The present application claims the benefit of Swedish Application No. 1851028-9, filed on Aug. 30, 2018. The entire contents of Swedish Application No. 1851028-9 are hereby incorporated herein by reference in their entirety.
Embodiments of the present invention relate to panels that may be arranged perpendicular to each other and locked together with a mechanical locking device. The panels may be assembled and locked together to obtain a furniture product, such as a bookshelf, a cupboard, a wardrobe, a box, a drawer or a furniture component.
A furniture product provided with a mechanical locking device is known in the art, as evidenced by WO2015/038059. The furniture product comprises a first panel connected perpendicular to a second panel by a mechanical locking device comprising a flexible tongue in an insertion groove.
The above description of various known aspects is the applicant's characterization of such, and is not an admission that any of the above description is considered as prior art.
Embodiments of the present invention address a need to provide panels that may be easily assembled.
It is an object of certain aspects of the present invention to provide an improvement over the above described techniques and known art; particularly to facilitate assembling of panels configured to be assembled without the need of using any tools.
A further object of at least certain aspects of the present invention is to facilitate assembling of panels configured to be assembled with a locking device that is easy to manufacture and to use, which reduces the risk of incorrect installation thereof.
A further object of at least certain aspects of the present invention is to facilitate assembling of panels configured to be assembled in a more stable and aesthetic way.
At least some of these and other objects and advantages that will be apparent from the description have been achieved by a set comprising a first panel, a second panel and a mechanical locking device for locking the first panel to the second panel, wherein the first panel comprises a first edge surface and a first panel surface, the second panel comprises a second panel surface, the first edge surface is facing and/or is parallel with the second panel surface in a locked position of the first and the second panel, the mechanical locking device comprises at least one rod-shaped element at the first edge surface and at least one insertion groove at the second panel surface, the rod-shaped element is configured to be inserted into the insertion groove, the rod-shaped element extends at a first angle from the first edge surface, the insertion groove extends into the second panel surface at an angle from the second panel surface, the mechanical locking device further comprises at least one locking groove at the first edge surface or at the second panel surface and at least one locking part, wherein the locking groove comprises at least one locking surface extending at a third angle from the first edge surface or from the second panel surface, the locking part is configured to be inserted into the locking groove and lock against the locking surface, and the third angle is different than the first angle.
According to an aspect the mechanical locking device is configured to obtain the locked position by displacing first panel relative the second panel in an assembly direction which is essentially parallel with the first panel surface.
According to an aspect the third angle is about 45° to about 90° larger than the first angle.
According to an aspect the locking part is positioned at the first edge surface or at the second panel surface and the locking groove is positioned at the opposite second panel surface or first edge surface.
According to an aspect the first angle is within the range of about 30° to about 60°, or within the range of about 40° to about 50°, or about 45°.
According to an aspect the assembly direction is essentially parallel with at least one of the first angle and the second angle.
According to an aspect the locking part is flexible.
According to an aspect the locking part, in an unflexed/non-compressed state, is configured to be positioned partly in the locking groove.
According to an aspect the locking part comprises a spring.
According to an aspect the locking part is arranged in a locking part groove on the first edge surface or on the second panel surface.
According to an aspect the locking part, in a flexed/compressed state, is configured to be substantially positioned in the locking part groove.
According to an aspect the insertion groove and/or the locking groove is a drill hole.
According to an aspect the drill hole is a bottom-ended drill hole.
According to an aspect the rod-shaped element is arranged in a rod element groove in the first edge surface.
According to an aspect the set comprises a first panel groove on the first panel surface on the first panel and a second panel groove on the second panel surface of the second panel.
According to an aspect a width of the first panel groove is essentially the same as a width of the second panel groove.
According to an aspect the set further comprises a back panel configured to be inserted in, and optionally to cooperate with, the first and second panel groove.
According to an aspect the first panel comprises a second edge surface, the second panel comprises a third edge surface, the first panel groove is substantially parallel to the second edge surface and the second panel groove is substantially parallel to the third edge surface.
According to an aspect the first panel groove extends substantially along the entire second edge surface and the second panel groove extends essentially along the entire third edge surface.
According to an aspect the first panel groove and/or the second panel groove is bottom-ended.
According to an aspect an extension of the back panel from the first edge of the first panel, when one first panel, one second panel, and one back panel have been assembled, is less than an extension of the rod shaped element from the first edge surface.
According to an aspect the core of the first panel and/or of the second panel may be a wood-based core, such as MDF, HDF, OSB, WPC, plywood or particleboard. The core may also be a plastic core comprising thermosetting plastic or thermoplastic, e.g., vinyl, PVC, PU or PET. The plastic core may comprise fillers.
The first panel and/or the second panel may also be of solid wood.
The first panel and/or the second panel may be provided with a decorative layer, such as a foil or a veneer, on one or more surfaces.
At least some of the above identified and other objects and advantages that may be apparent from the description have been achieved by a locking device for a furniture product in accordance with the above.
These and other aspects, features and advantages of which embodiments of the invention are capable of, will be apparent and elucidated from the following description of embodiments and aspects of the present invention, reference being made to the accompanying drawings, in which
Specific embodiments of the invention will now be described with reference to the accompanying drawings. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. The terminology used in the detailed description of the embodiments illustrated in the accompanying drawings is not intended to be limiting of the invention. In the drawings, like numbers refer to like elements.
The terminology used herein is for the purpose of describing particular aspects of the disclosure only, and is not intended to limit the disclosure. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise.
In the drawings and specification, there have been disclosed exemplary aspects of the disclosure. However, many variations and modifications may be made to these aspects without substantially departing from the principles of the present disclosure. Thus, the disclosure should be regarded as illustrative rather than restrictive, and not as being limited to the particular aspects discussed above. Accordingly, although specific terms are employed, they are used in a generic and descriptive sense only and not for purposes of limitation, for example, definition of dimensions such as width or breadth or height or length or diameter depends on how exemplary aspects are depicted, hence, if depicted differently, a shown width or diameter in one depiction is a length or thickness in another depiction.
It should be noted that the word “comprising” does not necessarily exclude the presence of other elements or steps than those listed and the words “a” or “an” preceding an element do not exclude the presence of a plurality of such elements. It should further be noted that any reference signs do not limit the scope of the claims, that the example aspects may be implemented at least in part by means of both hardware and software, and that several “means”, “units” or “devices” may be represented by the same item of hardware.
The different aspects, alternatives and embodiments of the invention disclosed herein may be combined with one or more of the other aspects, alternatives and embodiments described herein. Two or more aspects may be combined.
Embodiments of the invention are shown in
The first panel 10 and the second panel 20 may be panels for a furniture product and may be a part of a frame of a furniture product.
The set may be configured for locking the first panel 10 to the second panel 20 with the first panel surface 13 perpendicular or essentially perpendicular to the second panel surface 22.
The second panel 20 may comprise a fourth edge surface 25 and the insertion groove 32 may be positioned adjacent the fourth edge surface 25. The set may be configured for locking the first panel 10 to the second panel 20 with the first panel surface 13 parallel or essentially parallel to the fourth edge surface 25.
The third angle β may be about 45° to about 90° larger than the first angle α1 and/or the second angle α2.
The locking part 34 may be positioned at the first edge surface 11 or at the second panel surface 22 and the locking groove 35 may be positioned at the opposite second panel surface 22 or the first edge surface 11.
The first angle α1 and/or the second angle α2 may be within the range of about 30° to 60°, or within the range of about 40° to 50°, or about 45°. The first angle α1 and the second angle α2 may be parallel or essentially parallel.
The assembly direction 111, 112, 114 may be essentially parallel with the first angle α1 and/or the second angle α2.
The third angle β of the locking surface 37 may be within the range of about 70° to 110°, or within the range of about 80° to 100°, or within the range of about 85° to 95°, or about 90°.
The locking part 34 may be flexible.
The locking part 34, in an unflexed/non-compressed state, may be configured to be positioned partly in the locking groove 35.
The locking part 34 may comprise a spring.
The locking part 34 may be arranged in a locking part groove 38 on the first edge surface 11 or on the second panel surface 22.
The locking part 34, in a flexed/compressed state, may be configured to be substantially positioned in the locking part groove 38.
When the first 10 and second 20 panels are assembled together the locking part 34 may be compressed and is substantially positioned in the locking part groove 38. The locking part 34 may comprise a spring that facilitates the compression of the locking part 34. When the first panel 10 is displaced in relation to the second panel 20 in the assembly direction, the rod-shaped element 31 becomes inserted into the insertion groove 32. When the locking part 34 meets the locking groove 35 the locking part 34 may expand out from the locking part groove 38 and protrude into the locking groove 35. The first panel 10 and second panel 20 will then be locked together, since the positioning of a part of the locking part 34 in the locking groove 35 hinders the first panel 10 from being displaced in relation to the second panel 20 in a direction opposite to the assembly direction.
The insertion groove 32 and/or the locking groove 35 may be a drill hole. The drill hole may be a bottom-ended drill hole.
The insertion groove 32 may have a diameter D2.
The insertion groove 32 may comprise a chamfer 60 or a rounding, which is configured to guide the rod shaped element during assembling, as shown in
The rod-shaped element 31 may be arranged in a rod element groove 36 on the first edge surface 11 on the first panel 10 or on the second panel surface 22 on the second panel 20.
The rod-shaped element 31 may have a diameter D1. The diameter D2 of the insertion groove 32 may be larger than the diameter D1 of the rod-shaped element 31. The diameter D2 of the insertion groove 32 may be about 0.3 to about 0.8 mm larger than the diameter D1 of the rod-shaped element 31 for optimal assembly.
According to an aspect the set may comprise a first panel groove 12 on the first panel surface 13 on the first panel 10 and/or a second panel groove 23 on the second panel surface 22 of the second panel 20.
The first panel groove 12 on the first panel surface 13 may comprise a width W1.
The second panel groove 23 on the second panel surface 22 may comprise a width W2.
The width W1 of the first panel groove 12 may be essentially the same as the width W2 of the second panel groove 23.
The set may further comprise a back panel 40. The back panel 40 may be configured to be inserted in, and optionally cooperate with, the first panel groove 12 and the second panel groove 23.
There may be a play between the back panel 40 and the first 12 and/or second 23 panel groove which may facilitate a displacement of an edge of the back panel 40 in the first 12 and/or second 23 panel grooves. The play may be in the range of about 0 mm to about 0.5 mm, or about 0.1 mm to about 0.2 mm.
In one aspect the width W1, W2 of the first 12 and/or second 23 panel groove minus a thickness T of the back panel 40, i.e., ΔW, is equal to or larger than an extension H of the back panel 40 in relation to the first panel 10 or second panel 20 after a first panel 10, a second panel 20 and a back panel 40 have been assembled, i.e., ΔW≥H, see
In one aspect H is less than an extension D of the rod shaped element 31 from the first edge surface 11.
The rod shaped element 31 may have an extension E along the first edge surface 11.
In one aspect, if a set comprising two of the first panel 10 and two of the second panel 20 are to be assembled, at least one panel 10, 20 may have a width W1, W2 of the first 12 and/or second 23 panel groove that allows for a displacement of the extension H of the back panel 40 within the first 12 and/or second 23 panel groove. The displacement may be equal to or larger than ΔW. In one aspect, all panels 10, 20 have the same width W1, W2 of the first 12 and second 23 panel groove to facilitate the production of the panels.
A length of the back panel 40 may designed to avoid the extension H of the back panel 40. An edge of the back panel 40 may be essentially flush with the first edge 11 surface of the first panel 10
The first panel groove 12 may extend substantially along the entire second edge surface 14 and the second panel groove 23 may extend essentially along the entire third edge surface 24.
The first panel groove 12 and/or the second panel groove 23 may be bottom-ended.
The first 12 and/or second 23 panel groove may be formed by mechanical cutting, such as milling or sawing.
The first panel groove 12 may be formed in the first panel surface 13 and in a core of the first panel 10. The second panel groove 23 may be formed in the second panel surface 22 and in a core of the second panel 20.
The first edge surface 11 may comprise two or more of said rod-shaped element 31 and the second panel surface 22 may comprise two or more of said insertion groove 32, and vice versa, which may be arranged linearly, wherein each of the rod-shaped elements 31 is configured to be inserted into one insertion groove 32.
A locking of the first panel 10 to the second panel 20 in a direction which is parallel with the second panel surface 22 may be obtained by the locking part 34 being inserted into the locking groove 35 and locking against the locking surface 37. The locking surface extends at the third angle β from the first edge surface 11, where third angle β is about 45° to about 90° larger than the first angle α1.
A cross cut of the insertion groove 32, in a plane parallel to the second panel surface 22, may have a shape that matches a cross cut of the rod-shaped element 31, in a plane parallel to the first edge surface 11. An advantage of this may be that an improved locking of the first panel 10 to the second panel 20 is obtained and that the assembly of the set of panels is done easily.
The rod-shaped element 31 and the insertion groove 32 are disclosed more in detail in
According to an aspect the rod-shaped element 31 is configured to be inserted in the rod element groove 36 on the second panel surface 22.
According to an aspect the rod-shaped element 31 may be configured to be attached in the rod element groove 36 by friction.
According to an aspect the rod-shaped element 31 may be configured to be glued in the rod element groove 36.
According to an aspect the rod-shaped element 31, the rod element groove 36 and the insertion groove 32 may have a substantially circular shape, although other shapes, such as triangular, rectangular, square, etc. are possible.
According to one aspect the locking groove 35 and the locking part 34 may have a substantially circular shape, although other shapes, such as triangular, rectangular, square, etc. are possible.
According to an aspect, which is shown in
According to a further aspect, a first edge surface 11 may have a combination of at least one element 31 and at least one insertion groove 32. A corresponding second panel surface 22 may have a corresponding combination of at least one insertion groove 32 and at least one element 31.
According to an aspect, which is shown in
The difference between the first distance and the second distance may be in the range of about 0.1 mm to about 0.5 mm.
According to an aspect the rod-shaped element 31 is made from one or more of a wood based material, a polymer material, which may comprise reinforcement, such as glass fibre or a metal.
According to an aspect the rod shaped element 31 may have a waxed surface to facilitate assembly.
According to an aspect the rod-shaped element 31 may be configured to cooperate, in a locked position, with the bottom surface of the insertion groove 32.
The sidewalls of the insertion groove 32 and the locking groove 35 may comprise material of the core of the first panel 10 or the second panel 20, dependent on in which panel they are made. According to an aspect they may also be enforced with, e.g., metal or glass fibre.
According to an aspect the locking groove 35 may be impregnated/reinforced with a liquid.
According to an aspect the first panel 10 and the second panel 20 may be assembled by a displacement of the first panel 10 relative the second panel 20 in an assembly direction which is essentially parallel with the first panel surface 13 as shown in
According to an aspect the first panel 10 may comprise two or more of said first edge surface 11 according to the above. Put in another way, one or more of said rod-shaped elements 31 may be positioned at two or more of the edges of the first panel 10, as disclosed in
According to an aspect the second panel 20 may comprise two or more of said fourth edge surface 25 according to the above. Put in another way, one or more of said insertion grooves 32 may be positioned adjacent two or more of the edges of the second panel 10, as disclosed in
According to an aspect, as shown in
A left embodiment of the of the first panel 10 may be assembled to a bottom embodiment of the second panel 20 by displacing the left embodiment of the first panel 10 relative the bottom embodiment of the second panel 20 in the assembly direction 111. A right embodiment of the of the first panel 10 may be assembled to the bottom embodiment of the second panel 20 by displacing the right embodiment of the first panel 10 relative the bottom embodiment of the second panel 20 in the assembly direction 112. An embodiment of the back panel 40 may be assembled to the left and right embodiment of the first panel 10 and the bottom embodiment of the second panel 20 by displacing the embodiment of the back panel 40 in an assembly direction 113 which is essentially perpendicular to the second panel surface 22 of the bottom embodiment of the second panel 20. A top embodiment of the second panel 20 may be assembled to the left and right embodiment of the first panel 10 and the embodiment of the back panel 40 by displacing the top embodiment of the second panel 20 in the assembly direction 114.
According to an aspect, as shown in
A left embodiment of the of the first panel 10 may be assembled to a bottom embodiment of the second panel 20 by displacing the left embodiment of the first panel 10 relative the bottom embodiment of the second panel 20 in the assembly direction 111. A right embodiment of the of the first panel 10 may be assembled to the bottom embodiment of the second panel 20 by displacing the right embodiment of the first panel 10 relative the bottom embodiment of the second panel 20 in the assembly direction 112. A top embodiment of the second panel 20 may be assembled to the left and right embodiment of the first panel 10 and the embodiment of the back panel 40 by displacing the top embodiment of the second panel 20 in the assembly direction 114.
A length 93 of the back panel 40 which in the locked position may be inserted in the panel groove 12 of the first panel 10 may be essentially the same or greater than a length 94 of the first panel 10 at the second edge surface 14 of the first panel. The length 93 of the back panel 40 may be equal to the length 94 of the first panel 10 plus about half the height H1 of the panel groove 12 to about two times the height H1 of the panel groove 12 or equal to the length 94 of the first panel 10 plus the height H1 of the panel groove 12.
The height H2 of the panel groove 23 of the lower second panel groove may be greater than the height H2 of the panel groove 23 of the upper second panel groove. The set may be rotated such that the gravity causes the displacement of the back panel to obtain the position in which the upper edge 87 of the back panel 40 is within the panel groove 23 of the upper second panel 20.
The back panel may be displaced by gravity or by hand and the position in which the upper edge 87 of the back panel 40 is within the panel groove 23 of the upper second panel 20 may be maintained by arranging a positioning element 92 between the panel and the panel groove 12 of the first panel and/or between the back panel and the panel groove 23 of the second panel.
Embodiments of the first panel groove 12 may comprise a width W1 which is essentially the same as a thickness T of the back panel 40. A part of the first panel groove 12 may be wider which may allow an embodiment of the positioning element 50 to be positioned between the back panel and the first panel groove 12 to maintain the position in which the upper edge 87 of the back panel 40 is within the panel groove 23 of the upper second panel 20.
Embodiments of the second panel groove 24 may comprise a width W2 which is essentially the same as a thickness T of the back panel 40. A part of the second panel groove 23 may be wider which may allow an embodiment of the positioning element 50 to be positioned between the back panel 40 and the second panel groove 23 to maintain the position in which the upper edge 87 of the back panel 40 is within the panel groove 23 of the upper second panel 20.
The back panel may be displaceable and the position in which the upper edge 87 of the back panel 40 is within the panel groove 23 of the upper second panel 20 may be maintained by an embodiment of the locking device 4 disclosed in WO2019/125292 or WO2019/125291. The entire contents of WO2019/125292 and WO2019/125291 are hereby incorporated herein by reference in their entirety.
The core of the first panel 10 and/or of the second panel 20 may be a wood-based core, such as MDF, HDF, OSB, WPC, plywood or particleboard. The core may also be a plastic core comprising thermosetting plastic or thermoplastic, e.g., vinyl, PVC, PU or PET. The plastic core may comprise fillers.
The first panel 10 and/or the second panel 20 may also be of solid wood.
The first panel 10 and/or the second panel 20 may be provided with a decorative layer, such as a foil or a veneer, on one or more surfaces.
According to an aspect the set of panels are resilient panels. The resilient panels may comprise a core comprising thermoplastic material. The thermoplastic material may be foamed.
The thermoplastic material may comprise polyvinyl chloride (PVC), polyester, polypropylene (PP), polyethylene (PE), polystyrene (PS), polyurethane (PU), polyethylene terephthalate (PET), polyacrylate, methacrylate, polycarbonate, polyvinyl butyral, polybutylene terephthalate, or a combination thereof. The core may be formed of several layers.
The aspects described above may comprise a decorative layer, such as a decorative foil comprising a thermoplastic material. The thermoplastic material of the decorative layer may be or comprise polyvinyl chloride (PVC), polyester, polypropylene (PP), polyethylene (PE), polystyrene (PS), polyurethane (PU), polyethylene terephthalate (PET), polyacrylate, methacrylate, polycarbonate, polyvinyl butyral, polybutylene terephthalate, or a combination thereof. The decorative foil may be printed, for example by direct printing, rotogravure, or digital printing. According to an aspect the decorative layer comprises melamine, a high pressure laminate (HPL) or a veneer.
The aspects described above may comprise a wear layer such as a film or foil. The wear layer may comprise thermoplastic material. The thermoplastic material may be polyvinyl chloride (PVC), polyester, polypropylene (PP), polyethylene (PE), polystyrene (PS), polyurethane (PU), polyethylene terephthalate (PET), polyacrylate, methacrylate, polycarbonate, polyvinyl butyral, polybutylene terephthalate, or a combination thereof.
The aspects described above may comprise a wood base core, such as HDF, MDF, plywood, particleboard, OSB or Masonite.
The different aspects, embodiments and alternatives described above may be combined with one or more of the other described aspects, embodiments and alternatives.
1. A set comprising a first panel (10), a second panel (20) and a mechanical locking device for locking the first panel (10) to the second panel (20), wherein
2. The set as in embodiment 1, wherein the assembly direction (111, 112, 114) is essentially parallel with at least one of the first angle (α1) and the second angle (α2).
3. The set as claimed in embodiment 1 or 2, wherein the third angle (β) is about 45° to about 90° larger than the first angle (α1).
4. The set as in any one of the preceding embodiments, wherein the third angle (β) of the locking surface (37) is in the range of about 70° to 110°, or within the range of about 80° to 100°, or within the range of about 85° to 95°, or about 90°.
5. The set as in any one of the preceding embodiments, wherein the locking part (34) is flexible.
6. The set as in any one of the preceding embodiments, wherein the locking part (34), in an unflexed/non-compressed state, is configured to be positioned partly in the locking groove (35).
7. The set as in any one of the preceding embodiments, wherein the locking part (34) comprises a spring.
8. The set as in any one of the preceding embodiments, wherein the locking part (34) is arranged in a locking part groove (38) on the first edge surface (11) or at the second panel surface (22).
9. The set as in claim 8, wherein the locking part (34), in a flexed/compressed state, is configured to be substantially positioned in the locking part groove (38).
10. The set as in any one of the preceding embodiments, wherein at least one of the insertion groove (32) and the locking groove (35) is a drill hole.
11. The set as in claim 10, wherein the drill hole is a bottom-ended drill hole.
12. The set as in any one of the preceding embodiments, wherein the rod-shaped element (31) is arranged in a rod element groove (36) in the first edge surface (11).
13. The set as in any one of the preceding embodiments, wherein set comprises a first panel groove (12) on the first panel surface (13) of the first panel (10), and a second panel groove (23) on the second panel surface (22) of the second panel (20).
14. The set as in claim 13, wherein a width (W1) of the first panel groove (12) is essentially the same as the width (W2) of the second panel groove (23).
15. The set as in any of embodiments 13 to 14, wherein the set further comprises a back panel (40) configured to be inserted in, and optionally to cooperate with, the first and second panel groove (12, 23).
16. The set as in any of embodiments 13 to 15, wherein the first panel (10) comprises a second edge surface (14), the second panel (20) comprises a third edge surface (24), the first panel groove (12) is substantially parallel to the second edge surface (14) and the second panel groove (23) is substantially parallel to the third edge surface (24).
17. The set as in any of embodiments 13 to 16, wherein the first panel groove (12) extends substantially along the entire second edge surface (14) and the second panel groove (23) extends essentially along the entire third edge surface (24).
18. The set as in any of embodiments 13 to 17, wherein at least one of the first panel groove (12) and the second panel groove (23) is bottom-ended.
19. The set as in any of embodiments 16 to 18, wherein an extension (H) of the back panel (40) from the first edge (11) of the first panel (10), when one first panel, one second panel and one back panel have been assembled, is less than an extension of the rod shaped element (31) from the first edge surface (11) of the first panel (10).
Number | Date | Country | Kind |
---|---|---|---|
1851028-9 | Aug 2018 | SE | national |
Number | Name | Date | Kind |
---|---|---|---|
291032 | Cleland | Jan 1884 | A |
634581 | Miller | Oct 1899 | A |
701000 | Ahrens | May 1902 | A |
861911 | Stewart | Jul 1907 | A |
881673 | Ellison | Mar 1908 | A |
1533099 | Carroll | Apr 1925 | A |
1534468 | Shea, Jr. | Apr 1925 | A |
1800386 | Hoffman | Apr 1931 | A |
1800387 | Greist | Apr 1931 | A |
1802245 | Foretich | Apr 1931 | A |
1954242 | Heppenstall | Apr 1934 | A |
2360451 | Stone | Oct 1944 | A |
2362904 | Kramer | Nov 1944 | A |
2496184 | Von Canon | Jan 1950 | A |
2681483 | Morawetz | Jun 1954 | A |
3002630 | Heisser | Oct 1961 | A |
3195968 | Freeman | Jul 1965 | A |
3284152 | Schörghuber | Nov 1966 | A |
3313054 | Madey | Apr 1967 | A |
3347610 | Pilliod | Oct 1967 | A |
3410441 | Rhyne | Nov 1968 | A |
3722704 | Piretti | Mar 1973 | A |
3722971 | Zeischegg | Mar 1973 | A |
3742807 | Manning | Jul 1973 | A |
3765465 | Gulistan | Oct 1973 | A |
3784271 | Schreiber | Jan 1974 | A |
3884002 | Logie | May 1975 | A |
3885845 | Krieks | May 1975 | A |
3981118 | Johnson et al. | Sep 1976 | A |
4089614 | Harley | May 1978 | A |
4099887 | MacKenroth | Jul 1978 | A |
4116510 | Franco | Sep 1978 | A |
4142271 | Busse | Mar 1979 | A |
4211379 | Morgan et al. | Jul 1980 | A |
4222544 | Crowder | Sep 1980 | A |
4279397 | Larsson | Jul 1981 | A |
4299067 | Bertschi | Nov 1981 | A |
4308961 | Kunce | Jan 1982 | A |
4324517 | Dey | Apr 1982 | A |
4403886 | Haeusler | Sep 1983 | A |
4405253 | Stockum | Sep 1983 | A |
4509648 | Govang | Apr 1985 | A |
4593734 | Wallace | Jun 1986 | A |
4595105 | Gold | Jun 1986 | A |
4597122 | Handler | Jul 1986 | A |
4615448 | Johnstonbaugh | Oct 1986 | A |
4629076 | Amstutz et al. | Dec 1986 | A |
4750794 | Vegh | Jun 1988 | A |
4752150 | Salice | Jun 1988 | A |
4815908 | Duran et al. | Mar 1989 | A |
4817900 | Whittington et al. | Apr 1989 | A |
4844266 | Small et al. | Jul 1989 | A |
4883331 | Mengel | Nov 1989 | A |
4886326 | Kuzyk | Dec 1989 | A |
4888933 | Guomundsson | Dec 1989 | A |
4891897 | Gieske et al. | Jan 1990 | A |
4909581 | Haheeb | Mar 1990 | A |
4938625 | Matsui | Jul 1990 | A |
4944416 | Petersen et al. | Jul 1990 | A |
4961295 | Kosch, Sr. et al. | Oct 1990 | A |
5004116 | Cattarozzi | Apr 1991 | A |
5018323 | Clausen | May 1991 | A |
5109993 | Hutchison | May 1992 | A |
5114265 | Grisley | May 1992 | A |
5121578 | Holz | Jun 1992 | A |
5125518 | Ward | Jun 1992 | A |
5138803 | Grossen | Aug 1992 | A |
5209556 | Anderson | May 1993 | A |
5212925 | McClinton | May 1993 | A |
5299509 | Ballard | Apr 1994 | A |
5360121 | Sothman | Nov 1994 | A |
5375802 | Branham, II | Dec 1994 | A |
5423155 | Bauer | Jun 1995 | A |
5451102 | Chuan | Sep 1995 | A |
5458433 | Stastny | Oct 1995 | A |
5471804 | Winter, IV | Dec 1995 | A |
5475960 | Lindal | Dec 1995 | A |
5499667 | Nakanishi | Mar 1996 | A |
5499886 | Short et al. | Mar 1996 | A |
5507331 | Nakanishi | Apr 1996 | A |
5527103 | Pittman | Jun 1996 | A |
5658086 | Brokaw et al. | Aug 1997 | A |
5711115 | Wirt | Jan 1998 | A |
5775521 | Tisbo | Jul 1998 | A |
5810505 | Henriott | Sep 1998 | A |
5893617 | Lee | Apr 1999 | A |
5941026 | Eisenreich | Aug 1999 | A |
5944294 | Baer | Aug 1999 | A |
5950389 | Porter | Sep 1999 | A |
6045290 | Nocievski | Apr 2000 | A |
6050426 | Leurdijk | Apr 2000 | A |
6142436 | Thurston et al. | Nov 2000 | A |
6312186 | Röck et al. | Nov 2001 | B1 |
6349507 | Muellerleile | Feb 2002 | B1 |
6363645 | Hunter | Apr 2002 | B1 |
6413007 | Lambright | Jul 2002 | B1 |
6418683 | Martensson | Jul 2002 | B1 |
6491172 | Chance | Dec 2002 | B2 |
6505452 | Hannig | Jan 2003 | B1 |
6547086 | Harvey | Apr 2003 | B1 |
6578498 | Draudt et al. | Jun 2003 | B1 |
6675979 | Taylor | Jan 2004 | B2 |
D486676 | Campbell et al. | Feb 2004 | S |
6769219 | Schwitte et al. | Aug 2004 | B2 |
6772890 | Campbell et al. | Aug 2004 | B2 |
6827028 | Callaway | Dec 2004 | B1 |
6971614 | Fischer et al. | Dec 2005 | B2 |
7127860 | Pervan | Oct 2006 | B2 |
7223045 | Migli | May 2007 | B2 |
7228977 | Perkins et al. | Jun 2007 | B2 |
7300120 | Shin | Nov 2007 | B2 |
7451535 | Wells et al. | Nov 2008 | B2 |
7451578 | Hannig | Nov 2008 | B2 |
7584583 | Bergelin et al. | Sep 2009 | B2 |
7614350 | Tuttle et al. | Nov 2009 | B2 |
7621092 | Groeke et al. | Nov 2009 | B2 |
7641414 | Joyce | Jan 2010 | B1 |
7717278 | Kao | May 2010 | B2 |
7721503 | Pervan et al. | May 2010 | B2 |
7793450 | Chasmer et al. | Sep 2010 | B2 |
7818939 | Bearinger | Oct 2010 | B2 |
7998549 | Susnjara | Aug 2011 | B2 |
8033074 | Pervan | Oct 2011 | B2 |
8038363 | Hannig | Oct 2011 | B2 |
8042311 | Pervan | Oct 2011 | B2 |
8146754 | Apgood | Apr 2012 | B2 |
8220217 | Muehlebach | Jul 2012 | B2 |
8234830 | Pervan | Aug 2012 | B2 |
8365499 | Nilsson et al. | Feb 2013 | B2 |
8387327 | Pervan | Mar 2013 | B2 |
8464408 | Hazzard | Jun 2013 | B2 |
8495849 | Pervan | Jul 2013 | B2 |
8505257 | Boo et al. | Aug 2013 | B2 |
8544230 | Pervan | Oct 2013 | B2 |
8596013 | Boo | Dec 2013 | B2 |
8602227 | McDonald | Dec 2013 | B1 |
8615952 | Engström | Dec 2013 | B2 |
8713886 | Pervan | May 2014 | B2 |
8745952 | Perra | Jun 2014 | B2 |
8764137 | Fehre | Jul 2014 | B2 |
8776473 | Pervan | Jul 2014 | B2 |
8833028 | Whispell et al. | Sep 2014 | B2 |
8864407 | Sorum | Oct 2014 | B1 |
8882416 | Baur et al. | Nov 2014 | B2 |
8887468 | Håkansson et al. | Nov 2014 | B2 |
9175703 | Maertens | Nov 2015 | B2 |
9216541 | Boo | Dec 2015 | B2 |
9290948 | Cappelle et al. | Mar 2016 | B2 |
9375085 | Derelöv | Jun 2016 | B2 |
9538842 | Håkansson et al. | Jan 2017 | B2 |
9655442 | Boo et al. | May 2017 | B2 |
9700157 | Keyvanloo | Jul 2017 | B2 |
9714672 | Derelöv et al. | Jul 2017 | B2 |
9723923 | Derelöv | Aug 2017 | B2 |
9726210 | Derelöv et al. | Aug 2017 | B2 |
9745756 | Hannig | Aug 2017 | B2 |
9758973 | Segaert | Sep 2017 | B2 |
9763528 | Lung | Sep 2017 | B2 |
9771964 | Leveen | Sep 2017 | B2 |
9809983 | Trudel | Nov 2017 | B2 |
9945121 | Derelöv | Apr 2018 | B2 |
10034541 | Boo et al. | Jul 2018 | B2 |
10202996 | Håkansson et al. | Feb 2019 | B2 |
10378570 | Broughton | Aug 2019 | B2 |
10415613 | Boo | Sep 2019 | B2 |
10448739 | Derelöv et al. | Oct 2019 | B2 |
10451097 | Brännström et al. | Oct 2019 | B2 |
10486245 | Fridlund | Nov 2019 | B2 |
10506875 | Boo et al. | Dec 2019 | B2 |
10544818 | Fridlund | Jan 2020 | B2 |
10548397 | Derelöv et al. | Feb 2020 | B2 |
10669716 | Derelöv | Jun 2020 | B2 |
10670064 | Derelöv | Jun 2020 | B2 |
10724564 | Derelöv | Jul 2020 | B2 |
10731688 | Brännström et al. | Aug 2020 | B2 |
10736416 | Derelöv et al. | Aug 2020 | B2 |
10830266 | Fridlund | Nov 2020 | B2 |
10830268 | Boo | Nov 2020 | B2 |
10871179 | Håkansson et al. | Dec 2020 | B2 |
10876562 | Pervan | Dec 2020 | B2 |
10876563 | Derelöv et al. | Dec 2020 | B2 |
10968936 | Boo et al. | Apr 2021 | B2 |
11076691 | Boo | Aug 2021 | B2 |
11083287 | Boo et al. | Aug 2021 | B2 |
11098484 | Derelöv | Aug 2021 | B2 |
11137007 | Fridlund | Oct 2021 | B2 |
11246415 | Derelöv et al. | Feb 2022 | B2 |
11272783 | Derelöv | Mar 2022 | B2 |
20020170258 | Schwitte et al. | Nov 2002 | A1 |
20040165946 | Areh et al. | Aug 2004 | A1 |
20050042027 | Migli | Feb 2005 | A1 |
20050236544 | Mancino | Oct 2005 | A1 |
20050247653 | Brooks | Nov 2005 | A1 |
20060091093 | Armari | May 2006 | A1 |
20060101769 | Pervan et al. | May 2006 | A1 |
20060180561 | Wisnoski et al. | Aug 2006 | A1 |
20060236642 | Pervan | Oct 2006 | A1 |
20060273085 | Casto | Dec 2006 | A1 |
20070006543 | Engström | Jan 2007 | A1 |
20070028547 | Grafenauer et al. | Feb 2007 | A1 |
20080010937 | Pervan et al. | Jan 2008 | A1 |
20080066415 | Pervan | Mar 2008 | A1 |
20080193209 | Henderson | Aug 2008 | A1 |
20080216435 | Nolan | Sep 2008 | A1 |
20080236088 | Hannig et al. | Oct 2008 | A1 |
20080244882 | Woxman et al. | Oct 2008 | A1 |
20090014401 | Tallman | Jan 2009 | A1 |
20090064624 | Sokol | Mar 2009 | A1 |
20100028592 | Barkdoll et al. | Feb 2010 | A1 |
20100083603 | Goodwin | Apr 2010 | A1 |
20100104354 | Spalding | Apr 2010 | A1 |
20100173122 | Susnjara | Jul 2010 | A1 |
20100289389 | Crabtree, II | Nov 2010 | A1 |
20110023303 | Pervan et al. | Feb 2011 | A1 |
20110225921 | Schulte | Sep 2011 | A1 |
20110225922 | Pervan et al. | Sep 2011 | A1 |
20110280655 | Maertens et al. | Nov 2011 | A1 |
20110283650 | Pervan et al. | Nov 2011 | A1 |
20120009383 | Hardesty | Jan 2012 | A1 |
20120027967 | Maertens et al. | Feb 2012 | A1 |
20120073235 | Hannig | Mar 2012 | A1 |
20120124932 | Schulte et al. | May 2012 | A1 |
20120145845 | Hightower | Jun 2012 | A1 |
20120180416 | Perra et al. | Jul 2012 | A1 |
20120279161 | Håkansson et al. | Nov 2012 | A1 |
20120286637 | Fehre | Nov 2012 | A1 |
20130014463 | Pervan | Jan 2013 | A1 |
20130048632 | Chen | Feb 2013 | A1 |
20130071172 | Maertens et al. | Mar 2013 | A1 |
20130081349 | Pervan | Apr 2013 | A1 |
20130097846 | Pettigrew | Apr 2013 | A1 |
20130111845 | Pervan | May 2013 | A1 |
20130170904 | Cappelle et al. | Jul 2013 | A1 |
20130232905 | Pervan | Sep 2013 | A2 |
20130287484 | Phillips | Oct 2013 | A1 |
20140013919 | Gerke et al. | Jan 2014 | A1 |
20140055018 | Shein et al. | Feb 2014 | A1 |
20140111076 | Devos | Apr 2014 | A1 |
20140286701 | Sauer | Sep 2014 | A1 |
20140294498 | Logan | Oct 2014 | A1 |
20150034522 | Itou et al. | Feb 2015 | A1 |
20150035422 | Håkansson et al. | Feb 2015 | A1 |
20150078807 | Brännström et al. | Mar 2015 | A1 |
20150078819 | Derelöv et al. | Mar 2015 | A1 |
20150196118 | Derelöv | Jul 2015 | A1 |
20150198191 | Boo | Jul 2015 | A1 |
20150230600 | Schulte | Aug 2015 | A1 |
20150368896 | Schulte | Dec 2015 | A1 |
20160000220 | Devos | Jan 2016 | A1 |
20160007751 | Derelöv | Jan 2016 | A1 |
20160145029 | Ranade et al. | May 2016 | A1 |
20160174704 | Boo et al. | Jun 2016 | A1 |
20160186925 | Bettin | Jun 2016 | A1 |
20160192775 | Andersson | Jul 2016 | A1 |
20160270531 | Derelöv | Sep 2016 | A1 |
20170079433 | Derelöv et al. | Mar 2017 | A1 |
20170089379 | Pervan | Mar 2017 | A1 |
20170097033 | Håkansson et al. | Apr 2017 | A1 |
20170159291 | Derelöv | Jun 2017 | A1 |
20170208938 | Derelöv et al. | Jul 2017 | A1 |
20170227031 | Boo | Aug 2017 | A1 |
20170227032 | Fridlund | Aug 2017 | A1 |
20170227035 | Fridlund | Aug 2017 | A1 |
20170234346 | Fridlund | Aug 2017 | A1 |
20170298973 | Derelöv | Oct 2017 | A1 |
20170360193 | Boo et al. | Dec 2017 | A1 |
20180080488 | Derelöv | Mar 2018 | A1 |
20180087552 | Derelöv et al. | Mar 2018 | A1 |
20180112695 | Boo et al. | Apr 2018 | A1 |
20180119717 | Derelöv | May 2018 | A1 |
20180202160 | Derelöv | Jul 2018 | A1 |
20180283430 | Leistert | Oct 2018 | A1 |
20180328396 | Fransson et al. | Nov 2018 | A1 |
20190113061 | Håkansson et al. | Apr 2019 | A1 |
20190166989 | Boo et al. | Jun 2019 | A1 |
20190191870 | Derelöv | Jun 2019 | A1 |
20190195256 | Derelöv | Jun 2019 | A1 |
20190289999 | Derelöv et al. | Sep 2019 | A1 |
20190320793 | Boo | Oct 2019 | A1 |
20190323532 | Boo | Oct 2019 | A1 |
20190323533 | Boo | Oct 2019 | A1 |
20190323534 | Derelöv | Oct 2019 | A1 |
20190323535 | Derelöv | Oct 2019 | A1 |
20200003242 | Brännström et al. | Jan 2020 | A1 |
20200055126 | Fridlund | Feb 2020 | A1 |
20200069049 | Derelöv et al. | Mar 2020 | A1 |
20200102978 | Fridlund | Apr 2020 | A1 |
20200121076 | Derelöv et al. | Apr 2020 | A1 |
20200214447 | Derelöv et al. | Jul 2020 | A1 |
20200300284 | Pervan | Sep 2020 | A1 |
20200337455 | Boo et al. | Oct 2020 | A1 |
20200340513 | Derelöv | Oct 2020 | A1 |
20210079650 | Derelöv | Mar 2021 | A1 |
20210148392 | Brännström et al. | May 2021 | A1 |
20210180630 | Bruno et al. | Jun 2021 | A1 |
20210190112 | Derelöv | Jun 2021 | A1 |
20210207635 | Håkansson et al. | Jul 2021 | A1 |
20210222716 | Derelöv et al. | Jul 2021 | A1 |
20210262507 | Svensson et al. | Aug 2021 | A1 |
20210262508 | Svensson et al. | Aug 2021 | A1 |
20210276108 | Derelöv et al. | Sep 2021 | A1 |
20210285480 | Derelöv et al. | Sep 2021 | A1 |
20220049735 | Meijer | Feb 2022 | A1 |
Number | Date | Country |
---|---|---|
2 631 998 | Nov 2008 | CA |
365 507 | Nov 1962 | CH |
685 276 | May 1995 | CH |
696 889 | Jan 2008 | CH |
698 988 | Dec 2009 | CH |
705 082 | Dec 2012 | CH |
101099618 | Jan 2008 | CN |
102 917 616 | Feb 2013 | CN |
203424576 | Feb 2014 | CN |
1107910 | May 1961 | DE |
24 14 104 | Oct 1975 | DE |
25 14 357 | Oct 1975 | DE |
31 03 281 | Aug 1982 | DE |
228 872 | Oct 1985 | DE |
42 29 115 | Mar 1993 | DE |
94 17 168 | Feb 1995 | DE |
198 31 936 | Feb 1999 | DE |
298 20 031 | Feb 1999 | DE |
198 05 538 | Aug 1999 | DE |
203 04 761 | Apr 2004 | DE |
299 24 630 | May 2004 | DE |
20 2005 019 986 | Feb 2006 | DE |
20 2004 017 486 | Apr 2006 | DE |
20 2009 008 825 | Oct 2009 | DE |
10 2008 035 293 | Feb 2010 | DE |
10 2009 041 142 | Mar 2011 | DE |
10 2011 057 018 | Jun 2013 | DE |
10 2013 008 595 | Nov 2013 | DE |
10 2015 103 429 | Oct 2015 | DE |
10 2014 110 124 | Jan 2016 | DE |
20 2017 101 856 | Apr 2017 | DE |
0 060 203 | Sep 1982 | EP |
0 357 129 | Mar 1990 | EP |
0 362 968 | Apr 1990 | EP |
0 675 332 | Oct 1995 | EP |
0 871 156 | Oct 1998 | EP |
1 048 423 | Nov 2000 | EP |
1 048 423 | May 2005 | EP |
1 650 375 | Apr 2006 | EP |
1 671 562 | Jun 2006 | EP |
1 650 375 | Sep 2006 | EP |
1 922 954 | May 2008 | EP |
2 017 403 | Jan 2009 | EP |
1 922 954 | Jul 2009 | EP |
2 333 353 | Jun 2011 | EP |
1 863 984 | Nov 2011 | EP |
2 487 373 | Aug 2012 | EP |
3 031 998 | Jun 2016 | EP |
2 517 187 | Jun 1983 | FR |
2 597 173 | Oct 1987 | FR |
2 602 013 | Jan 1988 | FR |
3 044 723 | Jun 2017 | FR |
245332 | Jan 1926 | GB |
1 022 377 | Mar 1966 | GB |
2 163 825 | Mar 1986 | GB |
2 315 988 | Feb 1998 | GB |
2 445 954 | Jul 2008 | GB |
2 482 213 | Jan 2012 | GB |
2 520 927 | Jun 2015 | GB |
S53-113160 | Sep 1978 | JP |
H06-22606 | Mar 1994 | JP |
2003-239921 | Aug 2003 | JP |
10-1147274 | May 2012 | KR |
2014-0042314 | Apr 2014 | KR |
WO 8707339 | Dec 1987 | WO |
WO 9007066 | Jun 1990 | WO |
WO 9922150 | May 1999 | WO |
WO 9941508 | Aug 1999 | WO |
WO 0066856 | Nov 2000 | WO |
WO 0153628 | Jul 2001 | WO |
WO 02055809 | Jul 2002 | WO |
WO 02055810 | Jul 2002 | WO |
WO 03083234 | Oct 2003 | WO |
WO 2004079130 | Sep 2004 | WO |
WO 2005068747 | Jul 2005 | WO |
WO 2006043893 | Apr 2006 | WO |
WO 2006104436 | Oct 2006 | WO |
WO 2007015669 | Feb 2007 | WO |
WO 2007015669 | Feb 2007 | WO |
WO 2008004960 | Jan 2008 | WO |
WO 2008004960 | Jan 2008 | WO |
WO 2008004960 | Jan 2008 | WO |
WO 2008017281 | Feb 2008 | WO |
WO 2008150234 | Dec 2008 | WO |
WO 2009136195 | Nov 2009 | WO |
WO 2010087752 | Aug 2010 | WO |
WO 2011151758 | Dec 2011 | WO |
WO 2011151758 | Dec 2011 | WO |
WO 2012095454 | Jul 2012 | WO |
WO 2012154113 | Nov 2012 | WO |
WO 2013009257 | Jan 2013 | WO |
WO 2013025163 | Feb 2013 | WO |
WO 2013080160 | Jun 2013 | WO |
WO 2013118075 | Aug 2013 | WO |
WO 2014072080 | May 2014 | WO |
WO 2014121410 | Aug 2014 | WO |
WO 2015015603 | Feb 2015 | WO |
WO 2015038059 | Mar 2015 | WO |
WO 2015105449 | Jul 2015 | WO |
WO 2015105450 | Jul 2015 | WO |
WO 2015105451 | Jul 2015 | WO |
WO 2016099396 | Jun 2016 | WO |
WO 2016175701 | Nov 2016 | WO |
WO 2016187533 | Nov 2016 | WO |
WO 2017131574 | Aug 2017 | WO |
WO 2017138874 | Aug 2017 | WO |
WO 2018004435 | Jan 2018 | WO |
WO 2018080387 | May 2018 | WO |
WO 2019125291 | Jun 2019 | WO |
WO 2019125292 | Jun 2019 | WO |
Entry |
---|
U.S. Appl. No. 16/856,765, filed Apr. 23, 2020, Peter Derelöv. |
U.S. Appl. No. 17/154,344, filed Jan. 21, 2021, Peter Derelöv and Johan Svensson. |
U.S. Appl. No. 17/173,823, filed Feb. 11, 2021, Peter Derelöv and Johan Svensson. |
U.S. Appl. No. 17/185,428, filed Feb. 25, 2021, Johan Svensson and Peter Derelöv. |
U.S. Appl. No. 17/185,403, filed Feb. 25, 2021, Johan Svensson and Peter Derelöv. |
U.S. Appl. No. 14/573,572, filed Dec. 17, 2014, Christian Boo, (Cited herein as US Patent Application Publication No. 2015/0198191 A1 of Jul. 16, 2015). |
U.S. Appl. No. 15/308,872, filed Nov. 4, 2016, Darko Pervan, (Cited herein as US Patent Application Publication No. 2017/0089379 A1 of Mar. 30, 2017). |
U.S. Appl. No. 15/432,190, filed Feb. 14, 2017, Magnus Fridlund, (Cited herein as US Patent Application Publication No. 2017/0234346 A1 of Aug. 17, 2017). |
U.S. Appl. No. 15/642,757, filed Jul. 6, 2017, Peter Derelöv, (Cited herein as US Patent Application Publication No. 2017/0298973 A1 of Oct. 19, 2017). |
U.S. Appl. No. 15/646,714, filed Jul. 11, 2017, Peter Derelöv, Hans Brännström and Agne Pålsson, (Cited herein as US Patent Application Publication No. 2018/0087552 A1 of Mar. 29, 2018). |
U.S. Appl. No. 15/562,254, filed Sep. 27, 2017, Peter Derelöv, (Cited herein as US Patent Application Publication No. 2018/0080488 A1 of Mar. 22, 2018). |
U.S. Appl. No. 15/567,507, filed Oct. 18, 2017, Christian Boo, Peter Derelöv and Agne Pålsson, (Cited herein as US Patent Application Publication No. 2018/0112695 A1 of Apr. 26, 2018). |
U.S. Appl. No. 15/794,491, filed Oct. 26, 2017, Peter Derelöv, (Cited herein as US Patent Application Publication No. 2018/0119717 A1 of May 3, 2018). |
U.S. Appl. No. 15/923,701, filed Mar. 16, 2018, Peter Derelöv, (Cited herein as US Patent Application Publication No. 2018/0202160 A1 of Jul. 19, 2018). |
U.S. Appl. No. 15/956,949, filed Apr. 19, 2018, Peter Derelöv, (Cited herein as US Patent Application Publication No. 2019/0323535 A1 of Oct. 24, 2019). |
U.S. Appl. No. 15/978,630, filed May 14, 2018, Jonas Fransson, Niclas Håkansson and Agne Pålsson, (Cited herein as US Patent Application Publication No. 2018/0328396 A1 of Nov. 15, 2018). |
U.S. Appl. No. 16/228,975, filed Dec. 21, 2018, Niclas Håkansson and Darko Pervan, (Cited herein as US Patent Application Publication No. 2019/0113061 A1 of Apr. 18, 2019). |
U.S. Appl. No. 16/220,574, filed Dec. 14, 2018, Peter Derelöv (Cited herein as US Patent Application Publication No. 2019/0195256 A1 of Jun. 27, 2019). |
U.S. Appl. No. 16/220,585, filed Dec. 14, 2018, Peter Derelöv, (Cited herein as US Patent Application Publication No. 2019/0191870 A1 of Jun. 27, 2019). |
U.S. Appl. No. 16/361,609, filed Mar. 22, 2019, Peter Derelöv, Johan Svensson and Lars Gunnarsson, (cited herein as US Patent Application Publication No. 2019/0289999 A1 of Sep. 26, 2019). |
U.S. Appl. No. 16/386,732, filed Apr. 17, 2019, Christian Boo, (Cited herein as US Patent Application Publication No. 2019/0323532 A1 of Oct. 24, 2019). |
U.S. Appl. No. 16/386,810, filed Apr. 17, 2019, Christian Boo, (Cited herein as US Patent Application Publication No. 2019/0323533 A1 of Oct. 24, 2019). |
U.S. Appl. No. 16/386,824, filed Apr. 17, 2019, Christian Boo, (Cited herein as US Patent Application Publication No. 2019/0320793 A1 of Oct. 24, 2019). |
U.S. Appl. No. 16/386,874, filed Apr. 17, 2019, Peter Derelöv, (Cited herein as US Patent Application Publication No. 2019/0323534 A1 of Oct. 24, 2019). |
U.S. Appl. No. 16/564,438, filed Sep. 9, 2019, Hans Brännström, Agne Pålsson and Peter Derelöv, (Cited herein as US Patent Application Publication No. 2020/0003242 A1 of Jan. 2, 2020). |
U.S. Appl. No. 16/553,350, filed Aug. 28, 2019, Peter Derelöv and Johan Svensson, (Cited herein as US Patent Application Publication No. 2020/0069049 A1 of Mar. 5, 2020). |
U.S. Appl. No. 16/663,603, filed Oct. 25, 2019, Magnus Fridlund, (Cited herein as US Patent Application Publication No. 2020/0055126 A1 of Feb. 20, 2020). |
U.S. Appl. No. 16/703,077, filed Dec. 4, 2019, Magnus Fridlund, (Cited herein as US Patent Application Publication No. 2020/0102978 A1 of Apr. 2, 2020). |
U.S. Appl. No. 16/722,096, filed Dec. 20, 2019, Peter Derelöv and Christian Boo, (Cited herein as US Patent Application Publication No. 2020/0121076 A1 of Apr. 23, 2020). |
U.S. Appl. No. 16/567,436, filed Sep. 11, 2019, Peter Derelöv and Mats Nilsson. |
U.S. Appl. No. 16/697,335, filed Nov. 27, 2019, Christian Boo and Peter Derelöv. |
U.S. Appl. No. 16/861,639, filed Apr. 29, 2020, Peter Derelöv. |
International Search Report/Written Opinion dated Oct. 17, 2019 in PCT/SE2019/050801, ISA/SE, Patent-och registreringsverket, Stockholm, SE, 14 pages. |
U.S. Appl. No. 17/588,733, filed Jan. 31, 2022, Peter Derelöv and Johan Svensson. |
U.S. Appl. No. 17/674,262, filed Feb. 17, 2022, Johan Svensson and Peter Derelöv. |
Extended European Search Report dated Apr. 8, 2022 in EP 19854740.8, European Patent Office, Munich, DE, 9 pages. |
Number | Date | Country | |
---|---|---|---|
20200069048 A1 | Mar 2020 | US |