Settable compositions comprising cement kiln dust and additive(s)

Information

  • Patent Grant
  • 7445669
  • Patent Number
    7,445,669
  • Date Filed
    Friday, September 9, 2005
    19 years ago
  • Date Issued
    Tuesday, November 4, 2008
    16 years ago
Abstract
The present invention provides settable compositions that comprise water and cement kiln dust. The settable compositions optionally may comprise an additive that comprises at least one of the following group: fly ash; shale; slag cement; zeolite; metakaolin; and combinations thereof. The settable compositions optionally may be foamed with a gas. Methods of cementing also are provided that comprise: providing the settable composition; introducing the settable composition into a location to be cemented; and allowing the settable composition to set therein. The location to be cemented may be above ground or in a subterranean formation.
Description
BACKGROUND

The present invention relates to cementing operations and, more particularly, to settable compositions comprising water and cement kiln dust (“CKD”), and associated methods of use.


Settable compositions may be used in a variety of subterranean applications. As used herein, the term “settable composition” refers to any composition that over time will set to form a hardened mass. One example of a settable composition comprises hydraulic cement and water. Subterranean applications that may involve settable compositions include, but are not limited to, primary cementing, remedial cementing, and drilling operations. Settable compositions also may be used in surface applications, for example, construction cementing.


Settable compositions may be used in primary cementing operations whereby pipe strings, such as casing and liners, are cemented in well bores. In performing primary cementing, a settable composition may be pumped into an annular space between the walls of a well bore and the pipe string disposed therein. The settable composition sets in the annular space, thereby forming an annular sheath of hardened cement (e.g., a cement sheath) that supports and positions the pipe string in the well bore and bonds the exterior surface of the pipe string to the walls of the well bore.


Settable compositions also may be used in remedial cementing operations, such as sealing voids in a pipe string or a cement sheath. As used herein the term “void” refers to any type of space, including fractures, holes, cracks, channels, spaces, and the like. Such voids may include: holes or cracks in the pipe strings; holes, cracks, spaces, or channels in the cement sheath; and very small spaces (commonly referred to as “microannuli”) between the cement sheath and the exterior surface of the well casing or formation. Sealing such voids may prevent the undesired flow of fluids (e.g., oil, gas, water, etc.) and/or fine solids into, or from, the well bore.


The sealing of such voids, whether or not made deliberately, has been attempted by introducing a substance into the void and permitting it to remain therein to seal the void. If the substance does not fit into the void, a bridge, patch, or sheath may be formed over the void to possibly produce a termination of the undesired fluid flow. Substances used heretofore in methods to terminate the undesired passage of fluids through such voids include settable compositions comprising water and hydraulic cement, wherein the methods employ hydraulic pressure to force the settable composition into the void. Once placed into the void, the settable composition may be permitted to harden.


Remedial cementing operations also may be used to seal portions of subterranean formations or portions of gravel packs. The portions of the subterranean formation may include permeable portions of a formation and fractures (natural or otherwise) in the formation and other portions of the formation that may allow the undesired flow of fluid into, or from, the well bore. The portions of the gravel pack include those portions of the gravel pack, wherein it is desired to prevent the undesired flow of fluids into, or from, the well bore. A “gravel pack” is a term commonly used to refer to a volume of particulate materials (such as sand) placed into a well bore to at least partially reduce the migration of unconsolidated formation particulates into the well bore. While screenless gravel packing operations are becoming more common, gravel packing operations commonly involve placing a gravel pack screen in the well bore neighboring a desired portion of the subterranean formation, and packing the surrounding annulus between the screen and the well bore with particulate materials that are sized to prevent and inhibit the passage of formation solids through the gravel pack with produced fluids. Among other things, this method may allow sealing of the portion of the gravel pack to prevent the undesired flow of fluids without requiring the gravel pack's removal.


Settable compositions also may be used during the drilling of the well bore in a subterranean formation. For example, in the drilling of a well bore, it may be desirable, in some instances, to change the direction of the well bore. In some instances, settable compositions may be used to facilitate this change of direction, for example, by drilling a pilot hole in a hardened mass of cement, commonly referred to as a “kickoff plug,” placed in the well bore.


Certain formations may cause the drill bit to drill in a particular direction. For example, in a vertical well, this may result in an undesirable well bore deviation from vertical. In a directional well (which is drilled at an angle from vertical), after drilling an initial portion of the well bore vertically, the direction induced by the formation may make following the desired path difficult. In those and other instances, special directional drilling tools may be used, such as a whipstock, a bent sub-downhole motorized drill combination, and the like. Generally, the directional drilling tool or tools used may be orientated so that a pilot hole is produced at the desired angle to the previous well bore in a desired direction. When the pilot hole has been drilled for a short distance, the special tool or tools are removed, if required, and drilling along the new path may be resumed. To help ensure that the subsequent drilling follows the pilot hole, it may be necessary to drill the pilot hole in a kickoff plug, placed in the well bore. In those instances, prior to drilling the pilot hole, a settable composition may be introduced into the well bore and allowed to set to form a kickoff plug therein. The pilot hole then may be drilled in the kickoff plug, and the high strength of the kickoff plug helps ensure that the subsequent drilling proceeds in the direction of the pilot hole.


Settable compositions used heretofore commonly comprise Portland cement. Portland cement generally is a major component of the cost for the settable compositions. To reduce the cost of such settable compositions, other components may be included in the settable composition in addition to, or in place of, the Portland cement. Such components may include fly ash, slag cement, shale, metakaolin, micro-fine cement, and the like. “Fly ash,” as that term is used herein, refers to the residue from the combustion of powdered or ground coal, wherein the fly ash carried by the flue gases may be recovered, for example, by electrostatic precipitation. “Slag,” as that term is used herein, refers to a granulated, blast furnace by-product formed in the production of cast iron and generally comprises the oxidized impurities found in iron ore. Slag cement generally comprises slag and a base, for example, such as sodium hydroxide, sodium bicarbonate, sodium carbonate, or lime, to produce a settable composition that, when combined with water, may set to form a hardened mass.


During the manufacture of cement, a waste material commonly referred to as “CKD” is generated. “CKD,” as that term is used herein, refers to a partially calcined kiln feed which is removed from the gas stream and collected in a dust collector during the manufacture of cement. Usually, large quantities of CKD are collected in the production of cement that are commonly disposed of as waste. Disposal of the waste CKD can add undesirable costs to the manufacture of the cement, as well as the environmental concerns associated with its disposal. The chemical analysis of CKD from various cement manufactures varies depending on a number of factors, including the particular kiln feed, the efficiencies of the cement production operation, and the associated dust collection systems. CKD generally may comprise a variety of oxides, such as SiO2, Al2O3, Fe2O3, CaO, MgO, SO3, Na2O, and K2O.


SUMMARY

The present invention relates to cementing operations and, more particularly, to settable compositions comprising water and CKD, and associated methods of use.


In one embodiment, the present invention provides a settable composition comprising: water; CKD; and an additive comprising at least one of the following group: shale; slag cement; zeolite; metakaolin; and combinations thereof.


Another embodiment of the present invention provides a foamed settable composition comprising: water; CKD; a gas; a surfactant; and an additive comprising at least one of the following group: fly ash; shale; slag cement; zeolite; metakaolin; and combinations thereof.


The features and advantages of the present invention will be apparent to those skilled in the art. While numerous changes may be made by those skilled in the art, such changes are within the spirit of the invention.







DESCRIPTION OF PREFERRED EMBODIMENTS

The present invention relates to cementing operations and, more particularly, to settable compositions comprising water and CKD, and associated methods of use. The settable compositions of the present invention may be used in a variety of subterranean applications, including primary cementing, remedial cementing, and drilling operations. The settable compositions of the present invention also may be used in surface applications, for example, construction cementing.


Settable Compositions of the Present Invention

In one embodiment, a settable composition of the present invention comprises water and CKD. In some embodiments, a settable composition of the present invention may be foamed, for example, comprising water, CKD, a gas, and a surfactant. A foamed settable composition may be used, for example, where it is desired for the settable composition to be lightweight. Other optional additives may also be included in the settable compositions of the present invention as desired, including, but not limited to, hydraulic cement, fly ash, slag cement, shale, zeolite, metakaolin, combinations thereof, and the like.


The settable compositions of the present invention should have a density suitable for a particular application as desired by those of ordinary skill in the art, with the benefit of this disclosure. In some embodiments, the settable compositions of the present invention may have a density in the range of from about 8 pounds per gallon (“ppg”) to about 16 ppg. In the foamed embodiments, the foamed settable compositions of the present invention may have a density in the range of from about 8 ppg to about 13 ppg.


The water used in the settable compositions of the present invention may include freshwater, saltwater (e.g., water containing one or more salts dissolved therein), brine (e.g., saturated saltwater produced from subterranean formations), seawater, or combinations thereof. Generally, the water may be from any source, provided that it does not contain an excess of compounds that may adversely affect other components in the settable composition. In some embodiments, the water may be included in an amount sufficient to form a pumpable slurry. In some embodiments, the water may be included in the settable compositions of the present invention in an amount in the range of from about 40% to about 200% by weight. As used herein, the term “by weight,” when used herein to refer to the percent of a component in the settable composition, means by weight included in the settable compositions of the present invention relative to the weight of the dry components in the settable composition. In some embodiments, the water may be included in an amount in the range of from about 40% to about 150% by weight.


The CKD should be included in the settable compositions in an amount sufficient to provide the desired compressive strength, density, and/or cost reduction. In some embodiments, the CKD may be present in the settable compositions of the present invention in an amount in the range of from about 0.01% to 100% by weight. In some embodiments, the CKD may be present in the settable compositions of the present invention in an amount in the range of from about 5% to 100% by weight. In some embodiments, the CKD may be present in the settable compositions of the present invention in an amount in the range of from about 5% to about 80% by weight. In some embodiments, the CKD may be present in the settable compositions of the present invention in an amount in the range of from about 10% to about 50% by weight.


The settable compositions of the present invention may optionally comprise a hydraulic cement. A variety of hydraulic cements may be utilized in accordance with the present invention, including, but not limited to, those comprising calcium, aluminum, silicon, oxygen, iron, and/or sulfur, which set and harden by reaction with water. Suitable hydraulic cements include, but are not limited to, Portland cements, pozzolana cements, gypsum cements, high alumina content cements, slag cements, silica cements, and combinations thereof. In certain embodiments, the hydraulic cement may comprise a Portland cement. In some embodiments, the Portland cements that are suited for use in the present invention are classified as Classes A, C, H, and G cements according to American Petroleum Institute, API Specification for Materials and Testing for Well Cements, API Specification 10, Fifth Ed., Jul. 1, 1990.


Where present, the hydraulic cement generally may be included in the settable compositions in an amount sufficient to provide the desired compressive strength, density, and/or cost. In some embodiments, the hydraulic cement may be present in the settable compositions of the present invention in an amount in the range of from 0% to about 100% by weight. In some embodiments, the hydraulic cement may be present in the settable compositions of the present invention in an amount in the range of from 0% to about 95% by weight. In some embodiments, the hydraulic cement may be present in the settable compositions of the present invention in an amount in the range of from about 20% to about 95% by weight. In some embodiments, the hydraulic cement may be present in the settable compositions of the present invention in an amount in the range of from about 50% to about 90% by weight.


In some embodiments, a pozzolana cement that may be suitable for use comprises fly ash. A variety of fly ashes may be suitable, including fly ash classified as Class C and Class F fly ash according to American Petroleum Institute, API Specification for Materials and Testing for Well Cements, API Specification 10, Fifth Ed., Jul. 1, 1990. Class C fly ash comprises both silica and lime so that, when mixed with water, it sets to form a hardened mass. Class F fly ash generally does not contain sufficient lime, so an additional source of calcium ions is required for the Class F fly ash to form a settable composition with water. In some embodiments, lime may be mixed with Class F fly ash in an amount in the range of from about 0.1% to about 25% by weight of the fly ash. In some instances, the lime may be hydrated lime. Suitable examples of fly ash include, but are not limited to, “POZMIX® A” cement additive, commercially available from Halliburton Energy Services, Inc., Duncan, Okla.


Where present, the fly ash generally may be included in the settable compositions in an amount sufficient to provide the desired compressive strength, density, and/or cost. In some embodiments, the fly ash may be present in the settable compositions of the present invention in an amount in the range of from about 5% to about 75% by weight. In some embodiments, the fly ash may be present in the settable compositions of the present invention in an amount in the range of from about 10% to about 60% by weight.


In some embodiments, a slag cement that may be suitable for use may comprise slag. Slag generally does not contain sufficient basic material, so slag cement further may comprise a base to produce a settable composition that may react with water to set to form a hardened mass. Examples of suitable sources of bases include, but are not limited to, sodium hydroxide, sodium bicarbonate, sodium carbonate, lime, and combinations thereof.


Where present, the slag cement generally may be included in the settable compositions in an amount sufficient to provide the desired compressive strength, density, and/or cost. In some embodiments, the slag cement may be present in the settable compositions of the present invention in an amount in the range of from 0% to about 99.9% by weight. In some embodiments, the slag cement may be present in the settable compositions of the present invention in an amount in the range of from about 5% to about 75% by weight.


In certain embodiments, the settable compositions of the present invention further may comprise metakaolin. Generally, metakaolin is a white pozzolan that may be prepared by heating kaolin clay, for example, to temperatures in the range of from about 600° to about 800° C. In some embodiments, the metakaolin may be present in the settable compositions of the present invention in an amount in the range of from about 5% to about 95% by weight. In some embodiments, the metakaolin may be present in an amount in the range of from about 10% to about 50% by weight.


In certain embodiments, the settable compositions of the present invention further may comprise shale. Among other things, shale included in the settable compositions may react with excess lime to form a suitable cementing material, for example, calcium silicate hydrate. A variety of shales are suitable, including those comprising silicon, aluminum, calcium, and/or magnesium. An example of a suitable shale comprises vitrified shale. Suitable examples of vitrified shale include, but are not limited to, “PRESSUR-SEAL® FINE LCM” material and “PRESSUR-SEAL® COARSE LCM” material, which are commercially available from TXI Energy Services, Inc., Houston, Tex. Generally, the shale may have any particle size distribution as desired for a particular application. In certain embodiments, the shale may have a particle size distribution in the range of from about 37 micrometers to about 4,750 micrometers.


Where present, the shale may be included in the settable compositions of the present invention in an amount sufficient to provide the desired compressive strength, density, and/or cost. In some embodiments, the shale may be present in an amount in the range of from about 5% to about 75% by weight. In some embodiments, the shale may be present in an amount in the range of from about 10% to about 35% by weight. One of ordinary skill in the art, with the benefit of this disclosure, will recognize the appropriate amount of the shale to include for a chosen application.


In certain embodiments, the settable compositions of the present invention further may comprise zeolite. Zeolites generally are porous alumino-silicate minerals that may be either a natural or synthetic material. Synthetic zeolites are based on the same type of structural cell as natural zeolites, and may comprise aluminosilicate hydrates. As used herein, the term “zeolite” refers to all natural and synthetic forms of zeolite.


In certain embodiments, suitable zeolites for use in present invention may include “analcime” (which is hydrated sodium aluminum silicate), “bikitaite” (which is lithium aluminum silicate), “brewsterite” (which is hydrated strontium barium calcium aluminum silicate), “chabazite” (which is hydrated calcium aluminum silicate), “clinoptilolite” (which is hydrated sodium aluminum silicate), “faujasite” (which is hydrated sodium potassium calcium magnesium aluminum silicate), “harmotome” (which is hydrated barium aluminum silicate), “heulandite” (which is hydrated sodium calcium aluminum silicate), “laumontite” (which is hydrated calcium aluminum silicate), “mesolite” (which is hydrated sodium calcium aluminum silicate), “natrolite” (which is hydrated sodium aluminum silicate), “paulingite” (which is hydrated potassium sodium calcium barium aluminum silicate), “phillipsite” (which is hydrated potassium sodium calcium aluminum silicate), “scolecite” (which is hydrated calcium aluminum silicate), “stellerite” (which is hydrated calcium aluminum silicate), “stilbite” (which is hydrated sodium calcium aluminum silicate), and “thomsonite” (which is hydrated sodium calcium aluminum silicate), and combinations thereof. In certain embodiments, suitable zeolites for use in the present invention include chabazite and clinoptilolite. An example of a suitable source of zeolite is available from the C2C Zeolite Corporation of Calgary, Canada.


In some embodiments, the zeolite may be present in the settable compositions of the present invention in an amount in the range of from about 5% to about 65% by weight. In certain embodiments, the zeolite may be present in an amount in the range of from about 10% to about 40% by weight.


In certain embodiments, the settable compositions of the present invention further may comprise a set retarding additive. As used herein, the term “set retarding additive” refers to an additive that retards the setting of the settable compositions of the present invention. Examples of suitable set retarding additives include, but are not limited to, ammonium, alkali metals, alkaline earth metals, metal salts of sulfoalkylated lignins, hydroxycarboxy acids, copolymers that comprise acrylic acid or maleic acid, and combinations thereof. One example of a suitable sulfoalkylate lignin comprises a sulfomethylated lignin. Suitable set retarding additives are disclosed in more detail in U.S. Pat. No. Re. 31,190, the entire disclosure of which is incorporated herein by reference. Suitable set retarding additives are commercially available from Halliburton Energy Services, Inc. under the tradenames “HR® 4,” “HR® 5,” HR® 7,” “HR® 12,” “HR® 15,” HR® 25,” “SCR™ 100,” and “SCR™ 500.” Generally, where used, the set retarding additive may be included in the settable compositions of the present invention in an amount sufficient to provide the desired set retardation. In some embodiments, the set retarding additive may be present in an amount in the range of from about 0.1% to about 5% by weight.


Optionally, other additional additives may be added to the settable compositions of the present invention as deemed appropriate by one skilled in the art, with the benefit of this disclosure. Examples of such additives include, but are not limited to, accelerators, weight reducing additives, heavyweight additives, lost circulation materials, filtration control additives, dispersants, and combinations thereof. Suitable examples of these additives include crystalline silica compounds, amorphous silica, salts, fibers, hydratable clays, microspheres, pozzolan lime, latex cement, thixotropic additives, combinations thereof and the like.


An example of a settable composition of the present invention may comprise water and CKD. As desired by one of ordinary skill in the art, with the benefit of this disclosure, such settable composition of the present invention further may comprise any of the above-listed additives, as well any of a variety of other additives suitable for use in subterranean applications.


Another example of a settable composition of the present invention may comprise water and CKD, and an additive comprising at least one of the following group: fly ash; shale; zeolite; slag cement; metakaolin; and combinations thereof. As desired by one of ordinary skill in the art, with the benefit of this disclosure, such settable composition of the present invention further may comprise any of the above-listed additives, as well any of a variety of other additives suitable for use in subterranean applications.


As mentioned previously, in certain embodiments, the settable compositions of the present invention may be foamed with a gas. In some embodiments, foamed settable compositions of the present invention may comprise water, CKD, a gas, and a surfactant. Other suitable additives, such as those discussed previously, also may be included in the foamed settable compositions of the present invention as desired by those of ordinary skill in the art, with the benefit of this disclosure. The gas used in the foamed settable compositions of the present invention may be any gas suitable for foaming a settable composition, including, but not limited to, air, nitrogen, or combinations thereof. Generally, the gas should be present in the foamed settable compositions of the present invention in an amount sufficient to form the desired foam. In certain embodiments, the gas may be present in the foamed settable compositions of the present invention in an amount in the range of from about 10% to about 80% by volume of the composition.


Where foamed, the settable compositions of the present invention further comprise a surfactant. In some embodiments, the surfactant comprises a foaming and stabilizing surfactant. As used herein, a “foaming and stabilizing surfactant composition” refers to a composition that comprises one or more surfactants and, among other things, may be used to facilitate the foaming of a settable composition and also may stabilize the resultant foamed settable composition formed therewith. Any suitable foaming and stabilizing surfactant composition may be used in the settable compositions of the present invention. Suitable foaming and stabilizing surfactant compositions may include, but are not limited to: mixtures of an ammonium salt of an alkyl ether sulfate, a cocoamidopropyl betaine surfactant, a cocoamidopropyl dimethylamine oxide surfactant, sodium chloride, and water; mixtures of an ammonium salt of an alkyl ether sulfate surfactant, a cocoamidopropyl hydroxysultaine surfactant, a cocoamidopropyl dimethylamine oxide surfactant, sodium chloride, and water; hydrolyzed keratin; mixtures of an ethoxylated alcohol ether sulfate surfactant, an alkyl or alkene amidopropyl betaine surfactant, and an alkyl or alkene dimethylamine oxide surfactant; aqueous solutions of an alpha-olefinic sulfonate surfactant and a betaine surfactant; and combinations thereof. In one certain embodiment, the foaming and stabilizing surfactant composition comprises a mixture of an ammonium salt of an alkyl ether sulfate, a cocoamidopropyl betaine surfactant, a cocoamidopropyl dimethylamine oxide surfactant, sodium chloride, and water. A suitable example of such a mixture is “ZONESEAL® 2000” foaming additive, commercially available from Halliburton Energy Services, Inc. Suitable foaming and stabilizing surfactant compositions are described in U.S. Pat. Nos. 6,797,054, 6,547,871, 6,367,550, 6,063,738, and 5,897,699, the entire disclosures of which are incorporated herein by reference.


Generally, the surfactant may be present in the foamed settable compositions of the present invention in an amount sufficient to provide a suitable foam. In some embodiments, the surfactant may be present in an amount in the range of from about 0.8% and about 5% by volume of the water (“bvow”).


Methods of the Present Invention

The settable compositions of the present invention may be used in a variety of subterranean applications, including, but not limited to, primary cementing, remedial cementing, and drilling operations. The settable compositions of the present invention also may be used in surface applications, for example, construction cementing.


An example of a method of the present invention comprises providing a settable composition of the present invention comprising water and CKD; placing the settable composition in a location to be cemented; and allowing the settable composition to set therein. In some embodiments, the location to be cemented may be above ground, for example, in construction cementing. In some embodiments, the location to be cemented may be in a subterranean formation, for example, in subterranean applications. In some embodiments, the settable compositions of the present invention may be foamed. As desired by one of ordinary skill in the art, with the benefit of this disclosure, the settable compositions of the present invention useful in this method further may comprise any of the above-listed additives, as well any of a variety of other additives suitable for use in subterranean applications.


Another example of a method of the present invention is a method of cementing a pipe string (e.g., casing, expandable casing, liners, etc.) disposed in a well bore. An example of such a method may comprise providing a settable composition of the present invention comprising water and CKD; introducing the settable composition into the annulus between the pipe string and a wall of the well bore; and allowing the settable composition to set in the annulus to form a hardened mass. Generally, in most instances, the hardened mass should fix the pipe string in the well bore. In some embodiments, the settable compositions of the present invention may be foamed. As desired by one of ordinary skill in the art, with the benefit of this disclosure, the settable compositions of the present invention useful in this method further may comprise any of the above-listed additives, as well any of a variety of other additives suitable for use in subterranean application.


Another example of a method of the present invention is method of sealing a portion of a gravel pack or a portion of a subterranean formation. An example of such a method may comprise providing a settable composition of the present invention comprising water and CKD; introducing the settable composition into the portion of the gravel pack or the portion of the subterranean formation; and allowing the settable composition to form a hardened mass in the portion. The portions of the subterranean formation may include permeable portions of the formation and fractures (natural or otherwise) in the formation and other portions of the formation that may allow the undesired flow of fluid into, or from, the well bore. The portions of the gravel pack include those portions of the gravel pack, wherein it is desired to prevent the undesired flow of fluids into, or from, the well bore. Among other things, this method may allow the sealing of the portion of the gravel pack to prevent the undesired flow of fluids without requiring the gravel pack's removal. In some embodiments, the settable compositions of the present invention may be foamed. As desired by one of ordinary skill in the art, with the benefit of this disclosure, the settable compositions of the present invention useful in this method further may comprise any of the above-listed additives, as well any of a variety of other additives suitable for use in subterranean applications.


Another example of a method of the present invention is a method of sealing voids located in a pipe string (e.g., casing, expandable casings, liners, etc.) or in a cement sheath. Generally, the pipe string will be disposed in a well bore, and the cement sheath may be located in the annulus between the pipe string disposed in the well bore and a wall of the well bore. An example of such a method may comprise providing a settable composition comprising water and CKD; introducing the settable composition into the void; and allowing the settable composition to set to form a hardened mass in the void. In some embodiments, the settable compositions of the present invention may be foamed. As desired by one of ordinary skill in the art, with the benefit of this disclosure, the settable compositions of the present invention useful in this method further may comprise any of the above-listed additives, as well any of a variety of other additives suitable for use in subterranean applications.


When sealing a void in a pipe string, the methods of the present invention, in some embodiments, further may comprise locating the void in the pipe string; and isolating the void by defining a space within the pipe string in communication with the void; wherein the settable composition may be introduced into the void from the space. The void may be isolated using any suitable technique and/or apparatus, including bridge plugs, packers, and the like. The void in the pipe string may be located using any suitable technique.


When sealing a void in the cement sheath, the methods of the present invention, in some embodiments, further may comprise locating the void in the cement sheath; producing a perforation in the pipe string that intersects the void; and isolating the void by defining a space within the pipe string in communication with the void via the perforation, wherein the settable composition is introduced into the void via the perforation. The void in the pipe string may be located using any suitable technique. The perforation may be created in the pipe string using any suitable technique, for example, perforating guns. The void may be isolated using any suitable technique and/or apparatus, including bridge plugs, packers, and the like.


Another example of a method of the present invention is a method of changing the direction of drilling a well bore. An example of such a method may comprise providing a settable composition comprising CKD; introducing the settable composition into the well bore at a location in the well bore wherein the direction of drilling is to be changed; allowing the settable composition to set to form a kickoff plug in the well bore; drilling a hole in the kickoff plug; and drilling of the well bore through the hole in the kickoff plug. In some embodiments, the settable compositions of the present invention may be foamed. As desired by one of ordinary skill in the art, with the benefit of this disclosure, the settable compositions of the present invention useful in this method further may comprise any of the above-listed additives, as well any of a variety of other additives suitable for use in subterranean applications.


Generally, the drilling operation should continue in the direction of the hole drilled through the kickoff plug. The well bore and hole in the kickoff plug may be drilled using any suitable technique, including rotary drilling, cable tool drilling, and the like. In some embodiments, one or more oriented directional drilling tools may be placed adjacent to the kickoff plug. Suitable directional drilling tools include, but are not limited to, whip-stocks, bent sub-downhole motorized drill combinations, and the like. The direction drilling tools then may be used to drill the hole in the kickoff plug so that the hole is positioned in the desired direction. Optionally, the directional drilling tool may be removed from the well bore subsequent to drilling the hole in the kickoff plug.


To facilitate a better understanding of the present invention, the following examples of certain aspects of some embodiments are given. In no way should the following examples be read to limit, or define, the scope of the invention.


EXAMPLE 1

A series of sample settable compositions were prepared at room temperature and subjected to 48-hour compressive strength tests at 140° F. in accordance with API Specification 10. The sample compositions comprised water, Class A CKD, and Class A Portland cement.


The results of the compressive strength tests are set forth in the table below.









TABLE 1







Unfoamed Compressive Strength Tests:


Class A Cement and Class A CKD















48-Hour




Portland

Compressive




Cement
CKD
Strength at



Density
Class A
Class A
140° F.


Sample
(ppg)
(% by wt)
(% by wt)
(psi)














No. 1
14
0
100
228


No. 2
15.15
25
75
701


No. 3
14.84
50
50
1,189


No. 4
15.62
75
25
3,360


No. 5
15.6
100
0
2,350









EXAMPLE 2

Sample Compositions No. 6 and 7 were prepared at room temperature and subjected to thickening time and fluid loss tests at 140° F. and 240° F., respectively, in accordance with API Specification 10.


Sample Composition No. 6 comprised water, Class A Portland Cement (50% by weight), Class A CKD (50% by weight), “HALAD® 23” fluid loss control additive (0.75% by weight), and “HR®-5” set retarder (0.25% by weight). Accordingly, Sample Composition No. 6 had a Portland cement-to-CKD weight ratio of about 50:50. This Sample had a density of 14.84 ppg. “HALAD® 23” additive is a cellulose-based fluid loss control additive that is commercially available from Halliburton Energy Services, Inc., Duncan, Okla. “HR®-5” retarder is a lignosulfonate set retarder that is commercially available from Halliburton Energy Services, Inc., Duncan, Okla.


Sample Composition No. 7 comprised water, Class A Portland Cement (50% by weight), Class A CKD (50% by weight), “HALAD® 413” fluid loss control additive (0.75% by weight), and “HR®-12” set retarder (0.3% by weight). Accordingly, Sample Composition No. 7 had a Portland cement-to-CKD weight ratio of 50:50. This Sample had a density of 14.84 ppg. “HALAD® 413” additive is a grafted copolymer fluid loss control additive that is commercially available from Halliburton Energy Services, Inc., Duncan, Okla. “HR®-12” retarder is a mixture of a lignosulfonate and hydroxycarboxy acid set retarder that is commercially available from Halliburton Energy Services, Inc., Duncan, Okla.


The results of the fluid loss and thickening time tests are set forth in the table below.









TABLE 2







Unfoamed Thickening Time and Fluid Loss Tests:


Class A Cement and Class A CKD












Cement-to-
Test
Thickening
API Fluid



CKD Weight
Temperature
Time to 70 BC
Loss in 30 min


Sample
Ratio
(° F.)
(min:hr)
(ml)





No. 6
50:50
140
6:06
147


No. 7
50:50
240
2:20
220









EXAMPLE 3

A series of sample settable compositions were prepared at room temperature and subjected to 48-hour compressive strength tests at 140° F. in accordance with API Specification 10. The sample compositions comprised water, Class H CKD, and Class H Portland cement.


The results of the compressive strength tests are set forth in the table below.









TABLE 3







Unfoamed Compressive Strength Tests:


Class H Cement and Class H CKD

















48-Hour





Portland

Compressive





Cement
CKD
Strength at




Density
Class H
Class H
140° F.



Sample
(ppg)
(% by wt)
(% by wt)
(psi)

















No. 8
15.23
0
100
74.9



No. 9
15.4
25
75
544



No. 10
16
50
50
1,745



No. 11
16.4
75
25
3,250



No. 12
16.4
100
0
1,931










EXAMPLE 4

Sample Compositions No. 13 and 14 were prepared at room temperature and subjected to thickening time and fluid loss tests at 140° F. and 240° F., respectively, in accordance with API Specification 10.


Sample Composition No. 13 comprised water, Class H Portland Cement (50% by weight), Class H CKD (50% by weight), “HALAD® 23” fluid loss control additive (0.75% by weight), and 0.25% by weight “HR®-5” set retarder (0.25% by weight). Accordingly, Sample Composition No. 13 had a Portland cement-to-CKD weight ratio of about 50:50. This Sample had a density of 16 ppg.


Sample Composition No. 14 comprised water, Class H Portland Cement (50% by weight), Class H CKD (50% by weight), “HALAD® 413” fluid loss control additive (0.75% by weight), and “HR®-12” set retarder (0.3% by weight). Accordingly, Sample Composition No. 14 had a Portland cement-to-CKD weight ratio of about 50:50. This Sample had a density of 16 ppg.


The results of the fluid loss and thickening time tests are set forth in the table below.









TABLE 4







Unfoamed Thickening Time and Fluid Loss Tests:


Class H Cement and Class H CKD












Cement-to-
Test
Thickening
API Fluid



CKD Weight
Temperature
Time to 70 BC
Loss in 30 min


Sample
Ratio
(° F.)
(min:hr)
(ml)














No. 13
50:50
140
5:04
58


No. 14
50:50
240
1:09
220









EXAMPLE 5

A series of sample settable compositions were prepared at room temperature and subjected to 48-hour compressive strength tests at 140° F. in accordance with API Specification 10. The sample compositions comprised water, Class G CKD, and Class G Portland cement.


The results of the compressive strength tests are set forth in the table below.









TABLE 5







Unfoamed Compressive Strength Tests:


Class G Cement and Class G CKD















48-Hour




Portland

Compressive




Cement
CKD
Strength at



Density
Class G
Class G
140° F.


Sample
(ppg)
(% by wt)
(% by wt)
(psi)














No. 15
14.46
0
100
371


No. 16
14.47
25
75
601


No. 17
14.49
50
50
1,100


No. 18
14.46
75
25
3,160


No. 19
14.46
100
0
3,880









EXAMPLE 6

Sample Compositions No. 20 and 21 were prepared at room temperature and subjected to thickening time and fluid loss tests at 140° F. and 240° F., respectively, in accordance with API Specification 10.


Sample Composition No. 20 comprised water, Class G Portland Cement (50% by weight), Class G CKD (50% by weight), “HALAD® 23” fluid loss control additive (0.75% by weight), and “HR®-5” set retarder (0.25% by weight). Accordingly, Sample Composition No. 20 had a Portland cement-to-CKD weight ratio of about 50:50. This Sample had a density of 15.23 ppg.


Sample Composition No. 21 comprised water, Class G Portland Cement (50% by weight), Class G CKD (50% by weight), “HALAD® 413” fluid loss control additive (0.75% by weight), and “HR®-12” set retarder (0.3% by weight). Accordingly, Sample Composition No. 21 had a Portland cement-to-CKD weight ratio of about 50:50. This Sample had a density of 15.23 ppg.


The results of the fluid loss and thickening time tests are set forth in the table below.









TABLE 6







Unfoamed Thickening Time and Fluid Loss Tests:


Class G Cement and Class G CKD












Cement-to-
Test
Thickening
API Fluid



CKD Weight
Temperature
Time to 70 BC
Loss in 30 min


Sample
Ratio
(° F.)
(min:hr)
(ml)





No. 20
50:50
140
3:19
132


No. 21
50:50
240
1:24
152









Accordingly, Examples 1-6 indicate that settable compositions comprising Portland cement and CKD may have suitable thickening times, compressive strengths, and/or fluid loss properties for a particular application.


EXAMPLE 7

A series of foamed sample compositions were prepared in accordance with the following procedure. For each sample, a base sample composition was prepared that comprised water, Class A Portland cement, and Class A CKD. The amounts of CKD and Portland cement were varied as shown in the table below. “ZONESEAL® 2000” foaming additive was then added to each base sample composition in an amount of 2% bvow. Next, each base sample composition was foamed down to about 12 ppg. After preparation, the resulting foamed sample compositions were subjected to 72-hour compressive strength tests at 140° F. in accordance with API Specification 10.


The results of the compressive strength tests are set forth in the table below.









TABLE 7







Foamed Compressive Strength Test:


Class A Cement and Class A CKD

















72-Hour





Portland

Compressive



Base
Foam
Cement
CKD
Strength at



Density
Density
Class A
Class A
140° F.


Sample
(ppg)
(ppg)
(% by wt)
(% by wt)
(psi)















No. 22
14.34
12
0
100
167.6


No. 23
14.15
12
25
75
701


No. 24
15.03
12
50
50
1,253


No. 25
15.62
12
75
25
1,322


No. 26
15.65
12
100
0
1,814









EXAMPLE 8

A series of foamed sample compositions were prepared in accordance with the following procedure. For each sample, a base sample composition was prepared that comprised water, Class H Portland cement, and Class H CKD. The amounts of CKD and Portland cement were varied as shown in the table below. “ZONESEAL® 2000” foaming additive was then added to each base sample composition in an amount of 2% bvow. Next, each base sample composition was foamed down to about 12 ppg. After preparation, the resulting foamed sample compositions were subjected to 72-hour compressive strength tests at 140° F. in accordance with API Specification 10.


The results of the compressive strength tests are set forth in the table below.









TABLE 8







Foamed Compressive Strength Tests:


Class H Cement and Class H CKD

















72-Hour





Portland

Compressive



Base
Foam
Cement
CKD
Strength at



Density
Density
Class H
Class H
140° F.


Sample
(ppg)
(ppg)
(% by wt)
(% by wt)
(psi)















No. 27
15.07
12
0
100
27.2


No. 28
15.4
12
25
75
285


No. 29
16
12
50
50
845


No. 30
16.4
12
75
25
1,458


No. 31
16.57
12
100
0
1,509









EXAMPLE 9

A series of foamed sample compositions were prepared in accordance with the following procedure. For each sample, a base sample composition was prepared that comprised water, Class G Portland cement, and Class G CKD. The amounts of CKD and Portland cement were varied as shown in the table below. “ZONESEAL® 2000” foaming additive was then added to each base sample composition in an amount of 2% bvow. Next, each base sample composition was foamed down to about 12 ppg. After preparation, the resulting foamed sample compositions were subjected to 72-hour compressive strength tests at 140° F. in accordance with API Specification 10.


The results of the compressive strength tests are set forth in the table below.









TABLE 9







Foamed Compressive Strength Tests:


Class G Cement and Class G CKD

















72-Hour





Portland

Compressive



Base
Foam
Cement
CKD
Strength at



Density
Density
Class G
Class G
140° F.


Sample
(ppg)
(ppg)
(% by wt)
(% by wt)
(psi)















No. 32
14.32
12
0
100
181


No. 33
14.61
12
25
75
462


No. 34
15
12
50
50
729


No. 35
15.43
12
75
25
1,196


No. 36
15.91
12
100
0
1,598









Accordingly, Examples 7-9 indicate that foamed settable compositions comprising Portland cement and CKD may have suitable compressive strengths for a particular application.


EXAMPLE 10

A series of sample settable compositions were prepared at room temperature and subjected to 24-hour compressive strength tests at 140° F. in accordance with API Specification 10. Sufficient water was included in each sample to provide a density of about 14.2 ppg.


The results of the compressive strength tests are set forth in the table below.









TABLE 10







Unfoamed Compressive Strength Tests


Class A Cement, Class A CKD, Shale, Fly Ash, and Lime



















24-Hour



Portland




Compressive



Cement
CKD
Vitrified
POZMIZ ® A
Hydrated
Strength at



Class A
Class A
Shale1
Additive
Lime
140° F.


Sample
(% by wt)
(% by wt)
(% by wt)
(% by wt)
(% by wt)
(psi)
















No. 37
26
0
0
61
13
1,024


No. 38
19.5
6.5
0
61
13
766


No. 39
20.7
5.3
0
61
13
825


No. 40
23.3
2.7
0
61
13
796


No. 41
19.4
3.3
3.3
61
13
717


No. 42
20.7
2.65
2.65
61
13
708


No. 43
23.3
1.35
1.35
61
13
404






1The vitrified shale used was “PRESSUR-SEAL ® FINE LCM” material.







EXAMPLE 11

A series of sample compositions were prepared and subjected to thickening time tests at 140° F. in accordance with API Specification 10.


Sample Composition No. 44 comprised water, Class A Portland Cement (26% by weight), “POZMIX® A” cement additive (61% by weight), hydrated lime (13% by weight), “HALAD® 23” fluid loss control additive (0.6% by weight), and “HR®-5” set retarder (0.1% by weight). This Sample had a density of 14.2 ppg.


Sample Composition No. 45 comprised water, Class A Portland Cement (19.5% by weight), Class A CKD (6.5% by weight), “POZMIX® A” cement additive (61% by weight), hydrated lime (13% by weight), “HALAD® 23” fluid loss control additive (0.6% by weight), and “HR®-5” set retarder (0.1% by weight). This Sample had a density of 14.2 ppg. The vitrified shale was “PRESSUR-SEAL® FINE LCM” material.


Sample Composition No. 46 comprised water, Class A Portland Cement (19.5% by weight), Class A CKD (3.25% by weight), vitrified shale (3.25% by weight), “POZMIX® A” cement additive (61% by weight), hydrated lime (13% by weight), “HALAD® 23” fluid loss control additive (0.6% by weight), and “HR®-5” set retarder (0.1% by weight). This Sample had a density of 14.2 ppg. The vitrified shale was “PRESSUR-SEAL® FINE LCM” material.


The results of the fluid loss and thickening time tests are set forth in the table below.









TABLE 11







Unfoamed Thickening Time Tests:


Class A Cement, Class A CKD, Shale, Fly ash, and Lime














Portland




Thickening



Cement
CKD
Vitrified
POZMIX ® A
Hydrated
Time to 70



Class A
Class A
Shale1
Additive
Lime
BC at 140° F.


Sample
(% by wt)
(% by wt)
(% by wt)
(% by wt)
(% by wt)
(min:hr)
















No. 44
26
0
0
61
13
2:57


No. 45
19.5
6.5
0
61
13
2:20


No. 46
19.5
2.25
2.25
61
13
3:12






1The vitrified shale used was “PRESSUR-SEAL ® FINE LCM” material.







EXAMPLE 12

A series of sample settable compositions were prepared at room temperature and subjected to 24-hour compressive strength tests at 140° F. in accordance with API Specification 10. Sufficient water was included in each sample to provide a density of about 14.2 ppg.


The results of the compressive strength tests are set forth in the table below.









TABLE 12







Unfoamed Compressive Strength Tests:


Class H Cement, Class H CKD, Shale, Fly ash, and Lime



















24-Hour



Portland




Compressive



Cement
CKD
Vitrified
POZMIX ® A
Hydrated
Strength at



Class H
Class H
Shale1
Additive
Lime
140° F.


Sample
(% by wt)
(% by wt)
(% by wt)
(% by wt)
(% by wt)
(psi)
















No. 47
26
0
0
61
13
704


No. 48
19.5
6.5
0
61
13
576


No. 49
20.7
5.3
0
61
13
592


No. 50
23.3
2.7
0
61
13
627


No. 51
19.4
3.3
3.3
61
13
626


No. 52
20.7
2.65
2.65
61
13
619


No. 53
23.3
1.35
1.35
61
13
594






1The vitrified shale used was “PRESSUR-SEAL ® FINE LCM” material.







EXAMPLE 13

Sample Composition No. 54 was prepared and subjected to a fluid loss test at 140° F. in accordance with API Specification 10. Sample Composition No. 54 comprised water, Class H Portland Cement (19.5% by weight), Class H CKD (3.3% by weight), vitrified shale (3.3% by weight), “POZMIX® A” cement additive (61% by weight), hydrated lime (13% by weight), “HALAD® 23” fluid loss control additive (0.6% by weight), and “HR®-5” set retarder (0.1% by weight). This Sample had a density of 14.2 ppg. Accordingly, Sample Composition No. 54 had a Portland cement-to-CKD weight ratio of 75:25. The vitrified shale was “PRESSUR-SEAL® FINE LCM” material.


The result of this fluid loss test is set forth in the table below.









TABLE 13







Unfoamed Fluid Loss Test:


Class H Cement, Class H CKD, Shale, Fly ash, and Lime














Portland




Fluid Loss in



Cement
CKD
Vitrified
POZMIX ® A
Hydrated
30 min API



Class H
Class H
Shale1
Additive
Lime
at 140° F.


Sample
(% by wt)
(% by wt)
(% by wt)
(% by wt)
(% by wt)
(ml)





No. 54
19.5
3.3
3.3
61
13
117






1The vitrified shale used was “PRESSUR-SEAL ® FINE LCM” material.







EXAMPLE 14

A series of sample settable compositions were prepared at room temperature and subjected to 24-hour compressive strength tests at 140° F in accordance with API Specification 10. Sufficient water was included in each sample to provide a density of about 14.2 ppg.


The results of the compressive strength tests are set forth in the table below.









TABLE 14







Unfoamed Compressive Strength Tests:


Class G Cement, Class G CKD, Shale, Fly ash, and Lime



















24-Hour



Portland




Compressive



Cement
CKD
Vitrified
POZMIX ® A
Hydrated
Strength at



Class G
Class G
Shale1
Additive
Lime
140° F.


Sample
(% by wt)
(% by wt)
(% by wt)
(% by wt)
(% by wt)
(psi)
















No. 55
26
0
0
61
13
491


No. 56
19.5
6.5
0
61
13
526


No. 57
20.7
5.3
0
61
13
474


No. 58
23.3
2.7
0
61
13
462


No. 59
19.4
3.3
3.3
61
13
523


No. 60
20.7
2.65
2.65
61
13
563






1The vitrified shale used was “PRESSUR-SEAL ® FINE LCM” material.







Accordingly, Examples 10-14 indicate that settable compositions comprising Portland cement, CKD, fly ash, hydrated lime, and optionally vitrified shale may have suitable compressive strengths, thickening times, and/or fluid loss properties for a particular application.


EXAMPLE 15

A series of foamed sample compositions were prepared in accordance with the following procedure. For each sample, a base sample composition was prepared that comprised water, Class A Portland cement, Class A CKD, vitrified shale, “POZMIX® A” cement additive (61% by weight), and hydrated lime (13% by weight). This Sample had a density of 14.2 ppg. The vitrified shale used was “PRESSUR-SEAL® FINE LCM” material. The amounts of CKD, Portland cement, and vitrified shale were varied as shown in the table below. “ZONESEAL® 2000” foaming additive was then added to each base sample composition in an amount of 2% bvow. Next, each base sample composition was foamed down to about 12 ppg. After preparation, the resulting foamed sample compositions were subjected to 10-day compressive strength tests at 140° F. in accordance with API Specification 10.


The results of the compressive strength tests are set forth in the table below.









TABLE 15







Foamed Compressive Strength Tests:


Class A Cement, Class A CKD, Shale, Fly ash, and Lime



















10-Day



Portland




Compressive



Cement
CKD
Vitrified
POZMIX ® A
Hydrated
Strength at



Class A
Class A
Shale1
Additive
Lime
140° F.


Sample
(% by wt)
(% by wt)
(% by wt)
(% by wt)
(% by wt)
(psi)
















No. 61
26
0
0
61
13
1,153


No. 62
19.5
6.5
0
61
13
1,151


No. 63
20.7
5.3
0
61
13
1,093


No. 64
23.3
2.7
0
61
13
950


No. 65
19.4
3.3
3.3
61
13
1,161


No. 66
20.7
2.65
2.65
61
13
1,009


No. 67
23.3
1.35
1.35
61
13
1,231






1The vitrified shale used was “PRESSUR-SEAL ® FINE LCM” material.







EXAMPLE 16

A series of foamed sample compositions were prepared in accordance with the following procedure. For each sample, a base sample composition was prepared that comprised water, Class A Portland cement, Class A CKD, vitrified shale, “POZMIX® A” cement additive (61% by weight), and hydrated lime (13% by weight). This Sample had a density of 14.2 ppg. The vitrified shale used was “PRESSUR-SEAL® FINE LCM” material. The amounts of CKD, Portland cement, and vitrified shale were varied as shown in the table below. “ZONESEAL® 2000” foaming additive was then added to each base sample composition in an amount of 2% bvow. Next, each base sample composition was foamed down to about 12 ppg. After preparation, the resulting foamed sample compositions were subjected to 72-hour compressive strength tests at 140° F. in accordance with API Specification 10.


The results of the compressive strength tests are set forth in the table below.









TABLE 16







Foamed Compressive Strength Tests:


Class A Cement, Class A CKD, Shale, Fly Ash, and Lime



















72-Hour



Portland




Compressive



Cement
CKD
Vitrified
POZMIX ® A
Hydrated
Strength at



Class A
Class A
Shale1
Additive
Lime
140° F.


Sample
(% by wt)
(% by wt)
(% by wt)
(% by wt)
(% by wt)
(psi)
















No. 68
26
0
0
61
13
1,057


No. 69
19.5
6.5
0
61
13
969


No. 70
20.7
5.3
0
61
13
984


No. 71
19.4
3.3
3.3
61
13
921


No. 72
20.7
2.65
2.65
61
13
811


No. 73
23.3
1.35
1.35
61
13
969






1The vitrified shale used was “PRESSUR-SEAL ® FINE LCM” material.







EXAMPLE 17

Foamed Sample Composition No. 74 was prepared in accordance with the following procedure. A base sample composition was prepared that comprised water, Class G Portland cement (19.5% by weight), Class G CKD (6.5% by weight), “POZMIX® A” cement additive (61% by weight), and hydrated lime (13% by weight). This base sample had a density of 14.2 ppg. “ZONESEAL® 2000” foaming additive was then added to each base sample composition in an amount of 2% bvow. Next, the base sample was foamed down to about 12 ppg. After preparation, the resulting Foamed Sample Composition was subjected to a 72-hour compressive strength test at 140° F. in accordance with API Specification 10.


The result of the compressive strength test is set forth in the table below.









TABLE 17







Foamed Compressive Strength Tests:


Class G Cement, Class G CKD, Fly Ash, and Lime

















72-Hour



Portland



Compressive



Cement
CKD
POZMIX ® A
Hydrated
Strength at



Class G
Class G
Additive
Lime
140° F.


Sample
(by wt)
(by wt)
(by wt)
(by wt)
(psi)





No. 74
19.5
6.5
61
13
777









Accordingly, Examples 15-17 indicate that foamed settable compositions comprising Portland cement, CKD, fly ash, hydrated lime, and optionally vitrified shale may have suitable compressive strengths for a particular application.


EXAMPLE 18

A series of sample settable compositions were prepared at room temperature and subjected to 24-hour compressive strength tests at 180° F. in accordance with API Specification 10. The sample compositions comprised water, Class A CKD, Class A Portland cement, zeolite, vitrified shale, and hydrated lime. The vitrified shale used was “PRESSUR-SEAL® FINE LCM” material. The amount of each component was varied as shown in the table below.


The results of the compressive strength tests are set forth in the table below.









TABLE 18







Unfoamed Compressive Strength Tests:


Class A Cement, Class A CKD, Zeolite, Shale, and Lime





















24-Hour




Portland




Compressive




Cement
CKD

Vitrified
Hydrated
Strength at



Density
Class A
Class A
Zeolite
Shale1
Lime
180° F.


Sample
(ppg)
(% by wt)
(% by wt)
(% by wt)
(% by wt)
(% by wt)
(psi)

















No. 75
13.3
50
25
25
0
0
1,915


No. 76
12.75
50
25
12.5
12.5
0
2,190


No. 77
11.6
0
75
10
25
0
31.6


No. 78
12.8
25
50
23.5
0
0
875


No. 79
12.5
25
50
12.5
12.5
0
923


No. 80
11.5
0
70
10
15
5
116.4






1The vitrified shale used was “PRESSUR-SEAL ® FINE LCM” material.







EXAMPLE 19

Foamed Sample Composition No. 81 was prepared in accordance with the following procedure. A base sample composition was prepared that comprised water, Class A Portland cement, Class A CKD, and zeolite. This base sample had a density of 14.2 ppg. “ZONESEAL® 2000” foaming additive was then added in an amount of 2% bvow. Next, the base sample was foamed down to about 12 ppg. After preparation, the resulting Foamed Sample Composition was subjected to a 72-hour compressive strength test at 140° F. in accordance with API Specification 10.


The result of the compressive strength test is set forth in the table below.









TABLE 19







Foamed Compressive Strength Tests:


Class A Cement, Class A CKD, and Zeolite



















72-Hour





Portland
CKD

Compressive



Base
Foam
Cement
Class A
Zeolite
Strength at



Density
Density
Class A
(%
(%
140° F.


Sample
(ppg)
(ppg)
(% by wt)
by wt)
by wt)
(psi)





No. 81
13.35
12
50
25
25
972









EXAMPLE 20

Sample Composition No. 82 was prepared at room temperature and subjected to a 24-hour compressive strength test at 180° F. in accordance with API Specification 10. Sample Composition No. 82 comprised water, Portland Class H Cement, Class H CKD, Zeolite, and vitrified shale. The vitrified shale used was “PRESSUR-SEAL® FINE LCM” material.


The result of the compressive strength test is set forth in the table below.









TABLE 20







Unfoamed Compressive Strength Tests:


Class H Cement, Class H CKD, Zeolite and Shale



















24-Hour




Portland
CKD


Compressive



Den-
Cement
Class H
Zeolite
Vitrified
Strength at



sity
Class H
(%
(%
Shale1
180° F.


Sample
(ppg)
(% by wt)
by wt)
by wt)
(% by wt)
(psi)





No. 82
15.2
50
25
12.5
12.5
2,280






1The vitrified shale used was “PRESSUR-SEAL ® FINE LCM” material.







EXAMPLE 21

Sample Composition No. 83 was prepared at room temperature and subjected to thickening time and fluid loss tests at 140° F. in accordance with API Specification 10. Sample Composition No. 83 comprised Class A Portland Cement (50% by weight), Class A CKD (25% by weight), zeolite (12.5% by weight), vitrified shale (12.5% by weight), “HALAD® 23” fluid loss control additive (0.75% by weight), and “HR®-5” set retarder (0.5% by weight). This Sample had a density of 12.75 ppg. The vitrified shale used was “PRESSUR-SEAL® FINE LCM” material.


The results of the fluid loss and thickening time tests are set forth in the table below.









TABLE 21







Unfoamed Thickening Time and Fluid Loss Tests:


Class A Cement, Class A CKD, Zeolite and Shale


















Thick-
Fluid







ening
Loss



Portland
CKD


Time to
in 30



Cement
Class A
Zeolite
Vitrified
70 BC at
min at



Class A
(%
(%
Shale1
140° F.
140° F.


Sample
(% by wt)
by wt)
by wt)
(% by wt)
(min:hr)
(ml)





No. 83
50
25
12.5
12.5
8:54
196






1The vitrified shale used was “PRESSUR-SEAL ® FINE LCM” material.







Accordingly, Examples 18-21 indicate that foamed and unfoamed settable compositions comprising Portland cement, CKD, zeolite, and optionally vitrified shale may have suitable compressive strengths for a particular application.


EXAMPLE 22

A series of sample settable compositions were prepared at room temperature and subjected to 24-hour compressive strength tests at 190° F. in accordance with API Specification 10. The sample compositions comprised water, slag cement, Class H CKD, Class H Portland cement, sodium carbonate, and hydrated lime. The slag cement contained sodium carbonate in an amount of 6% by weight. The amount of each component was varied as shown in the table below.


The results of the compressive strength tests are set forth in the table below.









TABLE 22







Unfoamed Compressive Strength Tests:


Class H Cement, Class H CKD, Slag Cement, and Lime



















24-Hour




Portland
CKD
Slag

Compressive



Den-
Cement
Class H
Cement
Hydrated
Strength at



sity
Class H
(%
(%
Lime
190° F.


Sample
(ppg)
(% by wt)
by wt)
by wt)
(% by wt)
(psi)
















No. 84
13.2
0
50
45
5
123.6


No. 85
13.6
0
50
50
0
170.3


No. 86
14
30
50
20
0
183.2


No. 87
15
30
20
50
0
563









EXAMPLE 23

A series of foamed sample settable compositions were prepared at room temperature and subjected to 72-hour compressive strength tests at 140° F. in accordance with API Specification 10. For each sample, a base sample composition comprised water, slag cement, Class H CKD, Class H Portland cement, and hydrated lime. The amount of each component was varied as shown in the table below. The slag cement contained sodium carbonate in an amount of 6% by weight. “ZONESEAL® 2000” foaming additive was then added to each base sample composition in an amount of 2% bvow. Next, each base sample composition was foamed down to about 11 ppg. After preparation, the resulting Foamed Sample Composition was subjected to a 72-hour compressive strength test at 140° F. in accordance with API Specification 10.


The result of the compressive strength tests are set forth in the table below.









TABLE 23







Foamed Compressive Strength Tests:


Class H Cement, Class H CKD, Slag Cement, and Lime





















72-Hour





Portland



Compressive



Base
Foam
Cement
CKD
Slag
Hydrated
Strength at



Density
Density
Class H
Class H
Cement
Lime
140° F.


Sample
(ppg)
(ppg)
(% by wt)
(% by wt)
(% by wt)
(% by wt)
(psi)

















No. 88
13.63
11
0
50
45
5
148.9


No. 89
13.68
11
0
50
50
0
161.1


No. 90
14.07
11
30
50
20
0
125









Accordingly, Examples 22-23 indicate that foamed and unfoamed settable compositions comprising CKD, slag cement, optionally hydraulic cement, and optionally hydrated lime may have suitable compressive strengths for a particular application.


EXAMPLE 24

A series of sample settable compositions were prepared at room temperature and subjected to 24-hour compressive strength tests at 180° F. in accordance with API Specification 10. The sample compositions comprised water, Portland Cement, CKD, metakaolin, and vitrified shale. The amount of each component was varied as shown in the table below. The vitrified shale used was “PRESSUR-SEAL® FINE LCM” material. Class A Portland Cement was used for this series of tests, except that Class H Portland Cement was used in Sample No. 93. Class A CKD was used for this series of tests, except that Class H CKD was used in Sample No. 93.


The results of the compressive strength tests are set forth in the table below.









TABLE 24







Compressive Strength Tests:


Cement CKD, Metakaolin, and Shale



















24-Hour








Com-








pressive








Strength



Den-
Portland
CKD

Vitrified
at



sity
Cement
(%
Metakaolin
Shale1
180° F.


Sample
(ppg)
(% by wt)
by wt)
(% by wt)
(% by wt)
(psi)
















No. 91
12.75
50
25
12.5
12.5
1,560


No. 92
13.5
50
25
25
0
1,082


No. 93
13
25
50
12.5
12.5
1,410






1The vitrified shale used was “PRESSUR-SEAL ® FINE LCM” material.







EXAMPLE 25

A series of foamed sample settable compositions were prepared at room temperature and subjected to 72-hour compressive strength tests at 180° F. in accordance with API Specification 10. For each sample, a base sample composition was prepared that comprised water, Portland Cement, CKD, metakaolin, and vitrified shale. The amount of each component was varied as shown in the table below. The vitrified shale used was “PRESSUR-SEAL® FINE LCM” material. Class A Portland Cement was used for this series of tests, except that Class H Portland Cement was used in Sample No. 96. Class A CKD was used for this series of tests, except that Class H CKD was used in Sample No. 96. “ZONESEAL® 2000” foaming additive was then added to each base sample composition in an amount of 2% bvow. Next, each base sample composition was foamed down to the density shown in the table below.


The results of the compressive strength tests are set forth in the table below.









TABLE 25







Foamed Compressive Strength Tests:


Cement, CKD, Metakaolin, and Shale





















72-Hour



Base
Foam
Portland


Vitrified
Compressive



Density
Density
Cement
CKD
Metakaolin
Shale1
Strength at 180° F.


Sample
(ppg)
(ppg)
(% by wt)
(% by wt)
(% by wt)
(% by wt)
(psi)

















No. 94
12.75
9.85
50
25
12.5
12.5
651


No. 95
13.5
9.84
50
25
25
0
512


No. 96
13
9.57
25
50
12.5
12.5
559






1The vitrified shale used was “PRESSUR-SEAL ® FINE LCM” material.







Accordingly, Examples 24-25 indicate that foamed and unfoamed settable compositions comprising hydraulic cement, CKD, metakaolin, and optionally vitrified shale may have suitable compressive strengths for a particular application.


Therefore, the present invention is well adapted to attain the ends and advantages mentioned as well as those that are inherent therein. While numerous changes may be made by those skilled in the art, such changes are encompassed within the spirit of this invention as defined by the appended claims. The terms in the claims have their plain, ordinary meaning unless otherwise explicitly and clearly defined by the patentee.

Claims
  • 1. A settable composition comprising: water;cement kiln dust in an amount of at least about 50% up to about 100% by weight of dry components; andat least one additive selected from the group consisting of: shale; zeolite; metakaolin; and combinations thereof, wherein the additive is a separate component of the settable composition from the cement kiln dust.
  • 2. The settable composition of claim 1 wherein the water comprises at least one component selected from the group consisting of: freshwater; saltwater; a brine; seawater; and combinations thereof.
  • 3. The settable composition of claim 1 wherein the cement kiln dust is present in the settable composition in an amount of at least about 75% by weight of dry components.
  • 4. The settable composition of claim 1 further comprising fly ash.
  • 5. The settable composition of claim 1 further comprising a hydraulic cement.
  • 6. The settable composition of claim 5 wherein the hydraulic cement is present in the settable composition in an amount in the range of from about 0% to about 50% by weight of dry components.
  • 7. The settable composition of claim 1 wherein the shale is present in the settable composition in an amount in the range of from about 5% to about 50% by weight of dry components.
  • 8. The settable composition of claim 7 wherein the shale comprises vitrified shale.
  • 9. The settable composition of claim 1 wherein the zeolite is present in the settable composition in an amount in the range of from about 5% to about 50% by weight of dry components.
  • 10. The settable composition of claim 9 wherein the zeolite comprises chabazite and clinoptilolite.
  • 11. The settable composition of claim 1 wherein the settable composition comprises slag cement.
  • 12. The settable composition of claim 11 wherein the slag cement comprises slag and a base.
  • 13. The settable composition of claim 1 wherein the metakaolin is present in the settable composition in an amount in the range of from about 5% to about 50% by weight of dry components.
  • 14. The settable composition of claim 1 wherein the settable composition is foamed and further comprises a gas, and a surfactant.
  • 15. The settable composition of claim 14 wherein the surfactant comprises a foaming and stabilizing surfactant composition.
  • 16. The settable composition of claim 1 wherein the settable composition further comprises at least one additive selected from the group consisting of: a set retarding additive; an accelerator; a lost circulation material; a filtration control additive; a dispersant; and combinations thereof.
  • 17. The settable composition of claim 1 wherein the settable composition comprises Portland cement.
  • 18. A settable composition comprising: water in an amount of about 40% to about 200% by weight of dry components;cement kiln dust in an amount of about 20% up to about 100% by weight of dry components; andzeolite.
  • 19. The settable composition of claim 18 wherein the cement kiln dust is present in the settable composition in an amount of at least about 50% by weight of dry components.
  • 20. The settable composition of claim 18 wherein the settable composition comprises at least one additive selected from the group consisting of: fly ash; hydraulic cement; shale; slag cement; and metakaolin.
  • 21. The settable composition of claim 18 wherein the settable composition comprises Portland cement.
  • 22. The settable composition of claim 18 wherein the settable composition comprises vitrified shale.
  • 23. The settable composition of claim 18 wherein the zeolite is present in the settable composition in an amount in the range of from about 5% to about 50% by weight of dry components.
  • 24. The settable composition of claim 18 wherein the settable composition is foamed and comprises a gas, and a surfactant.
  • 25. The settable composition of claim 18 wherein the settable composition comprises at least one additive selected from the group consisting of: a set retarding additive; an accelerator; a lost circulation material; a filtration control additive; a dispersant; and combinations thereof.
  • 26. A settable composition comprising: water;cement kiln dust; andshale, wherein the shale is a separate component of the settable composition from the cement kiln dust.
  • 27. The settable composition of claim 26 wherein the cement kiln dust is present in the settable composition in an amount of at least about 50% by weight of dry components.
  • 28. The settable composition of claim 26 wherein the settable composition comprises at least one additive selected from the group consisting of: fly ash; hydraulic cement; zeolite; slag cement; and metakaolin.
  • 29. The settable composition of claim 26 wherein the settable composition comprises Portland cement.
  • 30. The settable composition of claim 26 wherein the shale comprises vitrified shale.
  • 31. The settable composition of claim 26 wherein the shale is present in the settable composition in an amount in the range of from about 5% to about 75% by weight of dry components.
  • 32. The settable composition of claim 26 wherein the settable composition is foamed and comprises a gas, and a surfactant.
  • 33. The settable composition of claim 26 wherein the settable composition comprises at least one additive selected from the group consisting of: a set retarding additive; an accelerator; a lost circulation material; a filtration control additive; a dispersant; and combinations thereof.
  • 34. A settable composition comprising: water;cement kiln dust in an amount of greater than 50% up to about 100% by weight of dry components; andmetakaolin.
  • 35. The settable composition of claim 34 wherein the cement kiln dust is present in the settable composition in an amount of at least about 75% by weight of dry components.
  • 36. The settable composition of claim 34 wherein the settable composition comprises at least one additive selected from the group consisting of: fly ash; hydraulic cement; zeolite; slag cement; and shale.
  • 37. The settable composition of claim 34 wherein the settable composition comprises Portland cement.
  • 38. The settable composition of claim 34 wherein the settable composition comprises vitrified shale.
  • 39. The settable composition of claim 34 wherein the metakaolin is present in the settable composition in an amount in the range of from about 5% to about 50% by weight of dry components.
  • 40. The settable composition of claim 34 wherein the settable composition is foamed and comprises a gas, and a surfactant.
  • 41. The settable composition of claim 34 wherein the settable composition comprises at least one additive selected from the group consisting of: a set retarding additive; an accelerator; a lost circulation material; a filtration control additive; a dispersant; and combinations thereof.
US Referenced Citations (203)
Number Name Date Kind
2329940 Ponzer Sep 1943 A
2842205 Allen et al. Jul 1958 A
2848051 Williams Aug 1958 A
2871133 Palonen et al. Jan 1959 A
2945769 Gama et al. Jul 1960 A
3168139 Kennedy Feb 1965 A
3454095 Messenger et al. Jul 1969 A
3499491 Wyant Mar 1970 A
3557876 Tragesser Jan 1971 A
3748159 George Jul 1973 A
3876005 Fincher et al. Apr 1975 A
3887009 Miller Jun 1975 A
3887385 Quist et al. Jun 1975 A
4018617 Nicholson Apr 1977 A
4031184 McCord Jun 1977 A
4176720 Wilson Dec 1979 A
4268316 Wills, Jr. May 1981 A
4341562 Ahlbeck Jul 1982 A
RE31190 Detroit et al. Mar 1983 E
4407677 Wills, Jr. Oct 1983 A
4432800 Kneller et al. Feb 1984 A
4435216 Diehl et al. Mar 1984 A
4460292 Durham et al. Jul 1984 A
4494990 Harris Jan 1985 A
4515635 Rao et al. May 1985 A
4519452 Tsao May 1985 A
4555269 Rao et al. Nov 1985 A
4614599 Walker Sep 1986 A
4624711 Styron Nov 1986 A
4676317 Fry et al. Jun 1987 A
4741782 Styron May 1988 A
4784223 Worrall et al. Nov 1988 A
4883125 Wilson Nov 1989 A
4941536 Brothers et al. Jul 1990 A
4992102 Barbour et al. Feb 1991 A
5030366 Wilson et al. Jul 1991 A
5049288 Brothers et al. Sep 1991 A
5058679 Hale Oct 1991 A
RE33747 Hartley et al. Nov 1991 E
5086850 Harris et al. Feb 1992 A
5121795 Ewert et al. Jun 1992 A
5123487 Harris et al. Jun 1992 A
5125455 Harris et al. Jun 1992 A
5127473 Harris et al. Jul 1992 A
5183505 Spinney Feb 1993 A
5213160 Nahm May 1993 A
5238064 Dahl et al. Aug 1993 A
5266111 Barbour et al. Nov 1993 A
5295543 Terry et al. Mar 1994 A
5305831 Nahm Apr 1994 A
5314022 Cowan et al. May 1994 A
5327968 Onan et al. Jul 1994 A
5337824 Cowan Aug 1994 A
5352288 Mallow Oct 1994 A
5358044 Hale et al. Oct 1994 A
5358049 Hale Oct 1994 A
5361841 Hale Nov 1994 A
5361842 Hale Nov 1994 A
5368103 Heathman et al. Nov 1994 A
5370185 Cowan Dec 1994 A
5372641 Carpenter Dec 1994 A
5382290 Nahm et al. Jan 1995 A
5383521 Onan et al. Jan 1995 A
5383967 Chase Jan 1995 A
5398758 Onan Mar 1995 A
5423379 Hale Jun 1995 A
5439056 Cowan Aug 1995 A
5458195 Totten et al. Oct 1995 A
5464060 Hale Nov 1995 A
5472051 Brothers Dec 1995 A
5476144 Nahm Dec 1995 A
5494513 Ding et al. Feb 1996 A
5499677 Cowan Mar 1996 A
5515921 Cowan May 1996 A
5518996 Maroy et al. May 1996 A
5520730 Barbour et al. May 1996 A
5529624 Riegler Jun 1996 A
5536311 Rodrigues Jul 1996 A
5542782 Carter Aug 1996 A
5569324 Totten et al. Oct 1996 A
5580379 Cowan Dec 1996 A
5585333 Dahl et al. Dec 1996 A
5588489 Chatterji et al. Dec 1996 A
5673753 Hale Oct 1997 A
5711383 Terry et al. Jan 1998 A
5716910 Totten et al. Feb 1998 A
5728654 Dobson, Jr. et al. Mar 1998 A
5851960 Totten et al. Dec 1998 A
5866516 Costin Feb 1999 A
5874387 Carpenter et al. Feb 1999 A
5897699 Chatterji et al. Apr 1999 A
5900053 Brothers et al. May 1999 A
5913364 Sweatman Jun 1999 A
5988279 Udarbe Nov 1999 A
6022408 Stokes Feb 2000 A
6060434 Sweatman et al. May 2000 A
6060535 Villar et al. May 2000 A
6063738 Chatterji et al. May 2000 A
6138759 Chatterji et al. Oct 2000 A
6143069 Brothers et al. Nov 2000 A
6145591 Boncan et al. Nov 2000 A
6153562 Villar et al. Nov 2000 A
6167967 Sweatman Jan 2001 B1
6170575 Reddy et al. Jan 2001 B1
6230804 Mueller et al. May 2001 B1
6244343 Brothers et al. Jun 2001 B1
6245142 Reddy et al. Jun 2001 B1
6258757 Sweatman et al. Jul 2001 B1
6277189 Chugh Aug 2001 B1
6312515 Barlet-Goudard et al. Nov 2001 B1
6315042 Griffith et al. Nov 2001 B1
6332921 Brothers et al. Dec 2001 B1
6367550 Chatterji et al. Apr 2002 B1
6379456 Heathman et al. Apr 2002 B1
6402833 O'Hearn et al. Jun 2002 B1
6409819 Ko Jun 2002 B1
6457524 Roddy Oct 2002 B1
6478869 Reddy et al. Nov 2002 B2
6488763 Brothers et al. Dec 2002 B2
6494951 Reddy et al. Dec 2002 B1
6500252 Chatterji et al. Dec 2002 B1
6508305 Brannon et al. Jan 2003 B1
6524384 Grif Feb 2003 B2
6547871 Chatterji et al. Apr 2003 B2
6561273 Brothers et al. May 2003 B2
6562122 Dao et al. May 2003 B2
6565647 Day et al. May 2003 B1
6572697 Gleeson et al. Jun 2003 B2
6610139 Reddy et al. Aug 2003 B2
6626243 Boncan Sep 2003 B1
6645290 Barbour Nov 2003 B1
6656265 Garnier et al. Dec 2003 B1
6660080 Reddy et al. Dec 2003 B2
6666268 Griffith et al. Dec 2003 B2
6668929 Griffith et al. Dec 2003 B2
6689208 Brothers Feb 2004 B1
6702044 Reddy et al. Mar 2004 B2
6706108 Polston Mar 2004 B2
6716282 Griffith et al. Apr 2004 B2
6729405 DiLullo et al. May 2004 B2
6767398 Trato Jul 2004 B2
6776237 Dao et al. Aug 2004 B2
6796378 Reddy et al. Sep 2004 B2
6797054 Chatterji et al. Sep 2004 B2
6823940 Reddy et al. Nov 2004 B2
6835243 Brothers et al. Dec 2004 B2
6837316 Reddy et al. Jan 2005 B2
6846357 Reddy et al. Jan 2005 B2
6848519 Reddy et al. Feb 2005 B2
6887833 Brothers et al. May 2005 B2
6889767 Reddy et al. May 2005 B2
6904971 Brothers et al. Jun 2005 B2
6908508 Brothers Jun 2005 B2
6911078 Barlet-Gouedard et al. Jun 2005 B2
7048053 Santra May 2006 B2
7077203 Roddy et al. Jul 2006 B1
7174962 Roddy Feb 2007 B1
7199086 Roddy Apr 2007 B1
7204307 Roddy Apr 2007 B2
7204310 Roddy Apr 2007 B1
7213646 Roddy May 2007 B2
7284609 Roddy et al. Oct 2007 B2
20020033121 Marko Mar 2002 A1
20020073897 Trato Jun 2002 A1
20020117090 Ku Aug 2002 A1
20030116065 Griffith et al. Jun 2003 A1
20030116887 Scott Jun 2003 A1
20030167970 Polston Sep 2003 A1
20040007162 Morioka et al. Jan 2004 A1
20040040475 De La Roij Mar 2004 A1
20040079260 Datta et al. Apr 2004 A1
20040107877 Getzlaf et al. Jun 2004 A1
20040108113 Luke et al. Jun 2004 A1
20040112600 Luke et al. Jun 2004 A1
20040187740 Timmons Sep 2004 A1
20040188091 Luke et al. Sep 2004 A1
20040188092 Santra et al. Sep 2004 A1
20040191439 Bour et al. Sep 2004 A1
20040211562 Brothers et al. Oct 2004 A1
20040211564 Brothers et al. Oct 2004 A1
20040244650 Brothers Dec 2004 A1
20040244977 Luke et al. Dec 2004 A1
20040256102 Trato Dec 2004 A1
20050000734 Getzlaf et al. Jan 2005 A1
20050034867 Griffith et al. Feb 2005 A1
20050056191 Brothers et al. Mar 2005 A1
20050072599 Luke et al. Apr 2005 A1
20050084334 Shi et al. Apr 2005 A1
20050098317 Reddy et al. May 2005 A1
20050133221 Chatterji et al. Jun 2005 A1
20060025312 Santra et al. Feb 2006 A1
20060162926 Roddy Jul 2006 A1
20060166834 Roddy Jul 2006 A1
20060260512 Nordmeyer Nov 2006 A1
20070056474 Roddy Mar 2007 A1
20070056476 Roddy Mar 2007 A1
20070056479 Gray Mar 2007 A1
20070056733 Roddy Mar 2007 A1
20070056734 Roddy Mar 2007 A1
20070089643 Roddy Apr 2007 A1
20070089880 Roddy Apr 2007 A1
20070102157 Roddy May 2007 A1
20070238621 Roddy et al. Oct 2007 A1
Foreign Referenced Citations (16)
Number Date Country
2153372 Sep 1996 CA
0814067 Dec 1997 EP
1236701 Sep 2002 EP
1 348 831 Oct 2003 EP
1394137 Mar 2004 EP
1469954 Apr 1977 GB
52117316 Jan 1977 JP
10110487 Apr 1998 JP
1373781 Feb 1988 SU
WO 8301443 Apr 1983 WO
WO9854108 Dec 1998 WO
WO 0063134 Oct 2000 WO
WO 03031364 Apr 2003 WO
WO 03031364 Apr 2003 WO
WO 2005047212 May 2005 WO
WO 2005061846 Jul 2005 WO
Related Publications (1)
Number Date Country
20070056475 A1 Mar 2007 US