2018 | A1 |
20180050361 | Gehrung | Feb 2018 | A1 |
20180050362 | Gehrung et al. | Feb 2018 | A1 |
20180133727 | Schmon et al. | May 2018 | A1 |
20180200740 | Rossbach et al. | Jul 2018 | A1 |
20200038889 | Volk | Feb 2020 | A1 |
20200038892 | Volk et al. | Feb 2020 | A1 |
20220048054 | Maier | Feb 2022 | A1 |
20220080448 | Volk | Mar 2022 | A1 |
20230107860 | Maier | Apr 2023 | A1 |
Number | Date | Country |
---|---|---|
153883 | Jun 1997 | AT |
163577 | Mar 1998 | AT |
250467 | Oct 2003 | AT |
322645 | Apr 2006 | AT |
383910 | Feb 2008 | AT |
461752 | Apr 2010 | AT |
461753 | Apr 2010 | AT |
475488 | Aug 2010 | AT |
637187 | May 1993 | AU |
2002352235 | Sep 2003 | AU |
2004315547 | Aug 2005 | AU |
2005205899 | Aug 2005 | AU |
2011257605 | Nov 2012 | AU |
2011361295 | May 2013 | AU |
521511 | Feb 1956 | CA |
2126957 | Jan 1995 | CA |
2277096 | Jul 1998 | CA |
2445183 | Oct 2002 | CA |
2552390 | Aug 2005 | CA |
2555607 | Aug 2005 | CA |
2690112 | May 2009 | CA |
2797990 | Dec 2011 | CA |
2812684 | Sep 2012 | CA |
102917803 | Feb 2013 | CA |
2850401 | May 2013 | CA |
200754 | Oct 1938 | CH |
203 668 | Jun 1939 | CH |
523 098 | May 1972 | CH |
523098 | May 1972 | CH |
542104 | Sep 1973 | CH |
676208 | Dec 1990 | CH |
2136077 | Jun 1993 | CN |
1738310 | Feb 2006 | CN |
1899704 | Jan 2007 | CN |
1902002 | Jan 2007 | CN |
1909970 | Feb 2007 | CN |
1909971 | Feb 2007 | CN |
1917960 | Feb 2007 | CN |
200954482 | Oct 2007 | CN |
101125316 | Feb 2008 | CN |
201064746 | May 2008 | CN |
100430150 | Nov 2008 | CN |
100455360 | Jan 2009 | CN |
101367066 | Feb 2009 | CN |
100478080 | Apr 2009 | CN |
101516523 | Aug 2009 | CN |
101646500 | Feb 2010 | CN |
102211070 | Apr 2011 | CN |
102139249 | Aug 2011 | CN |
102211069 | Oct 2011 | CN |
202667052 | Jan 2013 | CN |
103 521 378 | Jan 2014 | CN |
103521378 | Jan 2014 | CN |
203508251 | Apr 2014 | CN |
203737474 | Jul 2014 | CN |
204074345 | Jan 2015 | CN |
204294401 | Apr 2015 | CN |
105377447 | Mar 2016 | CN |
205966208 | Feb 2017 | CN |
107427851 | Dec 2017 | CN |
107666966 | Feb 2018 | CN |
108223901 | Jun 2018 | CN |
207493903 | Jun 2018 | CN |
108438227 | Aug 2018 | CN |
259621 | May 1913 | DE |
460381 | May 1928 | DE |
510362 | Oct 1930 | DE |
611325 | Mar 1935 | DE |
1425890 | Nov 1968 | DE |
2559036 | Sep 1976 | DE |
2653981 | Jun 1978 | DE |
2950341 | Jul 1980 | DE |
2926286 | Jan 1981 | DE |
3016419 | Nov 1981 | DE |
8024829.9 | Sep 1982 | DE |
3111571 | Oct 1982 | DE |
3238149 | Apr 1984 | DE |
34 02 097 | Aug 1985 | DE |
3402945 | Aug 1985 | DE |
3517122 | May 1986 | DE |
3505618 | Aug 1986 | DE |
3526819 | Feb 1987 | DE |
3016419 | Aug 1987 | DE |
8702559 | Oct 1987 | DE |
3708472 | Oct 1988 | DE |
8902223 | May 1989 | DE |
3742308 | Jun 1989 | DE |
8905681 | Nov 1989 | DE |
G 90 01 265 | May 1990 | DE |
3906219 | Aug 1990 | DE |
4302911 | Aug 1993 | DE |
4208500 | Sep 1993 | DE |
4230535 | Mar 1994 | DE |
G 94 16 015.5 | Nov 1994 | DE |
4321940 | Jan 1995 | DE |
69211 891 | Oct 1996 | DE |
69211891 | Oct 1996 | DE |
19516485 | Nov 1996 | DE |
19727884 | Feb 1999 | DE |
69505433 | Apr 1999 | DE |
19807973 | Jul 1999 | DE |
19824264 | Dec 1999 | DE |
19832990 | Jan 2000 | DE |
20000483 | Aug 2000 | DE |
10004105 | Oct 2000 | DE |
19958569 | Feb 2001 | DE |
199 41 362 | Mar 2001 | DE |
199 45 760 | Mar 2001 | DE |
19945760 | Mar 2001 | DE |
10103221 | Aug 2001 | DE |
10031857 | Jan 2002 | DE |
10031858 | Jan 2002 | DE |
20114257 | Feb 2002 | DE |
10059406 | Jun 2002 | DE |
10135104 | Sep 2002 | DE |
10135104 | Sep 2002 | DE |
102 05 831 | Aug 2003 | DE |
10205831 | Aug 2003 | DE |
10311238 | Oct 2004 | DE |
10 2004 027 789 | Feb 2005 | DE |
29825120 | Feb 2005 | DE |
102004027789 | Feb 2005 | DE |
69827994 | Apr 2005 | DE |
69827994 | Apr 2005 | DE |
20320781 | Jun 2005 | DE |
10 2004 014 646 | Jul 2005 | DE |
10 2004 003 438 | Aug 2005 | DE |
102004003439 | Aug 2005 | DE |
10 2004 007 733 | Sep 2005 | DE |
10 2004 021 298 | Nov 2005 | DE |
699 28 944 | Sep 2006 | DE |
69928944 | Sep 2006 | DE |
69535077 | Nov 2006 | DE |
202007001031 | Mar 2007 | DE |
60200500 1173 | Aug 2007 | DE |
60206956 | Aug 2008 | DE |
102007006547 | Aug 2008 | DE |
102007013628 | Sep 2008 | DE |
102007039106 | Feb 2009 | DE |
102007052067 | May 2009 | DE |
10 2009 020 194 | Nov 2010 | DE |
20 2010 012 449 | Dec 2010 | DE |
202010012449 | Dec 2010 | DE |
10 2009 032 399 | Jan 2011 | DE |
102009032399 | Jan 2011 | DE |
102009053449 | Feb 2011 | DE |
102010060086 | Apr 2012 | DE |
10 2010 056 263 | Jun 2012 | DE |
102010056263 | Jun 2012 | DE |
102011106060 | Jan 2013 | DE |
102011118120 | May 2013 | DE |
10 2011120 717 | Jun 2013 | DE |
112007001824 | Jul 2013 | DE |
10 2012 013 464 | Nov 2013 | DE |
10 2015 114202 | Jan 2017 | DE |
10 2018 118 737 | Feb 2020 | DE |
10 2018 118737 | Feb 2020 | DE |
002066910-0001 | Mar 2013 | EM |
002066910-0002 | Mar 2013 | EM |
002066910-0003 | Mar 2013 | EM |
002066910-0004 | Mar 2013 | EM |
002066910-0005 | Mar 2013 | EM |
002066910-0006 | Mar 2013 | EM |
002066910-0007 | Mar 2013 | EM |
002066910-0008 | Mar 2013 | EM |
002066910-0009 | Mar 2013 | EM |
002066910-0010 | Mar 2013 | EM |
0092043 | Oct 1983 | EP |
0092392 | Oct 1983 | EP |
0114064 | Jul 1984 | EP |
0313958 | May 1989 | EP |
524408 | Jan 1993 | EP |
567325 | Oct 1993 | EP |
0631821 | Jan 1995 | EP |
0650766 | May 1995 | EP |
0650766 | May 1995 | EP |
678334 | Oct 1995 | EP |
0706832 | Apr 1996 | EP |
0706832 | Apr 1996 | EP |
0710506 | May 1996 | EP |
801002 | Oct 1997 | EP |
0846498 | Jun 1998 | EP |
987060 | Mar 2000 | EP |
1081639 | Mar 2001 | EP |
1106262 | Jun 2001 | EP |
1 247 586 | Oct 2002 | EP |
1247586 | Oct 2002 | EP |
1277519 | Jan 2003 | EP |
1294490 | Mar 2003 | EP |
1299194 | Apr 2003 | EP |
1366823 | Dec 2003 | EP |
1412669 | Apr 2004 | EP |
1424135 | Jun 2004 | EP |
1477232 | Nov 2004 | EP |
1479447 | Nov 2004 | EP |
1504823 | Feb 2005 | EP |
1563913 | Aug 2005 | EP |
1574262 | Sep 2005 | EP |
1602412 | Dec 2005 | EP |
1658902 | May 2006 | EP |
1708822 | Oct 2006 | EP |
1708823 | Oct 2006 | EP |
1718415 | Nov 2006 | EP |
1880771 | Jan 2008 | EP |
1902766 | Mar 2008 | EP |
1902786 | Mar 2008 | EP |
1902876 | Mar 2008 | EP |
1930084 | Jun 2008 | EP |
1964616 | Sep 2008 | EP |
1964616 | Sep 2008 | EP |
1987886 | Nov 2008 | EP |
1997561 | Dec 2008 | EP |
2017010 | Jan 2009 | EP |
2027931 | Feb 2009 | EP |
2092987 | Aug 2009 | EP |
2106298 | Oct 2009 | EP |
2111920 | Oct 2009 | EP |
2127758 | Dec 2009 | EP |
2451586 | May 2012 | EP |
2490819 | Aug 2012 | EP |
2576079 | Apr 2013 | EP |
2608890 | Jul 2013 | EP |
2 669 213 | Dec 2013 | EP |
2703089 | Mar 2014 | EP |
2736651 | Jun 2014 | EP |
2 828 000 | Jan 2015 | EP |
2 828 000 | Jan 2015 | EP |
3184177 | Jun 2017 | EP |
2828000 | Aug 2019 | EP |
398333 | Jun 1909 | FR |
789762 | Nov 1935 | FR |
1410519 | Sep 1964 | FR |
2444501 | Jul 1980 | FR |
2462200 | Feb 1981 | FR |
2 570 140 | Mar 1986 | FR |
2 774 928 | Aug 1999 | FR |
2863512 | Jun 2005 | FR |
2927824 | Aug 2009 | FR |
190900523 | Jun 1909 | GB |
657854 | Sep 1951 | GB |
2 132 916 | Jul 1984 | GB |
2153260 | Aug 1985 | GB |
2372465 | Aug 2002 | GB |
2411235 | Aug 2005 | GB |
2416141 | Jan 2006 | GB |
2444909 | Jun 2008 | GB |
1100405 | Jun 2009 | HK |
1096057 | Jul 2009 | HK |
1125067 | Aug 2012 | HK |
1138533 | Nov 2012 | HK |
S49-136868 | Nov 1974 | JP |
S55-107258 | Jul 1980 | JP |
S5654328 | May 1981 | JP |
S57-75246 | May 1982 | JP |
S57128346 | Aug 1982 | JP |
58-119862 | May 1983 | JP |
S5998757 | Jun 1984 | JP |
S601722 | Jan 1985 | JP |
S62160156 | Jul 1987 | JP |
H01-87805 | Jun 1989 | JP |
H02258076 | Oct 1990 | JP |
H04-176352 | Jun 1992 | JP |
H0530749 | Apr 1993 | JP |
H05172678 | Jul 1993 | JP |
674850 | Mar 1994 | JP |
H06215741 | Aug 1994 | JP |
H07204542 | Aug 1995 | JP |
H08196950 | Aug 1996 | JP |
H08196950 | Aug 1996 | JP |
H09117697 | May 1997 | JP |
11-047643 | Feb 1999 | JP |
2000015150 | Jan 2000 | JP |
2000070780 | Mar 2000 | JP |
2001259487 | Sep 2001 | JP |
2003042882 | Feb 2002 | JP |
2003088780 | Mar 2003 | JP |
2004-501763 | Jan 2004 | JP |
2004017044 | Jan 2004 | JP |
2005000735 | Jan 2005 | JP |
2005138885 | Jun 2005 | JP |
2007516831 | Jun 2007 | JP |
2008018296 | Jan 2008 | JP |
2008161789 | Jul 2008 | JP |
2010-528837 | Aug 2010 | JP |
2014124274 | Jul 2014 | JP |
2014 0064644 | May 2014 | KR |
20140064644 | May 2014 | KR |
2523816 | Jan 2014 | RU |
491092 | Jun 2002 | TW |
510253 | Nov 2002 | TW |
I220392 | Aug 2004 | TW |
I303587 | Dec 2008 | TW |
I309584 | May 2009 | TW |
90008456 | Aug 1990 | WO |
9116610 | Oct 1991 | WO |
199207346 | Apr 1992 | WO |
9522409 | Aug 1995 | WO |
199832539 | Jul 1998 | WO |
01012337 | Feb 2001 | WO |
200112337 | Feb 2001 | WO |
0166261 | Sep 2001 | WO |
01099062 | Dec 2001 | WO |
02000355 | Jan 2002 | WO |
0202242 | Jan 2002 | WO |
02018061 | Mar 2002 | WO |
02085533 | Oct 2002 | WO |
03007252 | Jan 2003 | WO |
03045575 | Jun 2003 | WO |
03069208 | Aug 2003 | WO |
03069208 | Aug 2003 | WO |
03086654 | Oct 2003 | WO |
04037433 | May 2004 | WO |
200437433 | May 2004 | WO |
04052552 | Jun 2004 | WO |
05018815 | Mar 2005 | WO |
05068220 | Jul 2005 | WO |
05070557 | Aug 2005 | WO |
05070558 | Aug 2005 | WO |
05077543 | Aug 2005 | WO |
05115631 | Dec 2005 | WO |
2006065850 | Jun 2006 | WO |
07128127 | Nov 2007 | WO |
2007133386 | Nov 2007 | WO |
2007149760 | Dec 2007 | WO |
2008093866 | Aug 2008 | WO |
2009015260 | Jan 2009 | WO |
2009015260 | Jan 2009 | WO |
2009054986 | Apr 2009 | WO |
2009056424 | May 2009 | WO |
2010019274 | Feb 2010 | WO |
2010044864 | Apr 2010 | WO |
2011047876 | Apr 2011 | WO |
2011147555 | Dec 2011 | WO |
2012013574 | Feb 2012 | WO |
2012052255 | Apr 2012 | WO |
2012119664 | Sep 2012 | WO |
2013000524 | Jan 2013 | WO |
2013016474 | Jan 2013 | WO |
2013131626 | Sep 2013 | WO |
2013142045 | Sep 2013 | WO |
2014006593 | Jan 2014 | WO |
2015125619 | Aug 2015 | WO |
2016127106 | Aug 2016 | WO |
2016188804 | Dec 2016 | WO |
2017096740 | Jun 2017 | WO |
2018197025 | Oct 2017 | WO |
2020053153 | Mar 2020 | WO |
20200053153 | Mar 2020 | WO |
2020086977 | Apr 2020 | WO |
Entry |
---|
Office Action, dated Jan. 15, 2019, for U.S. Appl. No. 15/679,533. |
Office Action, dated Jan. 15, 2019, for U.S. Appl. No. 15/679,461. |
Response to Election of Species Requirement and Amendment filed Oct. 15, 2018 from U.S. Appl. No. 15/679,482. |
Chinese Search Report dated Jul. 18, 2018 for Application No. 2014103745834 filed Jul. 31, 2014. |
DesignView of CN302452159 registered Jun. 5, 2013, printed Oct. 18, 2018. |
German Search Report dated May 26, 2021, for DE 10 2020 123 769.3 (with machine translation). |
Response to Office Action dated Mar. 9, 2020 for U.S. Appl. No. 14/815,210. |
Notice of Allowance for U.S. Appl. No. 14/815,210 dated Mar. 25, 2020. |
Office Action of U.S. Appl. No. 15/679,461 dated Mar. 31, 2020. |
Response to Restriction Requirement filed Jul. 27, 2015 to Restriction Requirement dated May 27, 2015 for U.S. Appl. No. 13/991,285. |
Application filed Jul. 31, 2015 for U.S. Appl. No. 14/815,210. |
Final Office Action dated Aug. 4, 2015 for U.S. Appl. No. 13/380,949. |
Notice of Allowance dated Aug. 3, 2015 for U.S. Appl. No. 29/486,232. |
European Search Report, dated Jan. 20, 2020, for European Application No. 19/183,380. |
International Search Report (dated Jun. 20, 2008), Written Opinion (dated Jun. 20, 2008), and International Preliminary Report on Patentability (dated Sep. 14, 2010) from PCT/US2008/03318 filed Mar. 12, 2008. |
Response filed Dec. 7, 2015 to Office Action dated Aug. 7, 2015 for U.S. Appl. No. 13/991,285. |
International Search Report dated Nov. 13, 2019 for PCT/EP2019/074000, filed Sep. 9, 2019. |
Written Opinion or PCT/EP2019/074000, filed Sep. 9, 2019. |
International Preliminary Report on Patentability with Written Opinion for PCT/EP2019/074000, filed Sep. 9, 2019 (English translation) (7 pages). |
Final Office Action dated Nov. 23, 2021 for U.S. Appl. No. 15/679,533. |
Office Action dated Feb. 19, 2016 for U.S. Appl. No. 14/113,649. |
Final Office Action dated Feb. 25, 2016 for U.S. Appl. No. 13/698,417. |
Restriction Requirement dated Mar. 25, 2016 for Design U.S. Appl. No. 29/516,082. |
Response filed Mar. 31, 2016 to Office Action dated Dec. 31, 2016 for U.S. Appl. No. 14/572,998. |
Response to Final Office Action and RCE dated Nov. 29, 2016 in U.S. Appl. No. 14/113,649. |
Response restriction requirement filed May 23, 2016 for Design U.S. Appl. No. 29/516,082. |
Examination Report from the European Patent Office dated Nov. 23, 2021 for European Patent Application No. 19183380.5. |
Office Action dated Dec. 9, 2021 for U.S. Appl. No. 16/524,838. |
May. 22, 2018 Final Office Action for U.S. Appl. No. 14/113,649. |
Jun. 25, 2018 Response to Office Action for U.S. Appl. No. 14/815,210. |
For U.S. Appl. No. 15/679,533: Interview Summary dated Jun. 17, 2020 Response to Office Action, filed Jun. 30, 2020. |
Office Action dated Jun. 12, 2020, for U.S. Appl. No. 15/575,549. |
International Search Report and Written Opinion for PCT/EP2021/54059, filed Feb. 18, 2021. |
Chinese Search Report for Application No. 2017107135569 dated Aug. 24, 2020 and English translation. |
Office Action dated Dec. 31, 2015 for U.S. Appl. No. 14/572,998. |
Notice of Allowance dated Jan. 19, 2016 for Design U.S. Appl. No. 29/539,615. |
Notice of Allowance dated Jan. 22, 2016 for U.S. Appl. No. 13/991,285. |
International Preliminary Report on Patentability with Written Opinion dated Mar. 9, 2021 for PCT/EP2019/074000 filed Sep. 9, 2019. |
Response to Office Action dated Apr. 5, 2019 for U.S. Appl. No. 15/679,461 (29 pages). |
Response to Office Action dated Apr. 9, 2019 for U.S. Appl. No. 15/679,533 (22 pages). |
Notification of the First Office Action with search report dated Aug. 24, 2015 for Chinese Application No. 201280020519.5 (related to U.S. Appl. No. 14/113,649), 13 pages. |
Notification of the Second Office Action dated May 16, 2016, for Chinese Application No. 201280020519.5 (related to U.S. Appl. No. 14/113,649), 5 pages. |
Japanese Office Action for JP2014-517485 (related to U.S. Appl. No. 14/113,649), dated Jul. 5, 2016, 16 pages. |
Search Report dated Jan. 26, 2022, for Chinese Patent Appl. No. 2019107032612 with translation. |
Office Action dated Aug. 7, 2015 for U.S. Appl. No. 13/991,285. |
Final Office Action dated Sep. 4, 2020 for U.S. Appl. No. 15/679,533. |
Japanese Office Action dated Sep. 25, 2019 for Japanese Publication No. 2015-149405, 4 pages. |
International Preliminary Report on Patentability dated Sep. 6, 2022 with Written Opinion for PCT/EP2021/053940 (English Translation). |
International Preliminary Report on Patentability dated Sep. 6, 2022 with Written Opinion for PCT/EP2021/054059 (English Translation). |
International Preliminary Report on Patentability dated Sep. 6, 2022 with Written Opinion for PCT/EP2021/054061 (English Translation). |
Written Opinion dated Sep. 8, 2016 for International Application No. PCT/EP2016/061057 filed May 18, 2016. |
Notice of Allowance dated Sep. 17, 2020 for U.S. Appl. No. 15/679,461. |
Second Chinese Office Action dated Jun. 24, 2015 for Chinese Application No. 2011800266029. |
Third Chinese Office Action dated Nov. 30, 2015 for Chinese Application No. 2011800266029. |
Final Office Action dated Aug. 29, 2016 for U.S. Appl. No. 14/113,649. |
Office Action dated Nov. 2, 2016 for U.S. Appl. No. 11/949,122. |
European Search Report dated May 8, 2017 for Application No. EP16203544. |
“Spray Guns/sata.com”, Oct. 18, 2015, XP055364928 URL:http://web.archive.org/web/20151018205307/http://www.sata.com/index.php?id=lackierpistolen&L=11 [gefunden am Apr. 13, 2017]; reprinted on Dec. 8, 2017. |
“SATAjet 5000 B Lackierpistolen | Bechersysteme | Atemschutz | Filtertechnik | Zubehor So flexibel wie Ihre Aufgaben” Apr. 11, 2017, XP055364477 Gefunden im Internet: URL:https/www.sata.com/uploads/tx_pxspecialcontent/00_SATAjet_5000_B.pdf [gefunden am Apr. 12, 2017]; English translation of full brochure attached. |
Amendments submitted to European Patent Office dated Dec. 3, 2017 for Application No. EP16203544 (with English translation of chart on p. 3). |
Response filed May 28, 2019 for U.S. Appl. No. 15,379,972 (144). |
Final Office Action for U.S. Appl. No. 15/679,461 dated Jun. 11, 2019. |
Final Office Action for U.S. Appl. No. 15/679,533 dated Jul. 12, 2019. |
International Search Report and Written Opinion for PCT/EP2021/53940, filed Feb. 18, 2021. |
For U.S. Appl. No. 16/524,838: Response and Request for Continued Exam filed Oct. 22, 2021. |
German Search Report dated May 7, 2019 for Application No. 10 2018 122 004.9. |
Office Action dated Feb. 5, 2021 for U.S. Appl. No. 16/524,740. |
Office Action dated Feb. 5, 2021 for U.S. Appl. No. 16/524,838. |
Response to Final Office Action, dated Nov. 11, 2019, for U.S. Appl. No. 14/815,210 20 pages. |
Office Action, dated Nov. 20, 2019, for U.S. Appl. No. 15/575,549 12 pages. |
Office Action, dated Dec. 9, 2019, for U.S. Appl. No. 14/815,210 6 pages. |
Final Office Action dated Feb. 27, 2020 for U.S. Appl. No. 15/575,549. |
Office Action dated Nov. 24, 2021 for U.S. Appl. No. 16/524,740. |
Office Action dated Jan. 25, 2019 for U.S. Appl. No. 15/379,972. |
Final Rejection dated Jul. 22, 2021 for U.S. Appl. No. 16/524,838. |
Restriction/Species requirement dated Dec. 7, 2020 for U.S. Appl. No. 16/524,838. |
Response to Office Action filed Feb. 16, 2016 for U.S. Appl. No. 13/698,417. |
Screen shot of a SATA product (SATAjet B) description retrieved on Feb. 12, 2016 from www.sata.com/index.php. |
“The Hot Rolling Process;” California Steel; retrieved on Feb. 12, 2016 from http://www.californiasteel.com/GetPublicFile.aspx?id=53. |
For Chinese Application No. 201910704447.X: Search Report, dated Aug. 25, 2022 Second Office Action, dated Sep. 1, 2022. |
Office Action from U.S. Appl. No. 15/143,698 dated Jan. 5, 2017. |
German Search Report for German Application No. 10 2015 016 474.0 dated Aug. 9, 2016, 14 pages. |
Notice of Allowance in U.S. Appl. No. 29/556,463, filed Mar. 1, 2016, 9 pages. |
Notice of Allowance in U.S. Appl. No. 29/555,656, filed Feb. 24, 2016, 5 pages. |
Final Office Action dated Dec. 7, 2017 for U.S. Appl. No. 14/815,210. |
Response filed Oct. 6, 2015 to Notice of Non-Compliant Amendment for U.S. Appl. No. 13/698,417. |
Notice of Non-Compliant Amendment dated Aug. 10, 2015 for U.S. Appl. No. 13/698,417. |
Final Office Action dated Oct. 16, 2015 for U.S. Appl. No. 13/698,417. |
Extended European Search Report dated Apr. 17, 2015 for European Application No. 14004167.4. |
Canadian Office Action dated Nov. 21, 2012 for related application CA2741703. |
Chinese Search Report dated Dec. 5, 2012 for related application CN200980135429.9. |
Chinese Office Action dated Dec. 13, 2012 for related application CN200980135429.9. |
German Search Report for DE 20 2008 014 389.6 completed Jul. 13, 2009. |
International Preliminary Report on Patentability for PCT/EP2015/001728 filed Aug. 25, 2015. |
Final Office Action dated Mar. 16, 2017 from U.S. Appl. No. 13/698,417, 9 pages. |
Notice of Allowance dated Jul. 26, 2021 for U.S. Appl. No. 15/575,549. |
Office Action dated Jun. 30, 2017 for U.S. Appl. No. 14/815,210. |
Examination Report from the European Patent Office dated Nov. 8, 2021 for European Patent Application No. 19183382.1. |
Office Action dated Dec. 2, 2022 for U.S. Appl. No. 16/524,838. |
Office Action dated Mar. 30, 2020, for U.S. Appl. No. 15/679,533. |
Restriction Requirement Office Action dated Aug. 28, 2018 in U.S. Appl. No. 15/679,533. |
Restriction Requirement Office Action dated Aug. 28, 2018 in U.S. Appl. No. 15/679,461. |
Notice of Allowance dated Sep. 14, 2018 in U.S. Appl. No. 29/618,945. |
Notice of Allowance dated Sep. 14, 2018 in U.S. Appl. No. 14/113,649. |
Final Office Action dated Sep. 12, 2018 in U.S. Appl. No. 14/815,210. |
European Search Report dated Jan. 24, 2018 for U.S. Appl. No. 17/186,905. |
International Search Report and Written Opinion for PCT/EP2021/054061, filed Apr. 16, 2021. |
Zhu Zhifu, “Simulation and Experimental Study on Spray Characteristics of Gas-Assisted Urea Spray Gun”, Aug. 6, 2019, pp. 1-6. |
Printout from Internet www.ehow.com explaining how to choose a spray gun and stating in item 2 “Nozzle sizes vary between about 1 mm and 2 mm.”, printed Sep. 7, 2012 (Exhibit 1023 in IPR 2013-0111). |
Printout from Internet www.bodyshopbusiness.com explaining how to choose nozzle setup in paragraph bridging pp. 1 and 2, giving general rule of thumb of nozzle sizes from 1.3 mm to 2.2 mm, depending on material being sprayed, printed Sep. 7, 12 (Exhibit 1024 in IPR 2013-0111). |
Printout from Internet of pages from brochure of Walther Pilot showing nozzle sizes for spray guns ranging from 0.3 mm to 2.5 mm, dated 2007, (Exhibit 1025 in IPR 2013-0111). |
Printout from Internet www.alsacorp.com showing in the paragraph bridging pp. 2 and 3, Model VS-7200 Saber LVLP spray gun with nozzle size 1.3 mm with sizes 1.3 to 2.0 available, printed Aug. 26, 2012 (Exhibit 1026 in IPR 2013-0111). |
Printout from Internet of copy of p. 28 from current 3Mtm brochure showing Tip/Nozzle/Air Cap Selection Guide with nozzle sizes from 0.5 mm to 3.0 mm., (Exhibit 1027 in IPR 2013-0111). |
Decision by EPO regarding opposition proceedings to revoke patent No. 99926841.0-2425/ 1108476, corresponding to ′387 patent, 2012, (Exhibit 1029 in IPR 2013-0111). |
SATA News Publication Dan-Am Jul.-Sep. 1996, (Exhibit 1034 in IPR 2013-0111). |
SATA News Publication Dan-Am Oct.-Dec. 1996, (Exhibit 1035 in IPR 2013-0111). |
SATA News Publication Dan-Am Apr.-Jun. 1998 (Exhibit 1036 in IPR 2013-0111). |
Dan-Am SATA Catalog 6 for spray guns 1991 (Exhibit 1037 in IPR 2013-0111). |
Dan-Am SATA Catalog 8 for spray guns 1994 (Exhibit 1038 in IPR 2013-0111). |
Dan-Am Catalog 6—51pp published 1991, (Exhibit 1042 in IPR 2013-0111). |
Japanese Industrial Standards B 9809 English translation, 1992 (Exhibit 1049 in IPR 2013-0111). |
Japanese Industrial Standards B 9809 revised Mar. 1, 1991 (Exhibit 1050 in IPR 2013-0111). |
SATA News, vol. 21, 2009 (Exhibit 2010 in IPR 2013-0111). |
Collision Hub TV Document (image from video clip) printed Oct. 9, 2013 (Exhibit 2011 in IPR 2013-0111). |
MyRielsMe.com document from press release printed Oct. 9, 2013 (Exhibit 2012 in IPR 2013-0111). |
How to set Air pressure, Utube screenshot printed Oct. 9, 2013 (Exhibit 2013 in IPR 2013-0111). |
Ohio EPA Letty to Tony Larimer, response to letter dated Aug. 2006 (Exhibit 2014 in IPR 2013-0111). |
Pinahs Ben-Tzvi et al, A conceptual design . . . , Mechatrronics 17 (2007) p. 1-13 (Exhibit 2015 in IPR 2013-0111). |
On line ad from Amazon.com printed Oct. 14, 2013 (Exhibit 2017 in IPR 2013-0111). |
Rone et al., MEMS-Baed Microdroplet Generation with Integrated Sensing, COMSOL, 2011 (Exhibit 2018 in IPR 2013-0111). |
Response filed Dec. 21, 2015 to Office Action dated Jul. 20, 2015 for U.S. Appl. No. 14/113,649. |
European Search Report dated Feb. 4, 2022 for Application No. 21191428.8. |
Search Report dated Jan. 7, 2022, for Chinese Patent Appl. No. 2018800961965, with translation. |
Office Action dated Apr. 26, 2022 for U.S. Appl. No. 15/679,533. |
International Search Report dated Apr. 12, 2019 for PCT/DE2018/100679 filed Aug. 1, 2018. |
Written Opinion for PCT/DE2018/100679 filed Aug. 1, 2018. |
Restriction Requirement dated Mar. 18, 2019, for U.S. Appl. No. 29/596,869. |
Office Action dated Mar. 15, 2019, for U.S. Appl. No. 14/815,210. |
U.S. Appl. No. 14/815,210 Office Action dated Apr. 3, 2018. |
U.S. Appl. No. 14/113,649 Response filed Mar. 3, 2018. |
German Search Report dated Apr. 10, 2018 for Application No. 10 2017 118 599.2. |
Response to Office Action dated Jun. 25, 2018 for U.S. Appl. No. 14/815,210. |
Response to Final Office Action dated Aug. 22, 2018 for U.S. Appl. No. 14/113,649. |
RCE Reply filed Oct. 11, 2019 for U.S. Appl. No. 15/679,461. |
For Chinese Patent Application No. 2019800593031: First Office Action dated Apr. 25, 2022 (Eng. translation) Chinese Search Report dated Apr. 19, 2022. |
Office Action, dated Jan. 9, 2019, for U.S. Appl. No. 15/679,482. |
Search Report dated Jan. 29, 2022, for Chinese Patent Appl. No. 201910704447X, with translation. |
Final Office Action dated May 2, 2022 for U.S. Appl. No. 16/524,740. |
International Search Report dated Apr. 12, 2019 and Written Opinion for PCT/DE18/100679, filed Aug. 1, 2018 (21 pages). |
Final Office Action dated Jun. 1, 2021 for U.S. Appl. No. 16/524,740. |
German Search Report for Application No. 10 2016 009 957.7 dated Apr. 21, 2017. |
Notice of Allowance dated Jan. 27, 2016 for Design U.S. Appl. No. 29/510,723. |
Office Action dated Nov. 18, 2014 for U.S. Appl. No. 14/113,649. |
Notice of Allowance dated Nov. 19, 2014 for U.S. Appl. No. 29/486,223. |
Office Action dated Dec. 31, 2014 for U.S. Appl. No. 13/380,949. |
Restriction Requirement dated Jan. 9, 2015 for Design U.S. Appl. No. 29/469,049. |
Response to Office Action filed Dec. 2, 2014 for U.S. Appl. No. 29/487,679. |
Notice of Allowance dated Jan. 15, 2015 for Design U.S. Appl. No. 29/490,620. |
Office Action dated Jan. 14, 2015 for Design U.S. Appl. No. 29/447,887. |
Hercules Paint Gun Washers brochure publish date Jan. 2012, [online], [site visited Jan. 7, 2015], <http://www.herkules.us/pdfs/L00761-Hercules-Gun_Washers-4-page-brochure.pdf>. |
Jetclean GUn Cleaner Terry's Auto Supply, google publish date Aug. 4, 2011, [online]. [site visited Jan. 7, 2015], <http:// secure.terrys.net/viewProduct.php?productID=FT.FHAZ1005>. |
Restriction Requirement dated Feb. 6. 2015 for Design U.S. Appl. No. 29/486,232. |
Office Action dated Mar. 30, 2015 for U.S. Appl. No. 13/698,417. |
Responde to Office Action filed Apr. 14, 2015 to Office Action dated Jan. 14, 2015 for U.S. Appl. No. 29/447,887. |
Response filed Jul. 20, 2015 for Office Action dated Mar. 30, 2015 for U.S. Appl. No. 13/698,417. |
Notice of Allowance dated Apr. 30. 2015 for U.S. Appl. No. 29/447,887. |
Chinese Office Action dated Oct. 28, 2014 and Search Report dated Oct. 15, 2014 for Chinese Application No. 2011800266029. |
Australian Examination Report dated Oct. 30, 2012 for Australian Application No. 2010268870. |
Notice of Allowance dated Apr. 24, 2015 for Design U.S. Appl. No. 29/486,232. |
Restriction Requirement dated Jan. 22, 2015 for U.S. Appl. No. 13/698,417. |
Response filed Mar. 23, 2015 to Restriction Requirement dated Jan. 22, 2015 for U.S. Appl. No. 13/698,417. |
Response filed Apr. 6, 2015 to Office Action dated Feb. 8, 2015 for Design U.S. Appl. No. 29/486,232. |
Response filed Mar. 31, 2015 to Office Action dated Dec. 31, 2014 for U.S. Appl. No. No. 13/380,949. |
Japanese Office Action dated Jun. 11, 2014 for Japanese Patent Application No. 2012-518769. |
Australian Examination Report dated Nov. 11, 2014 for Australian patent Application No. 2011257605. |
Japanese Notice of Allowance dated Jan. 13, 2015 for Japanese Patent Application No. 2012/518769. |
Application filed Dec. 11, 2011 for U.S. Appl. No. 13/380,949. |
Chinese Office Action dated Jan. 28, 2014 and Search Report dated Jan. 21, 2014 for Chinese Application No. 201080030935.4. |
Search Report dated Apr. 24, 2010 for German Application No. 10 2009 032 399.6-51. |
Application filed Oct. 24, 2013 for U.S. Appl. No. 14/113,649. |
Response filed May 18, 2015 to Office Action dated Nov. 18, 2014 for U.S. Appl. No. 14/113,649. |
Application filed Dec. 17, 2014 for U.S. Appl. No. 14/572,998. |
German Search Report dated Mar. 25. 2014 for German Application No. 202013105779-7. |
Application filed Nov. 16, 2012 for U.S. Appl. No. 13/698,417. |
Application filed Jun. 2, 2013 for U.S. Appl. No. 13/991,285. |
English translation of application filed Aug. 13, 2013 for Application filed Jun. 2, 2013 for U.S. Appl. No. 13/991,285. |
Restriction Requirement dated May 27, 2015 for U.S. Appl. No. 13/991,285. |
Application filed Jan. 29, 2015 for Design U.S. Appl. No. 29/516,073. |
Application filed Jan. 29, 2015 for Design U.S. Appl. No. 29/516,082. |
Application filed Mar. 3, 2015, 2015 for Design U.S. Appl. No. 29/519,196. |
Final Office Action dated Jul. 20, 2015 for U.S. Appl. No. 14/113,649. |
International Search Report dated Aug. 31, 2016 for PCT/EP2016/061057 filed May 18, 2016. |
Written Opinion for PCT/EP2016/061057 filed May 18, 2016. |
Response to Final Office Action, filed Jan. 4, 2021, for U.S. Appl. No. 15/679,533 (18 pages). |
Response to Restriction Requirement, filed Jan. 25, 2021, for U.S. Appl. No. 16/524,740 (9 pages). |
Final Office Action in U.S. Appl. No. 14/113,649 dated Jun. 22, 2017. |
Response filed in U.S. Appl. No. 15/143,698 dated Jul. 3, 2017. |
Response filed May 5, 2021 for U.S. Appl. No. 16/524,740. |
Response filed May 5, 2021 for U.S. Appl. No. 16/524,838. |
International Preliminary Report on Patentability dated Feb. 2, 2021 and Written Opinion for PCT/DE2018/100679 filed Aug. 1, 2018 (English Translation). |
Notice of Allowance dated May 18, 2021 for U.S. Appl. No. 29/730,873. |
Anonymous: “DeVilbiss Automotive RefinishingSpray Gun Setup”, Jan. 27, 2015 (Jan. 27, 2015), XP055580418, retrieved from the Internet: URLhttps:/ /web.archive.org/web/20150127025402lhttp://www.autorefinishdevilbiss.com.spray-gun-setup.aspx. |
Anonymous: “DeVilbiss—Spray Gun Tool on the AppStore”, Oct. 19, 2015 (Oct. 19, 2015), XP055580448, retrieved from the Internet: URLhttps://itunes .apple.comlus/app/ devilbiss-spray-gun-tool/id590404917?mt=8. |
For U.S. Appl. No. 16/524,740: Interview Summary and Advisory Action dated Aug. 30, 2021. |
Office Action dated Feb. 19, 2021 for U.S. Appl. No. 15/575,549. |
European Search Report dated Feb. 21, 2020 for Application No. 19183382.1. |
Response dated Feb. 19, 2020 for U.S. Appl. No. 15/575,549. |
Final Office Action dated Sep. 23, 2020, for U.S. Appl. No. 15/575,549. |
Response to Restriction Requirement filed in U.S. Appl. No. 14/815,210 dated Jun. 19, 2017. |
Notification of the Second Office Action dated Aug. 26, 2022 for Application No. 2019107032612. |
International Search Report, Written Opinion and International Preliminary Report on Patentability for PCT/EP2004/005381 file May 19, 2004. |
International Search Report, Written Opinion and International Preliminary Report on Patentability for PCT/EP2004/011998 filed Oct. 23, 2004. |
International Search Report, Written Opinion and International Preliminary Report on Patentability for PCT/EP2005/000435 filed Jan. 18, 2005. |
International Search Report, Written Opinion and International Preliminary Report on Patentability for PCT/EP2005/00437 filed Jan. 18, 2005. |
International Search Report, Written Opinion and International Preliminary Report on Patentability for PCT/EP2008/063344, filed Oct. 6, 2008. |
International Search Report, Written Opinion and International Preliminary Report on Patentability for PCT/EP2010/002392 filed Apr. 20, 2010. |
International Search Report, Written Opinion and International Preliminary Report on Patentability for PCT/EP2011/002544 filed May 21, 2011. |
International Search Report, Written Opinion and International Preliminary Report on Patentability for PCT/EP2011/066665 filed Sep. 26, 2011. |
International Search Report, Written Opinion and International Preliminary Report on Patentability for PCT/EP2010/003399 filed Jun. 7, 2010. |
International Search Report, Written Opinion and International Preliminary Report on Patentability for PCT/EP2011/5842 filed Dec. 2, 2010. |
International Search Report, Written Opinion and International Preliminary Report on Patentability for PCT/EP2012/01939 filed May 5, 2012. |
International Search Report, Written Opinion and International Preliminary Report on Patentability for PCT/EP2009/06992 filed Sep. 29, 2009. |
Internet Archive Wayback Machine [online] [captured Sep. 25, 2012] [retrieved on Sep. 8, 2014] retrieved from the Internet URL:http://web.archive.org/web/20120925210554/http://www.sata.com/index.php?id=sal-check&no cache=1&L=11. |
JP Office Action issued against JP Patent App. 2012-508926 on Feb. 25, 2014 with English translation. |
Restriction Requirement Office Action dated Apr. 17, 2017 for U.S. Appl. No. 14/815,210. |
Notice of Allowance dated Apr. 10, 2017 for U.S. Appl. No. 29/579,824. |
Response to Final Office Action filed May 9, 2017 in U.S. Appl. No. 13/698,417. |
Response to Office Action filed May 17, 2017 in U.S. Appl. No. 14/113,649. |
Second Office Action, dated Aug. 12, 2022, for Chinese Application No. 2018800961965 (English translation). |
Search Report, dated Aug. 1, 2022, or Chinese Application No. 2018800961965. |
German Search Report dated Mar. 15, 2016 for Application No. 20 2015 003 664.3, 8 pages. |
Chinese Search Report dated Feb. 21, 2019 for Application No. 2016800293781, 3 pages. |
Response to Restriction Requirement filed Oct. 29, 2019 for U.S. Appl. No. 15/575,549. |
Final Office Action dated May 12, 2022, for U.S. Appl. No. 16/524,838. |
Office Action dated Aug. 12, 2021 for U.S. Appl. No. 15/679,533. |
International Search Report dated Jul. 14, 2016 for International Application No. PCT/EP2016/000809, filed May 17, 2016. |
Written Opinion for International Application No. PCT/EP2016/000809, filed May 17, 2016. |
Final Office Action dated Aug. 12, 2019 from U.S. Appl. No. 14/815,210. |
Search Report dated Feb. 22, 2019 for German Patent Application No. 10 2018 118 738.6. |
Search Report dated Feb. 8, 2019 for German Patent Application No. 10 2018 118 737.8. |
Notice of Allowance dated Jul. 1, 2019 for U.S. Appl. No. 15/379,972. |
Notice of Allowance dated Jul. 9, 2019 for U.S. Appl. No. 15/679,482. |
Notice of Allowance dated Apr. 18, 2016 for U.S. Appl. No. 14/572,998. |
Response filed Apr. 27, 2016 to Office Action dated Jan. 29, 2016 for U.S. Appl. No. 13/380,949. |
German Search Report dated Apr. 12, 2016 for related German Application No. 10 2015 008 735.5. |
Decision on Rejection dated Feb. 10, 2023 for Chinese Patent Application No. 2018800961965. |
Search Report dated Jan. 30, 2023 for Chinese Patent Application No. 2018800961965. |
Third Office Action dated Feb. 15, 2023 for Chinese Patent Application No. 20191070444.X. |
Office Action dated Feb. 24, 2023 for U.S. Appl. No. 16/524,740. |
Chinese Notification of the Third Office Action dated Feb. 14, 2023 for Chinese Patent Application No. 2019107032612, 15 pages. |
European Office Action dated Mar. 21, 2023 for European Patent Application No. 19 183 382.1, 12 pages. |
German Search Report dated Apr. 21, 2017 for application No. 10 2016 009 957.7. |
Number | Date | Country | |
---|---|---|---|
20210379612 A1 | Dec 2021 | US |