The present disclosure relates to a set of parts for producing a radial fan and its use.
A radial fan typically has a housing with a chamber where a fan wheel rotates about an axis, an inlet opening adjacent to the axis, and an outlet opening located at the periphery of the chamber.
The relationship between the speed of the fan wheel, the pressure difference between inlet and outlet openings, and volumetric flow depends on the geometry of the fan wheel and the chamber receiving it. This is a characteristic of each fan model. The requirements of this relationship must meet and vary based on the intended application of the radial fan. If a fan is, for example, used for cooling purposes, its volumetric flow should vary as little as possible with a varying pressure difference. This maintains a sufficient cooling air flow even under the most unfavorable conditions, e.g. when the cross section of the cooling air path is restricted. If, on the other hand, a fan is used to ventilate a patient, a strong dependence of the volumetric flow on the pressure difference is desired. This provides a high volumetric flow when the patient inhales. However, it does not obstruct the patient's exhaling by too high a counterpressure.
Conventionally, these opposing requirements are satisfied in that different fans are designed for cooling or for ventilating. Only small numbers of the respective specific housing parts for these fans are needed. Thus, this results in accordingly high unit costs.
It is the object of the present disclosure to create a set of parts and a method where fans can be provided at low cost and with a relationship of pressure difference and volumetric flow adjusted to a respective application.
The object is achieved by a set of parts for a radial fan that includes, in addition to a first fan wheel, a main housing part, and a complementary housing part. The parts can be assembled to form a housing enclosing the fan wheel with an inlet opening and an outlet opening. A second fan wheel, that differs in shape from the first fan wheel, can be rotatably mounted about an axis in the wheel chamber instead of the first fan wheel.
The fan wheel is, in a suitable manner, specifically optimized with respect to a desired relationship between pressure and volumetric flow. Accordingly, multiple versions are needed to represent different relationships. Thus, application specific modification of the housing parts can be eliminated. Cost advantages result from the fact that the non-application specific parts can be provided in large volumes at low cost. Also, the application specific fan wheels are necessarily smaller than the housing parts that define the wheel chamber that receives them. Thus, they can be produced using small, relatively simple, and accordingly inexpensive tools.
The advantage of simple production becomes particularly evident when the fan wheels each have a base plate and vane blades. The fan blades project in the axial direction from the base plate. The fan blades have free edges facing away from the base plate. These parts can typically be formed using just two tool parts that can be moved against one another in the axial direction. Production of the housing parts requires tools that can also be moved in the radial direction, particularly if these comprise interacting latches.
If the inlet opening is provided in the complementary housing part and a fan wheel is mounted in the wheel chamber, its base plate should face the main housing part. Its vane blades should face the complementary housing part.
The outlet should roughly be located in the plane of the fan wheel. it is expediently defined by the main housing part and by the complementary housing part.
To ensure exchangeability of the fan wheels, they should all have identical interfaces to fasten to a shaft of the motor. These interfaces may for example be passages with an identical non-circular cross section. The shaft can be inserted in a torque-transmitting manner into the interfaces. Alternatively, flanges could be spaced apart from one another along the axis on both sides of a passage. This enables clamping of the fan wheel between a shoulder of the shaft and a screwed-on nut, for example.
There is an inevitable gap extending between the free edges of the vane blades of a fan wheel mounted in the wheel chamber and a wall of the complementary housing part defining the wheel chamber. Air flows through the gap back to the inlet if there is a sufficient pressure difference between inlet opening and outlet. This impairs the throughput of the fan. To improve the efficiency of the fan, the complementary housing part may include a structure concentrically extending about the axis on the wall defining the wheel chamber. The fan wheels may be provided with contours on their free edges of their vane blades. The contours form a labyrinth seal with the concentric structure. The concentric structure may, for example, be a circumferential groove that is opposed by projections on the edges of the vane blades. Alternatively, the concentric structure may include a projection extending about the axis that is opposed by recesses of the free edges.
To obtain different pressure-volumetric flow curves for each of the fan wheels, the first and the second fan wheels should differ in the number and/or length of vane blades. Other features, such as the design of the base plate, the axial extension of the vane blades, their wall thickness, or extension of their free edges can remain the same from one fan wheel to the other within the limits set by production accuracy.
The effort required for designing and producing molding tools for the various fan wheels can be limited. Thus, the shape of the second fan wheel is derived from that of the first fan wheel by adding at least one vane blade. The first fan wheel would fit in the die used to produce the second and would fill this die but for the added vane blade.
The radius of an end near the axis of the added vane blade should be greater than that of an end near the axis of at least one vane blade of the first fan wheel. Thus, additional vane blades do not restrict the free cross section, and thus the volumetric flow, of the fan too much.
The vane blades of each fan wheel inevitably have an inner edge oriented transversely to the direction of the air flow, past which edge, the blowing air enters a duct between two air blades. This spacing can be different for the vane blades of an individual fan wheel, as can be deducted from the preceding paragraph. To obtain different shapes of the pressure-volumetric flow curve, such as in one case to obtain a limited dependence of volumetric flow on the pressure and in another case a strong dependence, it is useful that the set of parts includes two fan wheels. The fan wheels differ in the spacing from the axis of their respective inner edges located closest to the axis.
To obtain a high increase in pressure between inlet opening and outlet, the inner edge closest to the axis of at least one fan wheel should at least partially be within a cylinder. The cylinder is concentric with the axis. The diameter matches the diameter of the inlet opening.
Vice versa, it is useful for high variability of the volumetric flow at little pressure variation if the inner edge closest to the axis is outside this cylinder for at least one fan wheel. The fan wheel is preferably mounted to the main housing part, opposite the inlet opening of the complementary housing part. Expediently, installation space is provided on the main housing part for a motor driving the fan wheel.
The object is further achieved by a method for producing a radial fan comprising the steps of:
providing a set of parts as described above;
selecting one of the fan wheels of the set of parts; and
assembling the selected fan wheel, the main housing part, and the complementary housing part.
Other advantageous further developments of the disclosure are characterized in the dependent claims or are explained in more detail below with reference to the figures and together with a preferred embodiment of the disclosure.
Further features and advantages of the disclosure result from the subsequent description of exemplary embodiments with reference to the enclosed figures.
The main housing part 1 includes a bottom plate 5, an outer wall 6, and an elastic buffer ring 7. The bottom plate 5 is joined with the outer wall 6 by the buffer ring 7 to form an outer cup. An electric motor 9 is concentrically housed in the outer cup. This forms an annular peripheral cooling duct 8. It is enclosed by a partition wall 11 that is supported on a shoulder 10 of the outer wall 6.
The electric motor 9 includes a shaft 12, a rotor 13, a stator 14, and a circuit board 15. The circuit board 15 carries an inverter to supply the stator 14 with power, and the components 12-15 mentioned above. The housing includes an inner cup 16 and a lid 17. The lid 17 closes the inner cup 16. The shaft 12 projects through the central opening of the lid 17.
The partition wall 11 and the lid 17, exposed in the opening of the partition wall, form a central tray 18 around the rotational axis 4. A rim section of the partition wall 11, surrounding the central tray 18, leaps back into the interior of the outer cup. Together, with the outer wall 6, they define a groove 19 that extends about the rotational axis 4. They groove 19 cross section gradually increases along the periphery of the cup.
The fan wheel 2 has a base plate 20 that extends transversely to the rotational axis 4. The base plate diameter is not greater than that of the tray 18. One side of the base plate 20 is located opposite the tray 18 and in close proximity thereto in the assembled state. An axial passage 47 of the fan wheel 2 is provided to receive the end of the shaft 12. In the case shown here, the passage 47 is injection-molded to the base plate 20 and the vane blades 21 of the fan wheel 2. It is a sleeve made of metal, particularly of brass. The inner diameter is adjusted to the diameter of the shaft 12. Thus, the fan wheel 2 can be mounted by pressing it onto the shaft 12.
Vane blades 21 project in the axial direction from the base plate 20 on a side facing away from the tray 18. This side can have the shape of a cone or a hyperboloid of revolution.
The partition wall 11 has one or more openings 24. The openings 24 enable the groove 19 to communicate with the cooling air duct 8 near the starting point 22. These openings 24 are hidden by the fan wheel 2 in
The rotation of the fan wheel 2 generates a higher pressure in from the passage 25 than at the openings 24. Thus, air enters the cooling air duct 8 via the passage 25 and absorbs exhaust heat from the motor 9. The cooling air exits from the cooling air duct 8 via the openings 24. A radial wall 26 between the motor 9 and the outer wall 6 partitions the cooling air duct 8 and forces the sucked in air to almost completely circle the motor 9 on its way from the passage 25 to the openings 24.
The complementary housing part 3 has an end wall 28. The end wall 28 extends about the rotational axis 4 around an inlet opening 27. The funnel-shaped inner surface 29 opposes, at a close distance in the assembled state, the free edges 30 of the air blades 21 that face away from the base plate 20. The funnel-shaped inner surface 29 extends radially beyond the rim of the base plate 20. It hits an inner surface of the outer wall 6. In the final assembled fan, the end wall 28 defines a wheel chamber 31 where the fan wheel 2 rotates. The end wall 28, together with the groove 19, defines a blowing air duct 32 that extends around the wheel chamber 31. The rotation of the fan wheel 2 generates a positive pressure in the chamber 31.
The extension of the free edges 30 of the vane blades 21 is difficult to see due to the spiral shape of the vane blades 21 in a radial section through the fan wheel 2, as shown in
The inner surface 29 is divided by a flat groove 43 into an inner and an outer section 44, 45, both are convexly curved. Projections 46 on the edges 30 of the vane blades 21 are located opposite the groove 43. If a high pressure difference between the outlet 23 and the inlet opening 27 drives a return flow of air along the gap 42 to the inlet opening 27, the flow tends to bridge the groove 43 in a tangential direction to the two sections 44, 45 (outlined in
Referring again to
Brackets 38 project beyond the flange 34. The brackets 38 are distributed across the periphery of the complementary housing part 3. The brackets 38 are provided to be latched onto projections 39 (see
It would also be conceivable to replace one or two brackets 38 and projections 39 by a film hinge. Thus, the two housing parts could be folded onto one another after mounting the fan wheel 2.
The diameter of the base plate 20 and the shape of the passage 47, receiving the shaft 12, preferably also the curvature of the side of the base plate 20, that carries the vane blades 21, are identical in all fan wheels. The vane blades 21 of the fan wheel 2 are present in identical number, with identical wall thickness and extension of the edge 30 in the fan wheels 2′, 2″ of
The additional vane blades 21′ narrow the flow area of the wheel chamber 31. Thus, this results in higher flow losses and lower efficiency. A user will therefore select the fan wheel 2 for commercial applications in environments that are noisy anyway and where low operating costs are an important factor. The fan wheels 2′, 2″ are preferred for applications in non-commercial areas where a loud operating noise will be clearly perceived.
To limit the loss in efficiency, the inner ends 33′ of the additional vane blades 21′ are disposed at a greater distance from the axis 4 than the inner ends 33 of the vane blades 21. The inner edges 40 of the vane blades 21 largely extend within the radius r of the inlet opening 27. Respective edges 40′ of the additional vane blades 21′ are located outside that radius.
The fan wheel 2″ of
The foregoing description of the embodiments has been provided for purposes of illustration and description. It is not intended to be exhaustive or to limit the disclosure. Individual elements or features of a particular embodiment are generally not limited to that particular embodiment, but, where applicable, are interchangeable and can be used in a selected embodiment, even if not specifically shown or described. The same may also be varied in many ways. Such variations are not to be regarded as a departure from the disclosure, and all such modifications are intended to be included within the scope of the disclosure.
Number | Date | Country | Kind |
---|---|---|---|
10 2017 008 855.1 | Sep 2017 | DE | national |
This application is a continuation of International Application No. PCT/EP2018/073721, filed Sep. 4, 2018, which claims priority to German Application No. 10 2017 008 855.1, filed Sep. 21, 2017. The disclosures of the above applications are incorporating herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4902199 | McDonald et al. | Feb 1990 | A |
5258676 | Reinhardt | Nov 1993 | A |
5893705 | Khan | Apr 1999 | A |
6050772 | Hatakeyama | Apr 2000 | A |
6589013 | Abdallah | Jul 2003 | B2 |
7476076 | Shimada | Jan 2009 | B2 |
7828510 | Chang | Nov 2010 | B2 |
8684661 | Horng | Apr 2014 | B2 |
20070059167 | Hancock | Mar 2007 | A1 |
20070247009 | Hoffman et al. | Oct 2007 | A1 |
Number | Date | Country |
---|---|---|
104251229 | Dec 2014 | CN |
20309621 | Sep 2003 | DE |
102004022962 | Jun 2005 | DE |
102016001484 | Aug 2017 | DE |
Entry |
---|
German Search Report (in German) dated Aug. 16, 2018 in corresponding German Application No. 102017008855.1. |
International Search Report and Written Opinion (in German) dated Nov. 23, 2018 in corresponding PCT Application No. PCT/EP2018/073721. |
Number | Date | Country | |
---|---|---|---|
20200182255 A1 | Jun 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/EP2018/073721 | Sep 2018 | US |
Child | 16794659 | US |