This application claims priority to Japanese Patent Application No. 2009-083838, filed Mar. 31, 2009, the content of which is hereby incorporated herein by reference in its entirety.
The present disclosure relates to a sewing machine. More specifically, the present disclosure relates to a sewing machine and a computer-readable medium that stores a control program executable on a sewing machine that can capture an image of an area that includes a needle drop point in a case where a thread break occurs.
A sewing machine is known that is capable of performing embroidery sewing and is provided with an image capture device that captures an image of an area that includes a needle drop point of a needle. The sewing machine is provided with a display. It is possible to switch the display between displaying an image of the area that includes the needle drop point that was captured by the image capture device and displaying an ordinary screen. The switching of the screen that is displayed is performed by operating an image capture start button. In a case where the image capture start button is pressed while the ordinary screen is being displayed, the image capture device captures the image of the area that includes the needle drop point. The captured image is then displayed on the display with an indication of the needle drop point superimposed on the captured image. This makes it possible for a user to check the needle drop point and the state of the sewing without putting the user's face close to the needle drop point. In a case where the image capture start button is pressed in a state in which the captured image is being displayed, the ordinary screen is displayed once again.
A multi-head embroidery sewing machine is known that automatically stops driving of a sewing machine head in a case where a thread break occurs. In the multi-head embroidery sewing machine, when a thread break is detected by a thread break sensor, driving of the sewing machine head is stopped by a control device.
A sewing machine is known that is capable of performing embroidery sewing and in which an operation key is displayed for transferring an embroidery frame one of forward and back by a distance that corresponds to at least one stitch. In the sewing machine, in a case where the embroidery sewing is interrupted because trouble such as a thread break or the like is detected, if a help key is operated, stitch number input keys indicating “one stitch,” “ten stitches,” and “one hundred stitches” are displayed, along with indications of “forward” and “back,” on a display with a touch panel. By operating the stitch number input keys, a user may move the needle drop point one of forward and back by the desired number of stitches. This makes it possible to restart sewing from the desired position in the embroidery pattern.
In the known sewing machines that are described above, in a case where a thread break occurs, the sewing proceeds until driving of the sewing machine head is stopped. In other words, the work cloth is transferred, and the needle drop point is moved forward without any stitches being formed on the work cloth. Therefore, when resetting the thread and restarting the sewing, the user needs to return the needle drop point to the position where the thread break occurred.
In the known sewing machines, when returning the needle drop point to the position where the thread break occurred, the user may perform the operation of returning the needle drop point to the thread break position by operating the operation keys that are displayed on the display while visually checking the area that includes the needle drop point. In other words, it is necessary for the user to alternate any number of times between looking at the display and looking at the area that includes the needle drop point. Therefore, after a thread break has occurred, for the user may not smoothly perform the work of adjusting the needle drop point.
Various exemplary embodiments of the broad principles derived herein provide a sewing machine and a computer-readable medium that stores a control program executable on a sewing machine that allow a user to smoothly adjust a needle drop point in a case where a thread break occurs during embroidery sewing.
Exemplary embodiments provide a sewing machine that is capable of sewing an embroidery pattern on a work cloth held by an embroidery frame. The sewing machine includes a display device that is capable of displaying at least one of an image and embroidery information, a detection device that detects an occurrence of a thread break while sewing is in progress, and an image capture device that is capable of capturing an image of at least an area including a needle drop point of a needle. The sewing machine further includes a display control device that displays an image captured by the image capture device and an operation key on the display device in a case where the detection device has detected the occurrence of the thread break, the operation key being to be used to transfer the embroidery frame by at least one stitch, and a sewing control device that causes the embroidery frame to be transferred based on a number of stitches specified by operation of the operation key.
Exemplary embodiments also provide a computer-readable medium storing a control program executable on a sewing machine that is capable of sewing an embroidery pattern on a work cloth held by an embroidery frame. The program includes instructions that cause a computer to perform the steps of receiving a signal that is transmitted in a case where a thread break has occurred while sewing is in progress, displaying an image and an operation key on a display device in a case where the signal is received, the image being captured by an image capture device that is capable of capturing an image of at least an area including a needle drop point of a needle, the operation key being to be used to transfer the embroidery frame by at least one stitch, and the display device being capable of displaying at least one of the image and embroidery information, and causing the embroidery frame to be transferred based on a number of stitches specified by operation of the operation key.
Exemplary embodiments will be described below in detail with reference to the accompanying drawings in which:
Hereinafter, an embodiment will be explained with reference to the drawings. First, a configuration of a sewing machine 1 will be explained with reference to
As shown in
An embroidery frame 34 that holds a work cloth 100 is disposed on the bed 11. The area within the embroidery frame 34 is an embroidery area in which a stitch of an embroidery pattern may be formed. An embroidery frame transfer unit 92 that transfers the embroidery frame 34 may be attached to and detached from the bed 11. A carriage cover 35 that extends in the front-rear direction is provided on the embroidery frame transfer unit 92. The carriage cover 35 contains a Y-axis transfer mechanism (not shown in the drawings). The Y-axis transfer mechanism transfers a carriage (not shown in the drawings) in a Y direction (the front-rear direction). The embroidery frame 34 may be attached to and detached from the carriage. A frame attachment portion (not shown in the drawings) on which the embroidery frame 34 is attached is provided on the right side of the carriage. The frame attachment portion projects outward to the right from the right side face of the carriage cover 35. An attaching portion (not shown in the drawings) that is provided on the left side of the embroidery frame 34 may be attached to the frame attachment portion. The carriage, the Y-axis transfer mechanism, and the carriage cover 35 are transferred in the X direction (the right-left direction) by an X-axis transfer mechanism (not shown in the drawings). The X-axis transfer mechanism is provided within the main body of the embroidery frame transfer unit 92. Thus the embroidery frame 34 is transferred in the X direction. The X-axis transfer mechanism and the Y-axis transfer mechanism are respectively driven by an X-axis motor 86 (refer to
The front face of the pillar 12 is provided with a liquid crystal display 15 that has a vertically long rectangular shape. Illustrations and names of commands that cause various types of commands to be executed are displayed on the liquid crystal display 15. The various types of commands may be used, for example, to set and edit various patterns and to control the sewing work. Various types of set values that pertain to sewing, various types of messages, a step forward/back screen 120 that will be described below and the like are displayed on the liquid crystal display 15.
A touch panel 26 is provided on the front face of the liquid crystal display 15. A plurality of patterns, function names for executing various types of functions, operation keys that are used to perform various types of settings, and the like may be displayed on the liquid crystal display 15. By using one of a finger and a special touch pen to touch a position on the touch panel 26 that corresponds to one of a pattern display portion and various types of keys on a screen that is displayed on the liquid crystal display 15, the user may select a sewing pattern, instruct a function to be executed, set a numerical value, and the like. Hereinafter, an operation of touching the touch panel 26 is referred to as a “panel operation.”
A configuration of the arm 13 will be explained. A top cover 16 to be opened and closed is attached to the top of the arm 13. The top cover 16 is provided in the longitudinal direction of the arm 13. The top cover 16 is axially supported at the rear upper edge of the arm 13 such that the top cover 16 may be opened and closed around the right-left directional axis. A thread spool housing 18 is provided close to the middle of the top of the arm 13 under the top cover 16. The thread spool housing 18 is a recessed portion for housing a thread spool 20 that supplies a thread to the sewing machine 1. A spool pin 19, which projects toward the head 14, is disposed on an inner face of the thread spool housing 18 on the pillar 12 side. The thread spool 20 may be attached to the spool pin 19 when the spool pin 19 is inserted through an insertion hole (not shown in the drawings) that is formed in the thread spool 20. An upper thread 17 that extends from the thread spool 20 may be supplied to a needle 7 (refer to
As shown in
The sewing machine 1 is provided with various types of sensors, such as a presser foot sensor (not shown in the drawings), an overload sensor (not shown in the drawings), and the like, by which various types of errors may be detected. The presser foot sensor detects that the presser foot 47 is in a raised position (refer to
The needle bar 6, the needle 7, a presser bar 45, the presser foot 47, and the surrounding area will be explained with reference to
The thread take-up spring 61 and a thread break sensor 60 will be explained with reference to
As shown in
During the sewing operation of the sewing machine 1, in a case where the upper thread 17 is not broken, when the thread take-up lever 27 (refer to
When the thread take-up lever 27 is moved downward, the upper thread 17 that extends to the thread take-up lever 27 goes slack, and the thread guide portion 613 is moved downward due to the rotational urging force of the torsion spring portion 611. The rotating member 62 and the shutter 64 are rotated along with the thread guide portion 613. Therefore, as shown in
Thus, in a case where the upper thread 17 is not broken, that is, in a case where the sewing is being normally performed, a cycle in which the shutter 64 is detected and not detected by the photointerrupter 65 is repeated at a specified time interval (once per stitch). A determination is thus made that a thread break has not occurred.
On the other hand, in a case where the upper thread 17 is broken, even if the thread take-up lever 27 is moved upward, tension is not imparted to the upper thread 17 that extends to the thread take-up lever 27. Therefore, the thread guide portion 613 is not moved upward. Therefore, the thread guide portion 613 is subject to the rotational urging force of the torsion spring portion 611, which causes the base end portion of the lever portion 612 to come into contact with the first restricting portion 281, as shown in
An electrical configuration of the sewing machine 1 will be explained with reference to
Drive circuits 81 to 84 are electrically connected to an output interface 75. The drive circuit 81 drives the sewing machine motor 85. The drive circuit 82 drives the liquid crystal display 15. The drive circuits 83 and 84 respectively drive the X-axis motor 86 and the Y-axis motor 87 that transfer the embroidery frame 34. The feed adjustment pulse motor, a drive circuit that drives the feed adjustment pulse motor, and the like are not shown in the drawings.
The CPU 71 conducts main control over the sewing machine 1 and executes various types of computation and processing in accordance with a control program. The control program is stored in a program data storage area 721 (refer to
The storage areas which the ROM 72 includes will be explained with reference to
Program data that is required in order for the CPU 71 (refer to
Storage areas which the RAM 73 includes will be explained with reference to
A plurality of the pattern data sets are stored in the pattern data storage area 722 of the ROM 72 (refer to
The operation of the sewing machine 1 in the present embodiment will be explained with reference to flowcharts that are shown in
As an example, a case is considered in which an embroidery pattern is sewn that forms the three letters “ABC,” as shown in
As shown in
Next, pattern selection processing is performed (Step S3). In the pattern selection processing, the CPU 71 reads out the pattern data sets that are stored in the pattern data storage area 722 of the ROM 72 (refer to
In the example, it is assumed that an embroidery pattern that forms the three letters “ABC,” as shown in
Next, pattern adjustment processing is performed such as settings of a sewing start position, the size of the embroidery pattern, the angle of the embroidery pattern, and the like (Step S4). Specifically, a positioning key, a size key, a rotation key, which are not shown in drawings, and the like are displayed on the liquid crystal display 15. The positioning key is used for setting the position where the embroidery pattern is to be sewn. The size key is used for setting the size of the embroidery pattern. The rotation key is used for setting the angle of the embroidery pattern. The embroidery pattern that has been adjusted by the positioning key, the size key, the rotation key, and the like is displayed at the same time. A pattern determination key (not shown in the drawings) is also displayed at the same time. The pattern determination key is used for determining the embroidery pattern to be sewn after the pattern adjustment processing has been performed.
A key that is selected by a panel operation is detected by the touch panel 26 and is recognized by the CPU 71. In a case where the positioning key has been selected, the position of the embroidery pattern that is displayed on the liquid crystal display 15 is changed. While checking the embroidery pattern that is displayed on the liquid crystal display 15, the user may set the position on the work cloth 100 where the embroidery pattern is to be sewn. In a case where one of the size key and the angle key has been selected, the corresponding one of the size and the angle of the embroidery pattern is adjusted, and the adjusted embroidery pattern is displayed on the liquid crystal display 15. Then, when the pattern determination key is selected, a pattern data set (a default pattern data set) that has been read out from the pattern data storage area 722 of the ROM 72 (refer to
In the example, it is assumed that the embroidery pattern “ABC” that was selected by the processing at Step S3 has been adjusted as shown in
The sample pattern data set 111 that are shown in
As described below, in a case where the embroidery sewing is performed based on the sample pattern data set 111, the counter value N that is stored in the counter value storage area 733 is increased in increments of one, such that the counter value N becomes 0, 1, 2, 3, and the like (at Step S10 in
As shown in
If the sewing start switch 21 has been pressed (YES at Step S5), the embroidery frame 34 is transferred to the position at which the sewing will be performed (Step S6). Specifically, the sample pattern data set 111 (refer to
Next, the sewing of one stitch is performed (Step S7). Specifically, the CPU 71 controls the drive circuit 81, which drives the sewing machine motor 85 (refer to
Then, a determination is made as to whether the sewing has been completed (Step S8). Specifically, a determination is made as to whether the counter value N is equal to the final counter value M. If the counter value N is equal to the final counter value M, it is determined that the sewing has been completed. In the example, when the first stitch has been sewn, the counter value N is zero, and the final counter value M is 1500. Therefore, the counter value N is not equal to the final counter value M. It is therefore determined that the sewing has not been completed (No at Step S8).
If it is determined that the sewing has not been completed (No at Step S8), a determination is made as to whether an error has occurred (Step S9). Specifically, one of a thread break error, a presser foot error, an overload error, and the like may be detected. The thread break error is detected when the upper thread 17 has broken. The presser foot error is detected when the presser foot 47 is switched to the raised position due to an operational mistake. The overload error is detected when the sewing machine motor 85 has been locked due to thread tangling or the like. If an error has not occurred (NO at Step S9), the counter value N that is stored in the counter value storage area 733 of the RAM 73 (refer to
In the example, an error does not occur when the first stitch is sewn (NO at Step S9). Therefore, the counter value N is increased by one to be one, which is stored in the counter value storage area 733 (Step S10). Next, the CPU 71 returns to Step S6, and the sewing is continued.
In the example, it is assumed that the sewing is normally performed until the counter value N reaches 510 and that the upper thread 17 is broken when the counter value N is 511. In this case, of the three letters “ABC” in the sample embroidery pattern 110, the embroidery pattern “A” has been completed, and the thread is broken while the sewing of the embroidery pattern “B” is in progress. As described above with reference to
After the upper thread 17 is broken, a certain length of time elapses until the determination is made that the thread break error has occurred, in that time, the counter value N that is stored in the 733 is increased a plurality of times. In other words, because the upper thread 17 has been broken, the work cloth 100 is transferred and the needle drop point is advanced with no stitches being formed on the work cloth 100. In the example, it is assumed that the counter value N is increased by ten. In other words, the upper thread 17 is broken when the counter value N is 511, and it is determined that the thread break error has occurred when the counter value N is 520.
If it is determined that a thread break error has occurred (YES at Step S9), sewing stop processing is performed (Step S11). The sewing stop processing is performed (Step S11) if it is determined that an error other than the thread break error has occurred (YES at Step S9). Specifically, the CPU 71 transmits stop commands to the drive circuits 81, 83, and 84 to stop the sewing machine motor 85, the X-axis motor 86, and the Y-axis motor 87. The embroidery sewing is thus stopped.
In the example, the counter value N is 511 when the upper thread 17 is broken. After the determination is made that the thread break error has occurred (YES at Step S9), the counter value N is 520 when the sewing is stopped (Step S11). Therefore, stitches that correspond to the values 511 to 520 for the counter value N are not formed on the work cloth 100. In order to restart the sewing after where a thread break error has occurred, the user needs to perform threading of the upper thread 17 and change the needle drop point to a position where the thread break error occurred.
Next, a determination is made as to whether the error that has occurred is the thread break error (Step S12). A case is considered where an error other than the thread break error has occurred, such as the presser foot error, the overload error, or the like. If the error that has occurred is not the thread break error (NO at Step S12), an error screen (not shown in the drawings) is displayed on the liquid crystal display 15 (Step S17). Specifically, in a case where the overload error has occurred, for example, an error screen that is provided with a message (not shown in the drawings) such as “Is the thread tangled?” or the like, as well as a first close key (not shown in the drawings), is displayed on the liquid crystal display 15. The first close key is a key that is expressed as “CLOSE,” for example, and the first close key is used for terminating the display of the error screen. Data for this sort of error screen is stored in the program data storage area 721 of the ROM 72 (refer to
Once the error screen is displayed (Step S17), a determination is made as to whether the first close key has been selected (Step S18). If the first close key has not been selected (NO at Step S18), the CPU 71 returns to Step S18. In other words, the sewing machine 1 is on standby while the first close key is not selected by a panel operation (NO at Step S18).
If the first close key has been selected by a panel operation (YES at Step S18), the display of the error screen is terminated (Step S19). Specifically, the display of the error screen on the liquid crystal display 15 is stopped by the CPU 71. Next, the CPU 71 returns to Step S5 and repeatedly performs the processing.
In the example, the thread break error has occurred (YES at Step S12), so a thread break error screen (not shown in the drawings) is displayed (Step S13). A message for indicating that the thread break error has occurred and a second close key are displayed on the thread break error screen. The second close key is a key that is expressed as “CLOSE,” for example, and the second close key is used for terminating the display of the thread break error screen. Data for the thread break error screen is stored in the program data storage area 721 of the ROM 72 (refer to
Once the thread break error screen is displayed (Step S13), a determination is made as to whether the second close key has been selected (Step S14). If the second close key has not been selected (NO at Step S14), the CPU 71 returns to Step S14. In other words, the sewing machine 1 is on standby, with the thread break error screen being displayed, while the second close key is not selected by a panel operation (NO at Step S14).
If the second close key has been selected (YES at Step S14), the display of the thread break error screen is terminated (Step S15). Specifically, the display of the thread break error screen on the liquid crystal display 15 is stopped by the CPU 71.
Next, step forward/back processing (hereinafter referred to as step F/B processing) is performed (Step S16). Specifically, an image of the area that includes the needle drop point of the needle 7 is captured by the image sensor 50, and the captured image is displayed on the liquid crystal display 15 (refer to
The step F/B processing will be explained with reference to the flowchart in
Next, the step F/B screen 120 (refer to
The step F/B screen 120 that is displayed by the processing at Step S162 in
As shown in
The image of the area that includes the needle drop point that is displayed in the image display area 121 in the example will be explained with reference to
In the example, as shown in
The explanation returns to the step F/B processing that is shown in
If the third close key 124 has not been selected (NO at Step S170), the CPU 71 returns to Step S163 and repeatedly performs the processing. In other words, the sewing machine 1 is on standby with the step F/B screen 120 being displayed while none of the forward one stitch key 122, the back one stitch key 123, and the third close key 124 has been selected by a panel operation (NO at Step S163, NO at Step S164, NO at Step S170).
In the example, in a case where the needle drop point is moved back by fifteen stitches, the user may select the back one stitch key 123 fifteen times by panel operations.
First, a case will be described in which the back one stitch key 123 is selected one time by a panel operation. If the back one stitch key 123 has been selected (YES at Step S164), the counter value N is decreased by one (Step S165). Specifically, the counter value N that is stored in the counter value storage area 733 of the RAM 73 (refer to
Next, the embroidery frame 34 is transferred such that the needle drop point on the work cloth 100 is changed to the position that is indicated by the coordinate data (XN, YN) shown in
In the example, the counter value N that is stored in the counter value storage area 733 is 519, so the embroidery frame 34 is transferred such that the needle drop point is changed to the position that is indicated by the coordinate data (X519, Y519). Thus the needle drop point is changed from the position of the sample needle drop point 520 that is shown in
Next, as shown in
In the example, after the needle drop point has been changed to the position of the sample needle drop point 519 (refer to
Next, the image of the area that includes the needle drop point that is displayed in the image display area 121 (refer to
In the example, the image in the image display area 121 is updated, and an image is displayed in which the position of the needle drop point mark 125 has been changed to the position of the sample needle drop point 519 by the movement of the embroidery frame 34. This makes it possible for the user to check the current needle drop point by looking at the image of the area that includes the needle drop point that is displayed in the image display area 121. It is therefore possible to check the image of the area that includes the needle drop point every time that the needle drop point is changed. That makes it possible to smoothly perform adjusting the needle drop point.
As shown in
In a case where the back one stitch key 123 is selected by panel operations fourteen times, the processing at Steps S163 to S168 is repeated fourteen times. The counter value N thus becomes 505 (Step S165). The embroidery frame 34 is transferred such that the needle drop point on the work cloth 100 is changed to the position that is indicated by the coordinate data (X505, Y505) (Step S166). Then the image of the area that includes the needle drop point is captured by the image sensor 50 (Step S167). In the image display area 121, an image is displayed in which the position of the needle drop point mark 125 has been changed to the position of the sample needle drop point 505, as shown in
The sewing machine 1 is on standby with the step F/B screen 120 being displayed while none of the forward one stitch key 122, the back one stitch key 123, and the third close key 124 is selected (NO at Step S163, NO at Step S164, NO at Step S170).
In the example, it is assumed that the user checks the step F/B screen 120 that is shown in
Next, the embroidery frame 34 is transferred such that the needle drop point is changed to the position that is indicated by the coordinate data (X506, Y506) (Step S166). The needle drop point is thus changed from the position of the sample needle drop point 505 (refer to
Next, the image of the area that includes the needle drop point is captured by the image sensor 50 (Step S167). In the image display area 121, an image is displayed in which the position of the needle drop point mark 125 has been changed from the position of the sample needle drop point 505 to the position of the sample needle drop point 506 (Step S168). The sewing machine 1 is then on standby with the step F/B screen 120 being displayed while none of the forward one stitch key 122, the back one stitch key 123, and the third close key 124 is selected (NO at Step S163, NO at Step S164, NO at Step S170).
When the forward one stitch key 122 has been selected again (YES at Step S163), the counter value N is increased by one from 506 to 507 (Step S169). The embroidery frame 34 is then transferred such that the needle drop point is changed to the position that is indicated by the coordinate data (X507, Y507) (Step S166). The image of the area that includes the needle drop point is then captured by the image sensor 50 (Step S167), and the image that is displayed in the image display area 121 is updated (Step S168). In the image display area 121, an image is thus displayed in which the position of the needle drop point mark 125 has been changed to the position of the sample needle drop point 507, as shown in
Next, in the example, it is assumed that the user checks the image in which the position of the needle drop point mark 125 has been changed to the position of the sample needle drop point 507 as shown in
As shown in
In the example, when the sewing start switch 21 is pressed (YES at Step S5), the embroidery frame 34 is transferred such that the position of the needle drop point on the work cloth 100 is changed to the position that is indicated by the coordinate data (X507, Y507) (Step S6). For the first stitch that is sewn after the sewing is restarted, the embroidery frame 34 has already been transferred by the processing at Step S166 that is shown in
In a case where the sewing is continually performed without the occurrence of an error (Steps S6 to S10), the counter value N that is stored in the counter value storage area 733 ultimately becomes 1500, the last value of the counter values N that are shown in
As explained above, in the sewing machine 1 in the present embodiment, in a case where a thread break occurs, the operation keys such as the forward one stitch key 122, the back one stitch key 123, the third close key 124, and the like, as well as the image of the area that includes the needle drop point that has been captured by the image sensor 50, are automatically displayed on the liquid crystal display 15. This makes it possible for the user to change the needle drop point to the position where the thread break occurred while looking only at the liquid crystal display 15. Therefore, the user may smoothly perform adjustment of the needle drop point without having to check the needle drop point and the liquid crystal display 15 any number of times.
The sewing machine 1 according to the present embodiment is an example, and it is obvious that various types of modifications may be made to the sewing machine 1 according to the present embodiment. For example, in the present embodiment, in a case where one of the forward one stitch key 122 and the back one stitch key 123 is selected, the image that is captured by the image sensor 50 is updated. However, the image sensor 50 may capture a moving image, and the captured moving image may be constantly displayed on the liquid crystal display 15. An image may be captured after the sewing has been stopped due to a thread break error, and the captured image may be displayed on the liquid crystal display 15. The displayed image may not be updated in a case where one of the forward one stitch key 122 and the back one stitch key 123 is selected.
In the present embodiment, the forward one stitch key 122 and the back one stitch key 123 are used for adjusting the needle drop point. However, keys that are used to move the needle drop point forward by a plurality of stitches, such as a forward ten stitches key, a forward one hundred stitches key, and the like, as well as keys that are used to move the needle drop point back by a plurality of stitches, such as a back ten stitches key, a back one hundred stitches key, and the like, for example, may be displayed on the liquid crystal display 15 and may be used for adjusting the needle drop point. In the present embodiment, the operation keys such as the forward one stitch key 122, the back one stitch key 123, the third close key 124, and the like are displayed on the liquid crystal display 15, and the user may select any of the operation keys by a panel operation. However, the sewing machine 1 may be provided with button switches that correspond to the operation keys, which may be used for adjusting the needle drop point.
The apparatus and methods described above with reference to the various embodiments are merely examples. It goes without saying that they are not confined to the depicted embodiments. While various features have been described in conjunction with the examples outlined above, various alternatives, modifications, variations, and/or improvements of those features and/or examples may be possible. Accordingly, the examples, as set forth above, are intended to be illustrative. Various changes may be made without departing from the broad spirit and scope of the underlying principles.
Number | Date | Country | Kind |
---|---|---|---|
2009-083838 | Mar 2009 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
4841890 | Tancs | Jun 1989 | A |
5027730 | Dobnet et al. | Jul 1991 | A |
5074229 | Sasako et al. | Dec 1991 | A |
5228402 | Sugimoto | Jul 1993 | A |
5947043 | Morita et al. | Sep 1999 | A |
6123037 | Shimizu | Sep 2000 | A |
6729253 | Mamiya et al. | May 2004 | B2 |
20030140831 | Zesch et al. | Jul 2003 | A1 |
Number | Date | Country |
---|---|---|
37 07 321 | Jun 1988 | DE |
A-5-64694 | Mar 1993 | JP |
A-5-137864 | Jun 1993 | JP |
A-6-101156 | Apr 1994 | JP |
A-07-018555 | Jan 1995 | JP |
A-8-71287 | Mar 1996 | JP |
A-08-218265 | Aug 1996 | JP |
A-08-224389 | Sep 1996 | JP |
A-2000-386 | Jan 2000 | JP |
Number | Date | Country | |
---|---|---|---|
20100242818 A1 | Sep 2010 | US |