The present disclosure relates generally to sewer pipe repair liners, and more particularly to such repair liners comprising a radio-frequency identification (“RFID”) transponder.
It is conventional in the repair of sewer pipes at the junction between the main pipe and lateral pipes branching therefrom toward various buildings to employ a resin-impregnated, fibrous repair liner that is cured in place at each lateral/main pipe junction needing repair. Typically, the repair liner is introduced to the repair site via the main pipe by means of a mobile unit commonly referred to as a packer.
It is also conventional in the repair of such lateral/main pipe junctions to move a video camera through the main pipe to help identify the location of both junctions in need of repair as well as previously repaired junctions. However, identification of such pipe junctions, as well as the buildings with which the lateral pipes are ultimately associated, can be difficult, including because many lateral pipes do not follow straight-line paths. To address this problem, it is known to apply printed indicia, such as the address of the building associated with a given lateral/main pipe juncture, to the repair liner. These printed indicia are, more particularly, applied to a surface of the repair liner so as to be visible to the video camera moved through the main pipe. In respect of the foregoing, the disclosure of U.S. Pat. No. 7,588,054, incorporated herein by reference in its entirety, is exemplary.
The specification discloses a repair liner for repairing a lateral/main pipe junction, as well as a method of employing such a repair liner to identify specific lateral/main pipe junctions. The repair liner includes a RFID transponder capable of transmitting an identification signal that is unique to the repair liner, thus facilitating easy, repeatable and reliable identification of the repair liner without reliance on visual inspection and identification.
According to one feature, the repair liner may be made of a flexible material impregnable with an uncured resinous material capable of curing and hardening to thereby bond the repair liner to one or both of lateral and main sewer pipes.
In one embodiment, the repair liner comprises a cylindrical sleeve for lining a circumferential portion of the lateral sewer pipe, and an annular collar projecting radially outwardly from the sleeve for lining a portion of the main pipe proximate the main/lateral junction. According to this embodiment, the RFID transponder may be disposed on the annular collar of the repair liner, being secured to a surface of the repair liner, such as by means of adhesives or fastening means, or, alternatively, being embedded within the flexible material of the repair liner.
In another embodiment, the repair liner comprises a cylindrical sleeve for lining a circumferential portion of the lateral sewer pipe, and a cylindrical sleeve for lining a circumferential portion of the main pipe proximate the main/lateral junction. According to this embodiment, the RFID transponder may be disposed on the cylindrical sleeve for lining a circumferential portion of the main pipe, being secured to a surface of the repair liner, such as by means of adhesives or fastening means, or, alternatively, being embedded within the flexible material of the repair liner.
The inventive method for identifying a lateral sewer pipe that forms a pipe junction with a main sewer pipe comprises the steps of:
The repair liner of this method may be any embodiment of the inventive repair liner as described herein.
Per one feature of this method, the mobile device may be a packer for applying a repair liner to a lateral/main pipe junction.
For a better understanding of the present invention and to show more clearly how it may be carried into effect, reference will now be made, by way of example, to the accompanying drawings, in which:
As required, a detailed description of exemplary embodiments of the present invention is disclosed herein. However, it is to be understood that the disclosed embodiments are merely exemplary of the invention, which may be embodied in various and alternative forms. The accompanying drawings are not necessarily to scale, and some features may be exaggerated or minimized to show details of particular components. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as providing a representative basis for teaching one skilled in the art to variously employ the present invention.
Referring to the
The RFID transponder 13 may be of conventional construction, while the identification signal may be any signal that is unique to the repair liner with which it is associated, including, by way of example, a signal identifying a building (such as, for instance, by address) associated with the lateral pipe 11 in the lateral/main junction of which the repair liner 12 is installed.
RFID technology is known and understood by those skilled in the art, and a detailed explanation thereof is not necessary for purposes of describing the present invention. Generally, RFID transponders, or “tags,” consist of a semiconductor, a coiled, etched, or stamped antennae, a capacitor, and a substrate on which the components are mounted or embedded. A protective covering is typically used to encapsulate and seal the substrate. RFID transponders may be active, semi-passive, or passive, the active and semi-passive varieties distinguished by internal batteries to power their circuits, and the passive variety relying on the RFID reader as the power source. A detailed description of passive RFID “tags” may be found in U.S. Pat. No. 6,259,367 B1, incorporated herein by reference in its entirety. Further information on RFID “tags” and related technology is disclosed in U.S. Pat. No. 6,451,154, “RFID Manufacturing Concepts,” issued Sep. 17, 2002 to Grabau et al.; U.S. Pat. No. 6,354,493, “System and Method for Finding a Specific RFID Tagged Article Located in a Plurality of RFID Tagged Articles,” issued Mar. 12, 2002 to Mon; PCT publication WO 02/48955, published Jun. 20, 2002; U.S. Pat. No. 6,362,738, “Reader for Use in a Radio Frequency Identification System and Method,” issued Mar. 26, 2002 to Vega. All of the foregoing are incorporated herein by reference in their entireties.
Commercial sources of suitable RFID “tags” include Alien Technology Corporation of Morgan Hill, Calif., sold under the name FSA (Fluidic Self-Assembly). With the FSA process, tiny semi-conductor devices are assembled into rolls of flexible plastic. The resulting “smart” substrate can be attached or embedded in a variety of surfaces. Other RFID technologies suited to the present invention include, by way of example and not limitation, the I*CODE chips and readers of Philips Semiconductor (Eindhoven, The Netherlands), and those produced by Texas Instruments (Dallas, Tex.) as part of Texas Instruments RFID (TI*RFID) Systems, formerly known as the TIRIS system (Texas Instruments Registration and Identification System), which is used to track and identify various assets using devices such as the TI TAG IT chip.
The repair liner 12 may be of any conventional manufacture, although in the illustrated embodiment the liner comprises a flexible material, such as felt, for instance, impregnable with an uncured resinous material capable of curing and hardening to thereby bond the repair liner to one or both of lateral 11 and main 10 sewer pipes per conventional practice. Such repair liners and means for their constructions and use in the repair of sewer pipes are all known to those skilled in the art. By way of non-limiting example, for instance, reference is made to the disclosures of U.S. Pat. No. 5,927,341, U.S. Pat. No. 6,068,725, and U.S. Pat. No. 6,044,867, the disclosures of which are incorporated herein by reference in their entireties.
The repair liner 12 may take such form as is appropriate to the repair being effected, the particular form of the repair liner 12 not being limiting of the present invention in its broader scope. In the illustrated embodiment of
In an alternative embodiment, shown in
In use, the repair liner as heretofore described is positioned at a lateral/main pipe junction to be repaired and bonded in place to create a rigid patch, all in known fashion. Thereafter, a mobile device 15 is provided for moving in the main sewer pipe 10, the mobile device 15 including a RFID reader 14 capable of detecting the identification signal transmitted by the RFID transponder 13 when the mobile device is positioned proximate the RFID transponder. Mobile device 15 may be a packer or an apparatus having detection of RFID transponder identification signals as its sole utility. One exemplary packer, for instance, is disclosed in Applicant's U.S. Pat. No. 7,631,665, the disclosure of which is incorporated herein by reference in its entirety.
The RFID reader 14 may be of conventional construction, according to one example of which the reader 14 generates a high-frequency electromagnetic field which is decoded by the RFID transponder 13 when the same is proximate the reader 14. In turn, the RFID transponder 13 generates the unique identification signal that is detected by the reader 14. This detected signal can then be relayed from the mobile device 15 to a remote station (not shown), such as a computer terminal, by means of electrical cable 16 trailing from the device 15 and communicating with the remote station.
Because the signal is unique to the repair liner 12 with which the RFID transponder 13 is associated, it will be appreciated that the invention as so described permits the easy and accurate determination of any given repair liner 12 and its associated lateral/main pipe junction.
It will be appreciated from the foregoing that the multiple inventive repair liners 12 as herein described may be provided in a given sewer line, each positioned in a different lateral/main pipe juncture that is uniquely identified by the RFID transponder 13 associated with each such liner. Furthermore, it will be appreciated from the foregoing that each such repair liner 12 may be separately identified by the mobile device 15 as it moves along the main pipe 10 of the sewer line and into proximity with each successive RFID transponder 13.
The foregoing description of the exemplary embodiment of the invention has been presented in order to explain the principles of the innovation and its practical application so as to enable one skilled in the art to utilize the innovation. It is not intended to be exhaustive of, or to limit the invention to, the precise forms disclosed, and although only an exemplary embodiment of the present invention has been described in detail in this disclosure, those skilled in the art who review this disclosure will readily appreciate that many modifications are possible to the present invention without materially departing from the novel teachings and advantages of the subject matter herein recited. Other substitutions, modifications, changes and omissions may be made in the exemplary embodiment without departing from the spirit of the present invention and, accordingly, all such modifications, changes, etc. are intended to be included within the scope of the invention as hereinafter claimed.