SET TOP BOXES UNDER TEST

Information

  • Patent Application
  • 20170302994
  • Publication Number
    20170302994
  • Date Filed
    July 06, 2017
    7 years ago
  • Date Published
    October 19, 2017
    7 years ago
Abstract
A system for testing multiple set top boxes independently and simultaneously using different types of device probes is disclosed. The system includes real-time, bi-directional/asynchronous communication and interaction between system components.
Description
TECHNICAL FIELD

The present invention is directed to a system for testing devices.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates a high-level system architecture for testing devices, according to certain embodiments.



FIG. 2 illustrates some of the testing components and the interaction between the testing components, according to certain embodiments.



FIG. 3 illustrates a sample architecture that includes the testing components, according to certain embodiments.



FIG. 4 illustrates a set top box under test, according to certain embodiments.





DETAILED DESCRIPTION

Methods, systems, user interfaces, and other aspects of the invention are described. Reference will be made to certain embodiments of the invention, examples of which are illustrated in the accompanying drawings. While the invention will be described in conjunction with the embodiments, it will be understood that it is not intended to limit the invention to these particular embodiments alone. On the contrary, the invention is intended to cover alternatives, modifications and equivalents that are within the spirit and scope of the invention. The specification and drawings are, accordingly, to be regarded in an illustrative rather than a restrictive sense.


Moreover, in the following description, numerous specific details are set forth to provide a thorough understanding of the present invention. However, it will be apparent to one of ordinary skill in the art that the invention may be practiced without these particular details. In other instances, methods, procedures, components, and networks that are well known to those of ordinary skill in the art are not described in detail to avoid obscuring aspects of the present invention.


According to certain embodiments, an innovative system can test a set of devices simultaneously. Further, such a testing system is capable of testing disparate devices simultaneously.


According to certain embodiments, such a testing system provides a separate set of interfaces for each device that is under testing of the set of devices. Further, such a system is designed to be adaptive by being extendable for testing new devices with corresponding new testing interfaces without fundamentally changing the core architecture of the testing system. As a non-limiting example, the testing system includes a core testing subsystem with a user interface and asynchronous communication among the system components such that new types of devices and new tests can be added and executed in a seamless fashion.


According to certain embodiments, the user interface can communicate through web sockets with the universal tester. Such communication is in real-time, bi-directional and asynchronous so that the user can control and monitor the testing of multiple devices simultaneously and independently of each other using the same universal tester.


According to certain embodiments, the testing system is capable of testing a set of similar types of devices or a set of disparate devices.


According to certain embodiments, a testing solution system can be a three layer implementation. The number of layers may vary from implementation to implementation. FIG. 1 illustrates a high-level system architecture for testing devices, according to certain embodiments. FIG. 1 shows a test bench browser interface 102 that is in communication with a web-socket 104, that is, in turn, in communication with a core testing processor 106. According to certain embodiments, the communication between the test bench browser 102, web-socket 104 and core testing processor 106 can be a TCP/IP communication. As a non-limiting example, the web browser is used as a user interface that communicates through web-sockets with the core testing processor. As a non-limiting example, communication may be in the form of JSON messages using TCP/IP protocol, according to certain embodiments. JSON is Java script object notation for transmitting data between the server and web applications.



FIG. 2 illustrates some of the testing components and the interaction between the testing components, according to certain embodiments. FIG. 2 shows a user interface 202, web-sockets 204, a core testing processor 206, database 208, test configuration modules 210, testing environmental modules 212, a plurality of probes (214, 216, 218) to connect the devices under test (DUT) to the core testing processor 206, and a speed test module 220, according to certain embodiments. Speed testing is used for evaluating the performance of the Wifi and other media network connection and accessibility of the device under test. FIG. 2 shows as non-limiting examples, a Wifi probe 214, an Ethernet local area network (LAN) probe 216 and a MOCA probe 218. In other words, according to certain embodiments, various probes can be included such as a wireless local area network (WLAN) probe, an Ethernet wide area network (WAN) probe, a multimedia over coax alliance (MoCA) WAN probe, a MoCA LAN probe and a wireless probe via antenna. According to certain embodiments, servers and other components in the testing system may be distributed over a plurality of computers.


According to certain embodiments, core testing processor 206 loads and reads files from test configuration modules 210 and test environmental modules 212 to initialize various components of the testing system. When the system is ready to begin testing after the initialization process, the system notifies a user that is using the testing system to test one or more devices (DUTs) of the readiness of the testing system. The user installs each device (DUT) of the set of DUTs that are to be tested on the test bench and the serial number of each DUT is scanned. The core testing processor 206 receives the serial number information of each DUT and using the serial number, retrieves further information associated with each DUT based on the serial number from database 208, according to certain embodiments. The core testing processor 206 dynamically loads test configuration information 210 and test environment information 212 based on device information such as make, model etc of a given DUT. After the test configuration and test environment information are loaded, the core testing processor 206 begins executing the various tests corresponding to each DUT so that the set of DUTs can be tested simultaneously. Each test may correspond to underlying testing modules associated with Wifi, LAN, WAN or MoCA etc, interfaces of the DUT and such modules can be executed locally, remotely or at the device.


According to certain embodiments, the test configuration information identifies the test modules and corresponding testing scripts that are to be executed by the core testing processor 206 at run time. The core testing processor 206 also provides the test results and other feedback information to the user via the browser user interface 202 and web sockets 204. Further, the user can send user input and requests to the system through the browser user interface 202 and web sockets 204.


According to certain embodiments, core testing processor 206 determines the success or failure of a given test based on the test configuration parameters and output results of the testing. Further, upon failure of a given test, core testing processor 206 may continue further testing or halt test execution based on test configuration parameters, according to certain embodiments.


Upon completion of the relevant tests, a success message can be sent to the user via the browser user interface 202 and web sockets 204. Even though the DUTs in the set of DUTs are tested simultaneously, the user does not have to wait until all the DUTs in the set have been completed to begin installing other devices that need testing. Further, the testing of the devices need not be started at the same time. Soon after the testing is completed for a given DUT, the tested DUT may be uninstalled from its slot in the test bench and a new DUT can be installed in its slot so that testing can begin for the newly installed device.


According to certain embodiments, the test results can be stored locally and/or pushed to the cloud so that the results can be viewed remotely from any location. Further, the test results can be aggregated. According to certain embodiments, aggregated data includes data combined from several data measurements. Summary reports can be generated from such aggregated data. Non-limiting examples of summary reports include charts and graphs that display information on all the DUTs or at least a subset of the DUTs. Thus, the summary reports generated from the aggregated data can provide an overview of the testing information and characteristics of the DUTs. The aggregated data can reveal trends and other related information associated with the DUTs. Further, the aggregated data can include user-level data, access account activity, etc. According to certain embodiments, the testing system includes a billing system to charge for the testing services for each device.



FIG. 3 illustrates a sample architecture that includes the testing components of a universal tester, according to certain embodiments. FIG. 3 shows a browser user interface or operator dashboard 302, a test controller 304, a universal tester 306 and a device under test (DUT) 308. There may be multiple devices under testing simultaneously but only one device under test is shown for convenience in FIG. 3.


According to certain embodiments, browser user interface or operator dashboard 302 may include information 310 associated with each device under test. The information 310 can include DUT serial number 311, and testing progress information 312. Browser user interface or operator dashboard 302 may also include user command function buttons 314 and drop down menus (not shown in FIG. 3). According to certain embodiments, the user can configure slot details (e.g., port numbers, IP address for the slot, etc), configure testing preferences such as push to cloud, export to billing, etc.


According to certain embodiments, test controller 304 may include a universal tester webserver 316 that is in communication (e.g., TCP/IP) with a universal tester database 318. A billing process within the controller (not shown in FIG. 3) may be in communication with a billing service or application (not shown in FIG. 3). As a non-limiting example, database 318 can be a SQL database. Database 318 can store information associated with each slot in the test bench. As non-limiting examples, database 318 can store for each slot, test details, test history, test logs, DUT information (e.g., DUT serial number, model name, etc), testing preferences/configuration, user interface details/preferences/configuration, billing information, cloud push information, MSO/customer information (media subscriber organization), OEM (original equipment manufacturer) information, slot information, user information, and any persistent data needed by the universal device testing system for running tests.


According to certain embodiments, universal tester 306 may include web sockets 320 that are in communication (e.g., TCP/IP) with browser user interface or operator dashboard 302 and core testing processor 324. According to certain embodiments, core testing processor 324 is in communication with test controller 304 (e.g., TCP/IP) and in communication (e.g., Telnet/SSH secure shell) with probes/containers (328, 330, . . . , 332, 334). Core testing processor 324 is also in communication with configuration modules 322 (e.g., testing and environment configuration). Non-limiting examples of probes include Wifi probe 328, LAN probe 330, MoCA probe 332 and WAN probe 334. There may be other types of probes including MoCA WAN probe, MoCA LAN probe and other types of wireless probes besides Wifi probes depending on the characteristics of the device being tested.


According to certain embodiments, Wifi probe 328, LAN probe 330, MoCA probe 332 and WAN probe 334 communicate with the respective device under test through the relevant ports on the device such as Wifi port 336, LAN port 338, MoCA port 340 and WAN port 342. Core testing processor 324 executes the relevant configured tests for the respective DUT. Status and test results can be sent to the user's dashboard (using JSON format messages as a non-limiting example) via the web-sockets.


Non-limiting examples of devices under test (DUTs) include set top boxes, cable modems, embedded multimedia terminal adapters, and wireless routers including broadband wireless routers for the home or for commercial networks.



FIG. 4 illustrates a testing architecture for a set top box under test, according to certain embodiments. As previously explained, multiple similar or disparate devices can be tested simultaneously and independently of each other using the same universal tester. Thus, multiple set top boxes can be tested simultaneously and independently of each other using the same universal tester, along with other types of devices using the same universal tester. For purposes of simplicity only one set top box is shown in FIG. 4. FIG. 4 shows a universal tester 404 and set top box 402, which is the device under test for this specific case. Universal tester 404 includes a plurality of virtualization containers (probes) for communicating with corresponding interfaces of set top box 402. For example, the core testing processor of the universal tester (as described herein) uses the HDMI (high definition multimedia interface) probe/container 406b to test the HDMI interface 406a of set top box 402. Similarly, audio/video probe/container 408b can be used to test the audio/video interface 408a of set top box 402. Another audio/video probe/container 410b can be used to test the Coax TV Output interface 410a of set top box 402. IR (infra red) probe/container 412b can be used to test the IR interface 412a of set top box 402. CATV coax probe/container 416b can be used to test the Coax interface 416a of set top box 402. The associated core testing processor executes the relevant configured tests for the set top box 402. Status and test results can be sent to the user's dashboard (using JSON format messages as a non-limiting example) via the web-sockets.


According to certain embodiments, when executing a specific test for a given DUT, the core testing processor loads and reads test configuration information (for example from an XML structure) and identifies the relevant test script that needs to be executed. Inputs that are needed for executing the relevant test script are retrieved and supplied as inputs to the relevant test script. The following is a non-limiting sample script.


Create DUT object & Environment Object


Verify Serial Number
Verify Warranty
Check Report Server
Check DUT Staging

Checks for DUT Serial number in Database or Webservice


Get DUT Readiness Information

Checks Webservice for test readiness status of DUT in the test process


Configure Container Environment
Clear Environment Temp Files
Analyze DUT for Factory Reset

Checks ability to login to DUT


Asks operator to manually Factory Reset if unable to login


Confirm Factory Reset (if needed)


Waits for operator to confirm that DUT was factory reset and booted up properly


Check Ethernet LAN connections to DUT


Ping connections: Eth LAN 1, 2, 3, 4


Fails if any ping to these connections fail


Detect DUT

Checks connection to DUT through socket connection


Reset Password

Operator scans password which is stored temporarily for use in the remainder of test until finished


Login to GUI

Done through web-scraping


Get DUT Information and compare values


Information retrieved through web-scraping


Enable Telnet

Enables telnet on DUT through web-scraping


Factory Reset

Factory resets DUT through telnet command


Enable Telnet after Factory Reset


Enables telnet on DUT through web-scraping


Confirm Power, WAN Ethernet, and Internet LEDs
Confirm all LAN Ethernet LEDs
Confirm WiFi LED
Configure Wireless Network

Through telnet commands


Sets N Mode


Enables Privacy


Sets WPA (Wi-Fi Protected Access)


Removes WEP (Wired Equivalent Privacy)


Assigns WiFi Channel to DUT (channel different by slot)


[Channel 1: slots 1, 4, 7, 10, 13, 16]


[Channel 6: slots 2, 5, 8, 11, 14]


[Channel 11: slots 3, 6, 9, 12, 15]


Verifies changes through GUI


Disables WiFi once done through telnet


Check Firmware Version and Upgrade Firmware (if needed)


Firmware version: 40.21.18


Cage Closed Confirmation Check

Asks Operator to Close Door on Cage


Connect Wireless Card

Waits on shared Resource Server (located on TC) for Resource L2 (Layer 2) Lock

    • Lock waiting timeout: 600 sec
    • All L2 Locks are able to run in parallel but not when any L3 (Layer 3) Lock is running


Obtains Lock


Enables WiFi through telnet


Set WiFi Card

    • Total Retries allowed: 6 (2 sets of 3 retries)


Ping WiFi from DUT


L2 ARP Test on WiFi: must receive 10/10 ARP packets

    • Total Retries allowed: 6 (2 sets of 3 retries)


If either Set WiFi Card or L2 ARP Test Fail after its 3 retries, Ask Operator to Check Antennas


Performs one more retry in full (set of 3 retries each for Set WiFi Card and L2 ARP Wifi Test) after Check Antennas


Disables WiFi through telnet


Releases Lock


Wireless to LAN Ethernet Speed Test

Waits on shared Resource Server (located on TC) for Resource L3 Lock

    • Lock waiting timeout: 1800 sec
    • L3 Locks must be run one at a time and when no L2 Lock is running


Obtains Lock


Enables WiFi through telnet


Connects WiFi Card


Iperf3 Speed Test, 5 seconds for UDP Speed Test, 7 seconds for TCP Speed Test, Sending 200 Mbps Bandwidth


Bandwidth must be greater than 60 Mbps on TCP (Reverse) or 70 Mbps on UDP (Forward)

    • If Fail after 2 retries, ask operator to Check Antennas
    • Retries up to 2 times more if still Fail
    • Therefore, Total Retries allowed: 4 (2 sets of 2 retries)


Runs sudo iwlist wlan0 scan and returns all Wireless Signals seen

    • Results parsed to print all visible SSIDs and its matching Signal level


Disables WiFi through telnet


Releases Lock


Confirm WPS LED
Confirm LAN Coax LED
Confirm USB 1+2 LEDs
Configure WAN MoCA
Confirm WAN Coax LED
Ping WAN MoCA
L2 Test on LAN Ethernet

Arp Test from Eth LAN 1 to Eth LAN 2, 3, 4


Must receive 10/10 on all LAN connections


LAN Ethernet to LAN Ethernet Speed Test

From Eth LAN 1 to Eth LAN 2, 3, 4


Iperf3 Speed Test, 5 seconds Reverse and Forward, Sending 1200 Mbps Bandwidth


Bandwidth must be greater than 700 Mbps


Total Retries allowed: 2


Check WAN and LAN MoCA Data Rates

Rx and Tx Data rates for both WAN and LAN MoCA retrieved through telnet


All Rates must be greater than 180 Mbps


LAN Ethernet to WAN MoCA FTP Speed Test

From Eth LAN 1 to WAN MoCA


Iperf3 Speed Test, 5 seconds Reverse and Forward, Sending 1200 Mbps Bandwidth


Bandwidth must be greater than 60 Mbps


Total Retries allowed: 2


LAN MoCA to LAN Ethernet FTP Speed Test

From Eth LAN 1 to LAN MoCA


Iperf3 Speed Test, 5 seconds Reverse and Forward, Sending 240 Mbps Bandwidth


Bandwidth must be greater than 60 Mbps


Total Retries allowed: 2


LAN MoCA to WAN MoCA FTP Speed Test

From LAN MoCA to WAN MoCA


Iperf3 Speed Test, 5 seconds Reverse and Forward, Sending 240 Mbps Bandwidth


Bandwidth must be greater than 60 Mbps


Total Retries allowed: 2


Enable WAN Ethernet

Through telnet command


LAN Ethernet to WAN Ethernet FTP Speed Test

From Eth LAN 1 to Eth WAN


Iperf3 Speed Test, 5 seconds Reverse and Forward, Sending 1200 Mbps Bandwidth


Bandwidth must be greater than 700 Mbps


Total Retries allowed: 2


Clear Persistent Logs
Final Factory Restore

According to certain embodiments, the core testing processor uses a reflection and command design pattern to invoke the relevant configured script(s) corresponding to each DUT being tested. For example, in the command design pattern one or more of the following are encapsulated in an object: an object, method name, arguments. According to certain embodiments, the core testing processor uses the Python “reflection” capability to execute the relevant test scripts for a given DUT. The core testing processor is agnostic of the inner workings of the relevant test scripts for a given DUT.


According to certain embodiments, lightweight software containers (virtualization containers) are used to abstract the connection of probes to the different DUT interfaces in order to avoid conflicts. Non-limiting examples of virtualization containers are Linux containers. As a non-limiting example, Linux container is an operating-system-level virtualization environment for running multiple isolated Linux systems (containers) on a single Linux control host. In other word, lightweight virtualization containers are used to ensure isolation across servers. By using virtualization containers, resources can be isolated, services restricted, and processes provisioned to have an almost completely private view of the operating system with their own process ID space, file system structure, and network interfaces. Multiple virtualization containers share the same kernel, but each virtualization container can be constrained to only use a defined amount of resources such as CPU, memory and I/O. The relevant test script might need to connect to the DUT interfaces directly or through the virtualization containers to execute the tests. The core testing processor receives the test results from running the relevant test scripts. The core testing processor can further process and interpret such results and can also send the results to the user's browser via web sockets. According to certain embodiments, the respective core testing processors are in communication (e.g., Telnet/SSH secure shell) with the virtualization containers (there may be multiple virtualization containers). The virtualization containers (probes) are in communication with corresponding DUT interfaces using Telnet/SSH/TCP/UDP/HTTP/HTTPS etc, as non-limiting examples.


According to certain embodiments, a system for testing a plurality of devices comprises: a universal tester; at least one test controller; a plurality of sets of testing probes; and a plurality of web sockets; wherein:


the plurality of devices includes a plurality of set top boxes;


the universal tester is enabled for communication with a platform independent user interface through the plurality of web sockets;


the plurality of sets of testing probes comprising:

    • at least one HDMI probe for testing a corresponding HDMI interface of a set top box of the plurality of set top boxes;
    • at least one audio video probe for testing a corresponding audio video interface of the set top box of the plurality of set top boxes;
    • at least one audio video probe for testing a corresponding coax TV output interface of the set top box of the plurality of set top boxes;
    • at least one IR probe for testing a corresponding IR interface of the set top box of the plurality of set top boxes;
    • at least one CATV coax probe for testing a corresponding coax interface of the set top box of the plurality of set top boxes; and


the plurality of web sockets enable real-time bi-directional and asynchronous communication between the platform independent user interface and the universal tester for simultaneously testing the plurality of devices under test by the universal tester.


According to certain embodiments, the real-time bi-directional and asynchronous communication of the plurality of web sockets enable a user to control the testing of the plurality of devices simultaneously but asynchronously and independently of each other using the universal tester.


According to certain embodiments, the plurality of devices installed in the universal tester for purposes of simultaneous testing comprise a set of disparate devices.


According to certain embodiments, the plurality of devices installed in the universal tester for purposes of simultaneous testing comprise a set of similar devices.


According to certain embodiments, the testing system is adaptable to augmenting the test controller, the plurality of web sockets, the user interface and the plurality of sets of testing probes to accommodate testing of new types of devices.


In the foregoing specification, embodiments of the invention have been described with reference to numerous specific details that may vary from implementation to implementation. The specification and drawings are, accordingly, to be regarded in an illustrative rather than a restrictive sense.

Claims
  • 1. A system for testing a plurality of devices, the system comprising: a universal tester comprising a plurality of sets of testing probes and a plurality of web sockets, wherein at least two sets of testing probes of the plurality of sets of testing probes are configured to communicate with corresponding ports of respective devices under test (DUTs) when installed in the universal tester for testing; andthe plurality of web sockets enable real-time bi-directional and asynchronous communication between a platform-independent user interface and the universal tester for simultaneously testing the DUTs by the universal tester.
  • 2. The system of claim 1, wherein the plurality of sets of testing probes comprises at least one of a local area network (LAN) probe, a multimedia over coax alliance (MoCA) probe, a wireless local area network (WLAN) probe, an Ethernet wide area (WAN) probe, and a wireless probe via an antenna.
  • 3. The system of claim 1, further comprising a plurality of test configuration modules operatively connected to the universal tester, the plurality of test configuration modules containing test configuration information for a plurality of different makes and models of DUTs.
  • 4. The system of claim 1, further comprising a plurality of test environmental modules operatively connected to the universal tester, the plurality of test environmental modules containing test environment information for a plurality of different makes and models of DUTs.
  • 5. The system of claim 1, further comprising at least one speed test module operatively connected to the universal tester, the at least one speed test module configured to evaluate media network connections and accessibility of each device under test (DUT).
  • 6. The system of claim 1, wherein the universal tester further comprises a core testing processor configured to read serial number information associated with each DUT, andbased on the serial number read from each DUT, selectively retrieve make and model information associated with each read DUT, the make and model information stored in a database operatively connected to the core testing processor.
  • 7. The system of claim 6, wherein the core testing processor is further configured to determine success or failure of a test of each DUT based on test configuration parameters a and output results of testing each DUT.
  • 8. The system of claim 6, wherein the core testing processor is further configured to halt test execution based on test configuration parameters.
  • 9. The system of claim 6, wherein the core testing processor is further configured to send a success message to a user via at least one of the plurality of web sockets.
  • 10. The system of claim 9, further comprising a web server operatively connected to the core testing processor, the web server configured to transmit the success message to a user.
  • 11. A method of testing a plurality of devices, comprising the steps of: installing a plurality of devices under test (DUTs) in a testing station, the testing station providing an operative connection between each installed DUT and a universal tester containing a core testing processor;reading serial number information associated with each installed DUT;based on the serial number read from each installed DUT, extracting make and model information associated with each read DUT, the make and model information stored in a database operatively connected to the core testing processor;loading test configuration information into the core testing processor, the test configuration information selected from a plurality of test configuration modules operatively connected to the core testing processor, selection of the test configuration information based on the make and model information of each DUT determined from the step of reading the serial number information associated with each installed DUT; andexecuting at least one test corresponding to each installed DUT.
  • 12. The method of claim 11, further comprising the step of loading test environment information for each installed DUT into the core testing processor, the test environment information selectively retrieved from a plurality of test environmental modules operatively connected to the core testing processor.
  • 13. The method of claim 11, further comprising the step of communicating testing feedback information to a user via a browser user interface and web sockets operatively connected to the core testing processor.
  • 14. The method of claim 13, wherein the testing feedback information comprises at least a success message sent upon each completion of testing of a DUT.
  • 15. The method of claim 11, further comprising the steps of: storing testing results of each installed DUT in a storage medium;aggregating the stored testing results with earlier-stored data reflecting results of previous testing of each DUT subjected to testing before the step of installing the plurality of DUTs in the testing station, a combination of the stored testing results with the earlier-stored data resulting in aggregated data; andgenerating summary reports from the aggregated data, the summary reports providing an overview of unit information and characteristics of each DUT for which aggregated data is available.
  • 16. The method of claim 15, wherein each summary report also provides trend information on each DUT for which aggregated data is available, and wherein the unit information comprises at least user-level data and access account activity.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of International Patent Application No. PCT/US16/53768, filed Sep. 26, 2016, which is a continuation-in-part of U.S. patent application Ser. No. 14/866,630, filed Sep. 25, 2015; a continuation-in-part of U.S. patent application Ser. No. 14/866,720, filed Sep. 25, 2015; a continuation-in-part of U.S. patent application Ser. No. 14/866,752, filed Sep. 25, 2015, a continuation-in-part of U.S. patent application Ser. No. 14/866,780, filed Sep. 25, 2015, now U.S. Pat. No. 9,491,454 issued on Nov. 8, 2016; a continuation-in-part of U.S. patent application Ser. No. 14/948,143, filed Nov. 20, 2015; a continuation-in-part of U.S. patent application Ser. No. 14/948,925, filed Nov. 23, 2015; and a continuation-in-part of U.S. patent application Ser. No. 14/987,538, filed Jan. 4, 2016. Applicant claims priority to each of those applications. The disclosure of only U.S. patent application Ser. No. 14/866,780 is hereby incorporated by reference herein, in its entirety.

Continuations (1)
Number Date Country
Parent PCT/US16/53768 Sep 2016 US
Child 15642915 US
Continuation in Parts (7)
Number Date Country
Parent 14866630 Sep 2015 US
Child PCT/US16/53768 US
Parent 14866720 Sep 2015 US
Child 14866630 US
Parent 14866752 Sep 2015 US
Child 14866720 US
Parent 14866780 Sep 2015 US
Child 14866752 US
Parent 14948143 Nov 2015 US
Child 14866780 US
Parent 14948925 Nov 2015 US
Child 14948143 US
Parent 14987538 Jan 2016 US
Child 14948925 US