Setting radio frequency (RF) beamformer antenna weights per data-stream in a multiple-input-multiple-output (MIMO) system

Information

  • Patent Grant
  • 8861635
  • Patent Number
    8,861,635
  • Date Filed
    Monday, October 28, 2013
    11 years ago
  • Date Issued
    Tuesday, October 14, 2014
    11 years ago
Abstract
A system and a closed form method of optimizing a set of receive beamformers' weights, each feeding one of N multi-layer MIMO receiving system wherein the beamformers have a pool of M receive antennas wherein M is greater than N. Each beamformer is tuned to optimize one data stream, where selection of antennas per beamformer may be done out of a pool of antennas, and mapping of a given beamformer to a data stream is optimized per certain performance metrics.
Description
FIELD OF THE INVENTION

The present invention relates generally to the field of radio frequency (RF) multiple-input-multiple-output (MIMO) systems and more particularly to systems and methods for RF MIMO systems using RF beamforming and/or digital signal processing, to augment the receiver performance.


BACKGROUND OF THE INVENTION

Prior to setting forth a short discussion of the related art, it may be helpful to set forth definitions of certain terms that will be used hereinafter.


The term “MIMO” as used herein, is defined as the use of multiple antennas at both the transmitter and receiver to improve communication performance (measured by predefined metrics known in the art). MIMO offers significant increases in data throughput and link range without additional bandwidth or increased transmit power. It achieves this goal by spreading the transmit power over the antennas to achieve spatial multiplexing that improves the spectral efficiency (more bits per second per Hz of bandwidth) or to achieve a diversity gain that improves the link reliability (reduced fading), or increased antenna directivity. Several MIMO receiving schemes are known to be used such as channel estimation and blind scan.


The term “beamforming” sometimes referred to as “spatial filtering” as used herein, is a signal processing technique used in antenna arrays for directional signal transmission or reception. This is achieved by combining elements in the array in such a way that signals at particular angles experience constructive interference while others experience destructive interference. Beamforming can be used at both the transmitting and receiving ends in order to achieve spatial selectivity.


The term “beamformer” as used herein refers to RF circuitry that implements beamforming and usually includes a combiner and may further include switches, controllable phase shifters, and in some cases amplifiers and/or attenuators. For the sake of simplicity, in the following text, any referral to “phase” may also include a “gain” or “attenuation” of the signal.


The term “look through” method as used herein refers to receivers that use a single receive antenna in each beamformer at a time in order to carry out channel estimation and obtain the channel information (components of H being the channel matrix).


The term “Receiving Radio Distribution Network” or “Rx RDN” or simply “RDN” as used herein is defined as a group of beamformers as set forth above.


The term “hybrid MIMO RDN” as used herein is defined as a MIMO system that employs two or more antennas per channel (N is the number of channels and M is the total number of antennae and M>N). This architecture employs a beamformer for each channel so that two or more antennas are combined for each radio circuit that is connected to each one of the channels.


In hybrid MIMO RDN receiving systems, when the phases of the received signals from each antenna are properly adjusted or tuned with respect to one another, the individual signals may be combined and result in an improved performance of the receiving system.



FIG. 1 shows a non-limiting example of a standard 2×2 MIMO radio 20 with two antennas A and B communicating with a base station 10 having two transmit antennas radiating Tx1 and Tx2 according to the prior art. For the rank 2 (i.e., MIMO rank>1 in general), each transmit antenna will transmit portion of the two data streams with pre-coding weight W. While each receive antenna A and B receives both data streams, the baseband processes channel estimation separates them using the knowledge of pre-coding weight. It is noted that the receiver always knows the transmit pre-coding weight W, either by its own feedback to transmitter or by being informed by the transmitter in advance. The pre-coding weight W is configured to de-correlate the data streams by forming two orthogonal beams: one for each data stream, at the receiver.


SUMMARY

According to some embodiments of the present invention, the challenge of selecting the phases in the receive antennas coupled to the beamformers in the hybrid MIMO RDN architecture, are addressed in order to maximize the signal for each data stream directly by an individual beamformer or to maximize the signal for all data streams collectively, in an architecture in which the number of receive antennas (M) is greater than the number of transmit antennas (N). According to some embodiments of the present invention, the channel estimation information of individual Rx antenna (e.g., via look through) and the knowledge of pre-coding weight W may be used in order to tune the receive antennas such that each beamformer maximizes the received power of one particular data stream in the full rank MIMO operation. The phase settings Q for all receive antennas may be obtained for each beamformer-data stream mapping configurations. For example, for receive antenna i in beamformer j, in order to maximize the received power of data stream n, the phase for the receive antenna can be set as Φji=360°−phase of (Σl=1N hjl*wln)i, wherein “i” indicates the data of h*w which is obtained during the “look through” using antenna i, and “l” indicates transmit antenna, l=1, 2 . . . N.


According to some embodiments of the present invention, a method to select the optimal beamformer-data stream mapping configuration is provided herein. An embodiment of the method is based on seeking the maximum total received power for all data streams (i.e., the maximum sum of squared singular values of the transmission matrix: Q*H*W).


According to some other embodiments of the present invention, a method to select the optimal beamformer-data stream mapping configuration is provided herein. An embodiment of the method is based on seeking the most uniformly distributed gains for all data streams (i.e., minimal cond(Q*H*W) which is the ratio of the maximum singular value to the minimum singular value of the transmission matrix.


Another embodiment is based on seeking the overall MIMO capacity optimization by selecting the beamformer-data stream mapping configuration that has cond(Q*H*W) below a certain threshold (e.g., 2) and the maximum received power among the mapping configurations.


According to some other embodiments, the MIMO Rx RDN system may have switch matrix to pool the receive antennas among beamformers. The optimization computation in the aforementioned methods may be applied to the pooled antenna configurations to generalize the optimization process and may get the better optimization results.





BRIEF DESCRIPTION OF THE DRAWINGS

For a better understanding of the invention and in order to show how it may be implemented, references are made, purely by way of example, to the accompanying drawings in which like numerals designate corresponding elements or sections. In the accompanying drawings:



FIG. 1 is a high level block diagram illustrating a system according to some embodiments of the prior art;



FIG. 2 is a high level block diagram illustrating an exemplary 2×2 MIMO system augmented with an Rx RDN according to one embodiment of the invention;



FIG. 3 is a high level block diagram illustrating an exemplary 2×2 MIMO system augmented with an Rx RDN and with a switch matrix for antenna pooling according to another embodiment of the invention;



FIG. 4 is a flowchart describing an example procedure to set the phases for rx antennae in beamformer such that one beamformer maximizes the power for one data stream and then select the beamformer-data stream mapping configuration that maximizes the total power of all data streams according to an embodiment of the invention; and



FIG. 5 is a flowchart describing another embodiment of a method for setting set the phases of the receive antennas for each beamformer-data stream mapping configuration and then select the configuration that maximizes the total capacity of the MIMO system augmented with an Rx RDN according to an embodiment of the invention.





The drawings together with the following detailed description make the embodiments of the invention apparent to those skilled in the art.


DETAILED DESCRIPTION

With specific reference now to the drawings in detail, it is stressed that the particulars shown are for the purpose of example and solely for discussing the preferred embodiments of the present invention, and are presented in the cause of providing what is believed to be the most useful and readily understood description of the principles and conceptual aspects of the invention. In this regard, no attempt is made to show structural details of the invention in more detail than is necessary for a fundamental understanding of the invention. The description taken with the drawings makes apparent to those skilled in the art how the several forms of the invention may be embodied in practice.


Before explaining the embodiments of the invention in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangement of the components set forth in the following descriptions or illustrated in the drawings. The invention is applicable to other embodiments and may be practiced or carried out in various ways. Also, it is to be understood that the phraseology and terminology employed herein is for the purpose of description and should not be regarded as limiting.



FIG. 2 shows an example of a 2×2 MIMO RDN architecture in which each receive antenna as shown in FIG. 1 such as A1, and B1 are enhanced by adding another antenna, A2 and B2 respectively, thus providing reception by four antennas instead of two. The hybrid MIMO RDN architecture may further include beamformer 130-1 and beamformer 230-2 each including phase shifters 40-1 and 40-2 and combiners 50-1 and 50-2 respectively.



FIG. 3 shows an exemplary 2×2 MIMO with Rx RDN system capable of antenna pooling. Embodiments of the present invention include a system for setting weights per data-stream in a multiple-input-multiple-output (MIMO). The system may include: a number of receive antennas A1, A2, B1, B2 configured to receive transmitted signals associated with respective data streams transmitted from a base station 10; a number of beamformers 30-1 and 30-2 connected to the receive antennas A1, A2, B1, and B2, configured to combine signals using combiners 50-1 and 50-2 received by the antennas. The system may further include a baseband module coupled to the beamformers via the radio and configured to apply at least one MIMO receiving scheme to the combined signals. The system may further include a control module possibly but not necessarily inside the baseband module configured, inter alia, to: (1) assign each of the receive antennas in each beamformer with a phase that optimizes reception e.g., in interference plus noise (SINR) sense, of at least one of the data streams; (2) compare overall performance of the mapping configurations which map between the beamformers and the data streams (e.g., compare the performance of each configuration to each other); and (3) select the mapping configuration which results in higher SINR measured at the baseband module. For example, the beam created by A1 A2 tuned to maximize data stream 1, beam created by B1 B2 is tuned to maximize data stream 2, and vice versa.


According to some embodiments, the system may provide antenna pooling capability. In a non-limiting exemplary architecture, switch matrix 60 may be configured to pool the antenna A2 and B1 between the two beamformers in order to achieve better performance by selecting a better configuration from antenna phase perspective.


For the full rank MIMO, the Rx RDN can generate the multiple receive beams to further enhance the data streams signal by tuning each receive beam to an individual data stream (beam), respectively. The Rx RDN may then minimize the cross talk and maximize the signal-to-noise ratio for the MIMO system. Combiners 50-1 and 50-2 are to be tuned individually for the two separate data streams.


Following are four embodiments that may be used, either alone or in combination as algorithms of configuration selection.


According to a first embodiment of the present invention, the phases for receive antennae are selected and set such that each beamformer maximizes the received power for one particular data stream (e.g., beamformer 1, 2 . . . and N to maximize the received power for data stream 1, 2, . . . and N, respectively), and select other phases to configure different beamformer-data stream mapping (e.g., beamformer 1, 2, . . . and N maps to data stream N, 1, 2, . . . and N−1, respectively) by using the known pre-coding weight, and channel estimation from “look through”.


According to a second embodiment of the present invention, the mapping configuration that maximizes the total received power of all data streams, or maximizes the SINR, may be selected or chosen from the mapping configurations. Phases are then set according to the selected configuration;


According a third embodiment of the present invention, the condition of the transmission matrix for all beamformer-data stream mapping configurations (i.e., cond(transmission matrix), is checked. This condition is defined as the ratio of the maximum singular value to the minimum singular value of the transmission matrix, which represents the uniformity of the channel gains). If all the configurations experience relatively non-uniform channel gains, then the configuration that have the most uniform channel gains (i.e., minimum cond(transmission matrix)) is selected. On the other hand, a pool of configurations that have cond(transmission matrix) all below a pre-set threshold (e.g., 2), may be found. The configuration from the pool that maximizes the total received power of all data streams may be selected from the pool and the phases are set accordingly to optimize the overall performance (e.g., total capacity) for the MIMO system augmented with an Rx RDN.


According to a fourth embodiment of the present invention, the receive antennas may be pooled among beamformers and thus extend the choice of beamformer-data stream mapping configurations for the optimization computation to enhance the aforementioned three embodiments.


In one example, the received signal Y in a MIMO with Rx RDN may be presented in the following formula with the transmitted data streams X and the transmission matrix: Q*H*W, Y=Q*H*W*X. In the example of 2×2 MIMO augmented by the Rx RDN which has k receive antennas for each receiver, Q is a 2 by (2*k) matrix presenting the phase settings of the Rx antennas in the RDN, H is a (2*k) by 2 matrix, presenting the fading media, and W is a 2 by 2 matrix presenting the pre-coding weights to map the data streams to the transmit antennas and de-correlate the two data streams. It is noted that the pre-coding weight W is known to the receiver either by its feedback (e.g., PMI—Precoding Matrix Indicator) to the transmitter or informed by the transmitter in advanced.



FIGS. 4 and 5 show two exemplary procedures for obtaining the phase settings for all Rx antennae so that each beamformer maximizes the received power for a specific data stream and then select the optimal beamformer-data stream mapping configuration and then set the antennas accordingly. In the aforementioned non-limiting example, a case of N plurality of uncorrelated transmit signals projected from a base station, where N=2, is received by a full rank 2×2 MIMO user equipment UE which is augmented by an RDN with 2 beamformers, each beamformer has 2 receive antennas. User equipment (“UE” or “a UE”) may be a device such as a cellular telephone, wireless-capable computer or laptop computer, smartphone, or other wireless or cellular capable device.


First, a timer may be set, based on the mobility detection being parameters that determine how the channel changes over time, a time for repeating the optimization process.


The receivers, using the look through method (e.g., one Rx antenna in each beamformer) to carry out channel estimation and obtain the channel information (components of H), shown on the steps of 410 and 420, also on step 510 and 520.


Step 430 (and step 530) shows the computation of H*W and how to obtain the phase setting Q for the receive antennae such that each beamformer maximizes the received power for a specific data stream; and obtain all the phase settings Q's for the different configurations of beamformer-data stream mapping.


In one embodiment of the present invention, the aforementioned computation may include the configurations of antenna pooling. Antennas pooling extends the choices for the match of beamformer to data stream and may result in a better optimization results.


For the exemplary 2×2 hybrid MIMO system, the following formulas and procedures show how to obtain the best phases of Q (matrix) by using the look through method applied sequentially to all the receive antennas in the beamformers. During the look through periods, H is a 2 by 2 matrix, representing the channels between the 2 transmit antennas and 2 receive antennas.

Y=[y1, y2]
X=[x1, x2]
[y1, y2]T=H*W*[x1, x2]T=A[x1, x2]T
Then
y1=(h11w11+h12w21)x1+(h11w12+h12w22)x2=a11x1+a12x2
y2=(h21w11+h22w21)x1+(h21w12+h22w22)x2=a21x1+a22x2


In this example, a11 for beamformer 1 may be coherently combined to maximize the received power of data stream 1, and coherently combine a22 for beamformer 2 to maximize the received power of data stream 2. On the other hand, we may coherently combine a12 (a21) for beamformer 1 (2) to maximize the received power of data stream 2 (1). There are two antennas in each beamformer, in this example; hence the phases for the two antennae may be set such that the two aij are coherently combined. It is noted that all the receivers/beamformers should have a common reference phase (e.g., 360 degrees). The phase of each antenna in beamformer 1 (to maximize data stream 1) can then be set as:

Φ1i=360°−phase (a11)i=360°−phase (h11w11+h12w21)i, i=1 or 2


In one embodiment, the phase setting for receive antennas may be generalized such that each beamformer maximizes the received power of a specific data stream in the MIMO system augmented with Rx RDN. For Rx antenna i in beamformer j to maximize the received power of data stream n, the phase for the receive antenna can be set as

Φji=common ref. phase (e.g., 360°)−phase of (Σl=1Nhjl*wln)i

    • n=1, 2 . . . N.
  • “i” indicates the data of h is obtained during the look through using antenna i,
  • “l” indicates transmit antenna, l=1, 2 . . . N.


The phase setting Q for each beamformer-data stream mapping configuration can then be created accordingly.


In another embodiment, step 440 shows the step to compute the singular values of the transmission matrix Q*H*W for all Q′s (beamformer-data stream mappings).


In another embodiment, selecting the beamformer-data stream mapping configuration for maximizing the total received power of all data streams may be carried out by computing the sum of the squared of these singular values Σσi2 i is the singular value of Q*H*W, i=1 . . . N) which represented the overall gain (or relative total received power) for all mapping configurations (i.e., all Q's). The beamformer-data stream mapping configuration may be selected with maximum Σσi2 and set the phases (Q) accordingly to optimize the MIMO system augmented with an Rx RDN.


According to some embodiments in method 400 pre-set timer is checked in step 460 for re-tuning the Rx RDN. The timer may be set based on UE mobility.


In another embodiment of the invention, flowchart 500 describes another method to select the beamformer-data stream mapping configuration and set phase according to the select configuration for optimizing the hybrid MIMO system. Step 540 shows the step to compute the singular values of the transmission matrix Q*H*W and cond(Q*H*W) for all Q's (beamformer-data stream mappings). cond(Q*H*W) is defined as the ratio of the maximal singular value to the minimal singular value of matrix Q*H*W. The smaller value of cond(Q*H*W) results in more uniform gains for the transmission channels (matrix). cond(Q*H*W)=1 indicates the uniform gain for all data streams. 550 checks the uniformity of channel gains for all the configurations (i.e., if any configuration that have cond(Q*H*W) below a preset threshold (e.g., 2)). If none, the configuration with minimum cond(Q*H*W) is selected, shown in step 560, and the phases are set according to the selected configuration for optimizing the hybrid MIMO system. On the other hand, if a pool (including one) of the configuration(s) with cond(Q*H*W) below the pre-set threshold can be found, step 570 shows the configuration with the maximum Σσi2 can then be selected and set the receive antenna phases accordingly to optimize the MIMO system augmented with an Rx RDN. The beamformers may be re-tuned, based on the set timer according to mobility in step 580.


In one of the embodiment, the receive antennas connected to the matrix switch may change its connection (e.g., swap or exchange the connections) to a different beamformer to pool the Rx antenna among beamformers. The antenna phases may then be set according to the new antenna pooling configuration. The new antenna configuration with pooling can be included in the optimization process of either aforementioned optimization methods (maximizing total power or optimizing the overall SINR for all data streams). For the case of all antennae can be pooled to any beamformer, there may be up to M!/(K!)N different beam-former-antennae architectures, assuming each beamformer connect to equal (K) number of antennae. This indicates that it is possible to multiple the beamformer-data stream mapping configurations of a non-pooling-antenna case for the pooling case by a factor of M!/(K!)N. The larger number of configurations increases the computation for the phase settings and may enhance the optimization results.


The term “method” may refer to manners, means, techniques and procedures for accomplishing a given task including, but not limited to, those manners, means, techniques and procedures either known to, or readily developed from known manners, means, techniques and procedures by practitioners of the art to which the invention belongs.


The descriptions, examples, methods and materials presented in the claims and the specification are not to be construed as limiting but rather as illustrative only.


Meanings of technical and scientific terms used herein are to be commonly understood as by one of ordinary skill in the art to which the invention belongs, unless otherwise defined.


The present invention may be implemented in the testing or practice with methods and materials equivalent or similar to those described herein.


While the invention has been described with respect to a limited number of embodiments, these should not be construed as limitations on the scope of the invention, but rather as exemplifications of some of the preferred embodiments. Other possible variations, modifications, and applications are also within the scope of the invention. Accordingly, the scope of the invention should not be limited by what has thus far been described, but by the appended claims and their legal equivalents.

Claims
  • 1. A system comprising: a number M receive antennas configured to receive a number N transmitted signals associated with respective data streams;a number N beamformers connected to the M receive antennas, configured to combine signals coming from the antennas, wherein M is greater than N, and wherein M and N are integersa baseband module coupled to the N beamformers configured to apply at least one multiple input multiple output (MIMO) receiving scheme to the combined signals; anda control module configured to: assign each of K receive antennas in each beamformer with a phase/gain that maximizes a received power of at least one of the data streams; wherein K is an integer; compare overall performance of mapping configuration which map between the beamformers and the data streams; and select the mapping configuration which results in higher signal to interference plus noise (SINR) measured at the baseband module, wherein the received power is computed via pre-coding weight and channel estimation through each of the K receive antennas.
  • 2. The system according to claim 1, further comprising a switch matrix configured to swap at least some of the receive antenna connections amongst the beamformers, wherein the beamformers consecutively select a desired combination of K*N antennas from the set antennas wherein each consecutive selection is carried out on the antennas that were not yet selected.
  • 3. The system according to claim 1, wherein the phase settings for the receive antennas is computed for all different beamformer-data stream mapping configurations.
  • 4. The system according to claim 1, wherein the phase/gain settings are carried out at the base band module.
  • 5. A method comprising: receiving a number N transmitted signals associated with respective data streams, via M receive antennas connected to a number N beamformers, wherein M is greater than N, and wherein M and N are integersassigning each of K receive antennas in each beamformer with a phase/gain that maximizes a received power of at least one of the data streams, wherein K is an integer; wherein the received power is computed via a known pre-coding weight, and channel estimation through each of the K receiving antennas;comparing overall performance of mapping configuration which map between the beamformers and the data streams; andselecting the mapping configuration which results in higher signal to interference plus noise (SINR) measured at the baseband module.
  • 6. The method according to claim 5, further comprising swapping at least some of the receive antenna connections amongst the beamformers, wherein the beamformers consecutively select a desired combination of K*N antennas from the set antennas wherein each consecutive selection is carried out on the antennas that were not yet selected.
  • 7. The method according to claim 6, wherein at least one different phase/gain settings is computed for at least one specific beamformer-data stream mapping configuration.
  • 8. The method according to claim 5, wherein a beamformer-data stream mapping configuration is selected to maximize the total receive power of all data streams; the phase/gain settings of the selected configuration have the maximum Σσi2 among all the configurations; σi is the singular value of transmission matrix: Q*H*W wherein Q denotes phase/gain setting, H denotes a channel matrix, and W denotes pre-coding weight.
  • 9. The method according to claim 5, wherein a beamformer-data stream mapping configuration is selected to have a most uniform channel gain for all the data streams, wherein the phase setting of the selected configuration has a minimum cond(Q*H*W) among all the configurations, wherein cond(Q*H*W) indicates the condition of Matrix Q*H*W, wherein Q denotes phase setting, H denotes a channel matrix, and W denotes pre-coding weight.
  • 10. The method according to claim 5, wherein a pool of beamformer-data stream mapping configurations having relative uniform channel gains for all data streams are selected, wherein the configuration with cond(Q*H*W) below a threshold results in a relative uniform channel gains for all data streams, wherein cond(Q*H*W) indicates the condition of Matrix Q*H*W, wherein Q denotes phase setting, H denotes a channel matrix, and W denotes pre-coding weight.
  • 11. The method according to claim 10, wherein a beamformer-data stream mapping configuration is selected with the maximum Σσi2 for optimizing the receiving system; wherein σi is the singular value of transmission matrix: Q*H*W wherein Q denotes phase/gain setting, H denotes a channel matrix, and W denotes pre-coding weight.
  • 12. The method according to claim 5, wherein each receive antenna is connected to any beamformer, wherein a first beamformer selects any desired combination of up to K antennas from the set of M (=K*N) ones, and a next beamformer selects any up to K ones from what is left, till all N beamformers are addressed, wherein said combinations' performance is compared and selected using performance metrics.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation-in-part application of U.S. patent application Ser. No. 13/630,146, filed on Sep. 28, 2012, which claims the benefit of U.S. Provisional Patent Application No. 61/652,743, filed on May 29, 2012, U.S. Provisional Patent Application No. 61/657,999, filed on Jun. 11, 2012, U.S. Provisional Patent Application No. 61/658,015, filed on Jun. 11, 2012, and U.S. Provisional Patent Application No. 61/665,592, filed on Jun. 28, 2012, all of which are incorporated herein by reference in their entirety.

US Referenced Citations (165)
Number Name Date Kind
4044359 Applebaum et al. Aug 1977 A
4079318 Kinoshita Mar 1978 A
4359738 Lewis Nov 1982 A
4540985 Clancy et al. Sep 1985 A
4628320 Downie Dec 1986 A
5162805 Cantrell Nov 1992 A
5363104 Richmond Nov 1994 A
5444762 Frey et al. Aug 1995 A
5732075 Tangemann et al. Mar 1998 A
5915215 Williams et al. Jun 1999 A
5940033 Locher et al. Aug 1999 A
6018317 Dogan et al. Jan 2000 A
6046655 Cipolla Apr 2000 A
6101399 Raleigh et al. Aug 2000 A
6215812 Young et al. Apr 2001 B1
6226507 Ramesh et al. May 2001 B1
6230123 Mekuria et al. May 2001 B1
6297772 Lewis Oct 2001 B1
6321077 Saitoh et al. Nov 2001 B1
6377783 Lo et al. Apr 2002 B1
6584115 Suzuki Jun 2003 B1
6697633 Dogan et al. Feb 2004 B1
6834073 Miller et al. Dec 2004 B1
6927646 Niemi Aug 2005 B2
6975582 Karabinis et al. Dec 2005 B1
6987958 Lo et al. Jan 2006 B1
7068628 Li et al. Jun 2006 B2
7177663 Axness et al. Feb 2007 B2
7257425 Wang et al. Aug 2007 B2
7299072 Ninomiya Nov 2007 B2
7392015 Farlow et al. Jun 2008 B1
7499109 Kim et al. Mar 2009 B2
7606528 Mesecher Oct 2009 B2
7719993 Li et al. May 2010 B2
7742000 Mohamadi Jun 2010 B2
7769107 Sandhu et al. Aug 2010 B2
7898478 Niu et al. Mar 2011 B2
7970366 Arita et al. Jun 2011 B2
8078109 Mulcay Dec 2011 B1
8115679 Falk Feb 2012 B2
8155613 Kent et al. Apr 2012 B2
8280443 Tao et al. Oct 2012 B2
8294625 Kittinger et al. Oct 2012 B2
8306012 Lindoff et al. Nov 2012 B2
8315671 Kuwahara et al. Nov 2012 B2
8369436 Stirling-Gallacher Feb 2013 B2
8509190 Rofougaran Aug 2013 B2
8520657 Rofougaran Aug 2013 B2
8526886 Wu et al. Sep 2013 B2
8599955 Kludt et al. Dec 2013 B1
8599979 Farag et al. Dec 2013 B2
8649458 Kludt et al. Feb 2014 B2
20010029326 Diab et al. Oct 2001 A1
20010038665 Baltersee et al. Nov 2001 A1
20020051430 Kasami et al. May 2002 A1
20020065107 Harel et al. May 2002 A1
20020085643 Kitchener et al. Jul 2002 A1
20020107013 Fitzgerald Aug 2002 A1
20020115474 Yoshino et al. Aug 2002 A1
20030114162 Chheda et al. Jun 2003 A1
20030153322 Burke et al. Aug 2003 A1
20030203717 Chuprun et al. Oct 2003 A1
20040056795 Ericson et al. Mar 2004 A1
20040121810 Goransson et al. Jun 2004 A1
20040125899 Li et al. Jul 2004 A1
20040125900 Liu et al. Jul 2004 A1
20040166902 Castellano et al. Aug 2004 A1
20040228388 Salmenkaita Nov 2004 A1
20040235527 Reudink et al. Nov 2004 A1
20050068230 Munoz et al. Mar 2005 A1
20050068918 Mantravadi et al. Mar 2005 A1
20050075140 Famolari Apr 2005 A1
20050129155 Hoshino Jun 2005 A1
20050147023 Stephens et al. Jul 2005 A1
20050245224 Kurioka Nov 2005 A1
20050250544 Grant et al. Nov 2005 A1
20050287962 Mehta et al. Dec 2005 A1
20060041676 Sherman Feb 2006 A1
20060094372 Ahn et al. May 2006 A1
20060135097 Wang et al. Jun 2006 A1
20060227854 McCloud et al. Oct 2006 A1
20060264184 Li et al. Nov 2006 A1
20060270343 Cha et al. Nov 2006 A1
20060271969 Takizawa et al. Nov 2006 A1
20060285507 Kinder et al. Dec 2006 A1
20070076675 Chen Apr 2007 A1
20070093261 Hou et al. Apr 2007 A1
20070152903 Lin et al. Jul 2007 A1
20070223380 Gilbert et al. Sep 2007 A1
20080043867 Blanz et al. Feb 2008 A1
20080051037 Molnar et al. Feb 2008 A1
20080144737 Naguib Jun 2008 A1
20080165732 Kim et al. Jul 2008 A1
20080238808 Arita et al. Oct 2008 A1
20080280571 Rofougaran et al. Nov 2008 A1
20080285637 Liu et al. Nov 2008 A1
20090028225 Runyon et al. Jan 2009 A1
20090046638 Rappaport et al. Feb 2009 A1
20090058724 Xia et al. Mar 2009 A1
20090121935 Xia et al. May 2009 A1
20090154419 Yoshida et al. Jun 2009 A1
20090190541 Abedi Jul 2009 A1
20090268616 Hosomi Oct 2009 A1
20090322610 Hants et al. Dec 2009 A1
20090322613 Bala et al. Dec 2009 A1
20100002656 Ji et al. Jan 2010 A1
20100037111 Ziaja et al. Feb 2010 A1
20100040369 Zhao et al. Feb 2010 A1
20100117890 Vook et al. May 2010 A1
20100135420 Xu et al. Jun 2010 A1
20100150013 Hara et al. Jun 2010 A1
20100172429 Nagahama et al. Jul 2010 A1
20100195560 Nozaki et al. Aug 2010 A1
20100234071 Shabtay et al. Sep 2010 A1
20100278063 Kim et al. Nov 2010 A1
20100283692 Achour et al. Nov 2010 A1
20100285752 Lakshmanan et al. Nov 2010 A1
20100303170 Zhu et al. Dec 2010 A1
20100316043 Doi et al. Dec 2010 A1
20110019639 Karaoguz et al. Jan 2011 A1
20110032849 Yeung et al. Feb 2011 A1
20110032972 Wang et al. Feb 2011 A1
20110105036 Rao et al. May 2011 A1
20110150050 Trigui et al. Jun 2011 A1
20110150066 Fujimoto Jun 2011 A1
20110163913 Cohen et al. Jul 2011 A1
20110205883 Mihota Aug 2011 A1
20110228742 Honkasalo et al. Sep 2011 A1
20110249576 Chrisikos et al. Oct 2011 A1
20110273977 Shapira et al. Nov 2011 A1
20110281541 Borremans Nov 2011 A1
20110299437 Mikhemar et al. Dec 2011 A1
20120014377 Joergensen et al. Jan 2012 A1
20120015603 Proctor et al. Jan 2012 A1
20120020396 Hohne et al. Jan 2012 A1
20120033761 Guo et al. Feb 2012 A1
20120034952 Lo et al. Feb 2012 A1
20120045003 Li et al. Feb 2012 A1
20120064838 Miao et al. Mar 2012 A1
20120076028 Ko et al. Mar 2012 A1
20120170672 Sondur Jul 2012 A1
20120201153 Bharadia et al. Aug 2012 A1
20120201173 Jain et al. Aug 2012 A1
20120207256 Farag et al. Aug 2012 A1
20120212372 Petersson et al. Aug 2012 A1
20120218962 Kishiyama et al. Aug 2012 A1
20120220331 Luo et al. Aug 2012 A1
20120230380 Keusgen et al. Sep 2012 A1
20120251031 Suarez et al. Oct 2012 A1
20120270544 Shah Oct 2012 A1
20120314570 Forenza et al. Dec 2012 A1
20130010623 Golitschek Jan 2013 A1
20130023225 Weber Jan 2013 A1
20130051283 Lee et al. Feb 2013 A1
20130070741 Li et al. Mar 2013 A1
20130079048 Cai et al. Mar 2013 A1
20130094621 Luo et al. Apr 2013 A1
20130101073 Zai et al. Apr 2013 A1
20130156120 Josiam et al. Jun 2013 A1
20130170388 Ito et al. Jul 2013 A1
20130208619 Kudo et al. Aug 2013 A1
20130223400 Seo et al. Aug 2013 A1
20130242976 Katayama et al. Sep 2013 A1
20130272437 Eidson et al. Oct 2013 A1
20130331136 Yang et al. Dec 2013 A1
Foreign Referenced Citations (7)
Number Date Country
1 867 177 May 2010 EP
2 234 355 Sep 2010 EP
2009-278444 Nov 2009 JP
WO 03047033 Jun 2003 WO
WO 03073645 Sep 2003 WO
WO 2010085854 Aug 2010 WO
WO 2011060058 May 2011 WO
Non-Patent Literature Citations (48)
Entry
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/630,146 dated Jan. 22, 2013.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/630,146 dated Mar. 27, 2013.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/762,159 dated Apr. 16, 2013.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/762,191 dated May 2, 2013.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/762,188 dated May 15, 2013.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/776,204 dated May 21, 2013.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/770,255 dated Jun. 6, 2013.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/776,068 dated Jun. 11, 2013.
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/762,159 dated Jun. 20, 2013.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/775,886 dated Jul. 17, 2013.
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/762,191 dated Jul. 19, 2013.
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/630,146 dated Jul. 31, 2013.
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/762,188 dated Aug. 19, 2013.
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/770,255 dated Sep. 17, 2013.
Ahmadi-Shokouh et al., “Pre-LNA Smart Soft Antenna Selection for MIMO Spatial Multiplexing/Diversity System when Amplifier/Sky Noise Dominates”, European Transactions on Telecommunications, Wiley & Sons, Chichester, GB, vol. 21, No. 7, Nov. 1, 2010, pp. 663-677.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/889,150 dated Sep. 25, 2013.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/955,320 dated Oct. 15, 2013.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/776,204 dated Oct. 23, 2013.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/925,454 dated Oct. 28, 2013.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/955,194 dated Oct. 30, 2013.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/013,190 dated Nov. 5, 2013.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/776,068 dated Nov. 5, 2013.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/010,771 dated Dec. 17, 2013.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/068,863 dated Dec. 17, 2013.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/011,521 dated Dec. 23, 2013.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/775,886 dated Jan. 7, 2014.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/018,965 dated Jan. 13, 2014.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/858,302 dated Jan. 16, 2014.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/042,020 dated Jan. 16, 2014.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/102,539 dated Jan. 27, 2014.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/087,376 dated Jan. 29, 2014.
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/776,204 dated Jan. 31, 2014.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/094,644 dated Feb. 6, 2014.
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/955,320 dated Feb. 21, 2014.
Huang et al., “Antenna Mismatch and Calibration Problem in Coordinated Multi-point Transmission System,” IET Communications, 2012, vol. 6, Issue 3, pp. 289-299.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/109,904 dated Feb. 27, 2014.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/925,454 dated Mar. 7, 2014.
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/172,500 dated Mar. 26, 2014.
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/068,863 dated Mar. 25, 2014.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/010,771 dated Apr. 4, 2014.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/085,352 dated Apr. 7, 2014.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/889,150 dated Apr. 9, 2014.
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/955,194 dated Apr. 9, 2014.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/097,765 dated Apr. 22, 2014.
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/087,376 dated May 9, 2014.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/143,580 dated May 9, 2014.
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/776,068 dated May 13, 2014.
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/013,190 dated May 20, 2014.
Related Publications (1)
Number Date Country
20140051377 A1 Feb 2014 US
Provisional Applications (4)
Number Date Country
61652743 May 2012 US
61657999 Jun 2012 US
61658015 Jun 2012 US
61665592 Jun 2012 US
Continuation in Parts (1)
Number Date Country
Parent 13630156 Sep 2012 US
Child 14065182 US