This application claims priority to Japanese Patent Application No. 2013-57948 filed Mar. 21, 2013, the content of which is hereby incorporated herein by reference in its entirety.
The present disclosure relates to a sewing machine on which an embroidery frame can be mounted.
A sewing machine that is capable of embroidery sewing performs embroidery sewing while relatively moving a needle and a sewing workpiece that is held by an embroidery frame, based on embroidery data that specifies coordinates of needle drop points. With a sewing machine on which selectively mount one of a plurality of types of embroidery frames can be mounted, it is necessary for the sewing machine to detect the type of the embroidery frame that is mounted on the sewing machine, in order to set a sewing area on the inside of the embroidery frame. To address this, for example, a known sewing machine identifies the type of the embroidery frame by detecting a detection portion of a detection target that is arranged in a position corresponding to the type of the embroidery frame.
In addition to a normal sheet-like work cloth, sewing workpieces include a tubular work cloth, shoes and the like. There is a demand to perform embroidery sewing on these types of sewing workpieces also. However, with the above-described sewing machine, when embroidery sewing is performed on the aforementioned types of sewing workpieces, it is difficult to perform embroidery sewing due to structural constraints of the sewing machine and the embroidery frame.
Embodiments of the broad principles derived herein provide a sewing machine and an embroidery frame that are capable of embroidery sewing on a variety of sewing workpieces in comparison to related art.
Embodiments provide a sewing machine that includes a frame support portion, a detecting device, a detecting device, a storage device, a processor, and a memory. The frame support portion is configured to be detachably mounted with a selected one of a plurality of embroidery frames whose types are different from each other. Each of the embroidery frames has a holding portion that is configured to hold a sewing workpiece. The detecting device is configured to detect a type of the embroidery frame mounted on the frame support portion. The storage device is configured to store pieces of information about types of the plurality of embroidery frames. Each of the pieces of information indicates the size, the position and the angle of the sewing area for each of the types of the plurality of embroidery frames. The memory configured to store computer-readable instructions that, when executed by the processor, instruct the processor to perform processes comprising setting a sewing area inside the holding portion, by setting a size of the sewing area, as well as a position and an angle of the sewing area with respect to the frame support portion, corresponding to the type of the embroidery frame detected by the detecting device, among the pieces of information about the types of the plurality of embroidery frames that are stored in the storage device, identifying an embroidery pattern to be sewn on the sewing workpiece, and setting a layout of the identified embroidery pattern, corresponding to the sewing area. The sewing area is an area in which stitches can be formed.
Embodiments further provide an embroidery frame that includes a mounting portion and a holding portion. The mounting portion is configured to be detachably mounted on a sewing machine. The holding portion is configured to hold a sewing workpiece. Each of a long side direction and a short side direction of the holding portion is inclined with respect to a long side direction of the mounting portion.
Embodiments will be described below in detail with reference to the accompanying drawings in which:
Hereinafter, an embodiment of the present disclosure will be explained with reference to the drawings. A configuration of a multi-needle sewing machine (hereinafter simply referred to as a sewing machine) 1 according to the embodiment will be explained with reference to
As shown in
An operation portion 6 is provided on the right side of a central portion in the front-rear direction of the arm portion 4. The operation portion 6 is provided with a liquid crystal display (LCD) 7, a touch panel 8 and a start/stop switch 41. The LCD 7 may display various types of information, such as operation images used by a user to input a command, for example. The touch panel 8 may be used to receive a command from the user. The user can select or set various types of conditions, such as a sewing pattern and a sewing condition, by performing a pressing operation (this operation is hereinafter referred to as a “panel operation”), using a finger or a stylus pen, on sections of the touch panel 8 that correspond to positions of input keys etc. displayed on the LCD 7. The start/stop switch 41 is a switch that may be used to issue a command to start or stop sewing.
A cylinder-shaped cylinder bed 10, which extends to the front from a lower end portion of the pillar 3, is provided below the arm portion 4. A shuttle (not shown in the drawings) is provided inside a leading end portion of the cylinder bed 10. The shuttle houses a bobbin (not shown in the drawings) on which a bobbin thread (not shown in the drawings) is wound. A shuttle drive mechanism (not shown in the drawings) is provided inside the cylinder bed 10. The shuttle drive mechanism is configured to rotatably drive the shuttle. A needle plate 16, having a rectangular shape in a plan view, is provided on an upper surface of the cylinder bed 10. The needle plate 16 is provided with a needle hole 36 through which the needle (not shown in the drawings) passes.
A pair of left and right thread spool bases 12 are provided on a back surface side of an upper surface of the arm portion 4. The number of thread spools 13 that can be mounted on the pair of the thread spool bases 12 is ten, which is the same as the number of the needle bars 31. A needle thread 15 is supplied from one of the thread spools 13 mounted on the thread spool bases 12. The needle thread 15 is supplied, via a thread guide 17, a tensioner 18, a thread take-up lever 19 and the like, to an eye (not shown in the drawings) of each of the needles attached to the lower end of each of the needle bars 31.
A Y carriage 23 of an embroidery frame movement mechanism 11 (refer to
The embroidery frame 5 will be explained with reference to
As shown in
The connecting portion 85 is a metal plate member having a rectangular shape in a plan view, and connects the central portion of one of the long sides of the outer frame 82 and a front central portion of the mounting portion 90. The mounting portion 90 is a metal plate member, and may be used to mount the embroidery frame 84 on the frame mounting mechanism 59 of the sewing machine 1. The mounting portion 90 has a specific structure corresponding to the type of the embroidery frame 84. More specifically, the mounting portion 90 is a hexagonal plate member that extends in the horizontal direction. One of the six sides that is on the rear side of the mounting portion 90 and one of the six sides that is on the front side of the mounting portion 90 each extend in the left-right direction. The length of the rear side of the mounting portion 90 is the longest among the six sides of the mounting portion 90. The longest side of the mounting portion 90 extends in the left-right direction. That is, the long side direction of the mounting portion 90 is the left-right direction. The mounting portion 90 is provided with an engagement portion 91, a through hole 92 and a pressing portion 93. The engagement portion 91 is a cutout that is provided in a central portion of the right side (that extends in the front-rear direction) of the mounting portion 90, and is configured to be engaged with an engagement portion 102 of a main body 100 that will be described later. The through hole 92 is a circular hole that is provided in a central portion on the left side of the mounting portion 90, and is configured to be engaged with an engagement portion 103 of the main body 100. The pressing portion 93 has a pin shape that protrudes downward. The position of the pressing portion 93 with respect to the engagement portion 91 is set to a position that is specific to the embroidery frame 84 in order to distinguish between the embroidery frame 84 and the other embroidery frames 5.
In a state in which the embroidery frame 84 is mounted on the sewing machine 1, the inclination of the holding portion 83 in the long side direction with respect to the extension direction of the frame support portion 58 (hereinafter referred to as the “inclination of the holding portion 83”) is 0 degrees. The extension direction of the frame support portion 58 of the present embodiment is the left-right direction. In the present embodiment, the inclination with respect to the extension direction of the frame support portion 58 is defined such that an angle in the clockwise direction with respect to the extension direction of the frame support portion 58 is a plus angle and an angle in the counterclockwise direction with respect to the extension direction of the frame support portion 58 is a minus angle. The extension direction of the frame support portion 58 is the same as the extension direction of the Y carriage 23 and the X carriage 26. The extension direction of the frame support portion 58 is the same as the direction in which the X carriage 26 is moved by the X-axis motor 132 (refer to FIG. 10) as a driving source. The extension direction of the frame support portion 58 is the same as the extension direction of the longest side of the mounting portion 90.
The inclination (an angle C2) of the holding portion 83 of the embroidery frame 184 shown in
The inclination (an angle C3) of the holding portion 83 of the embroidery frame 284 shown in
Hereinafter, when the mounting portions 90, 190 and 290 are collectively referred to, they are referred to as mounting portions 390. When any one of the mounting portions 90, 190 and 290 is referred to without being particularly identified, it is referred to as a mounting portion 390. When the engagement portions 91, 191 and 291 are collectively referred to, they are referred to as engagement portions 391. When any one of the engagement portions 91, 191 and 291 is referred to without being particularly identified, it is referred to as an engagement portion 391. When the through holes 92, 192 and 292 are collectively referred to, they are referred to as through holes 392. When any one of the through holes 92, 192 and 292 is referred to without being particularly identified, it is referred to as a through hole 392. When the pressing portions 93, 193 and 293 are collectively referred to, they are referred to as pressing portions 393. When any one of the pressing portions 93, 193 and 293 is referred to without being particularly identified, it is referred to as a pressing portion 393. Based on the inclination of the holding portion 83, the embroidery frames 84, 184 and 284 are also referred to as a 0 degree frame, a 45 degree frame and a −45 degree frame, respectively.
The frame mounting mechanism 59 will be explained with reference to
The mounting portion 390 of the embroidery frame 5 that is configured to hold the sewing workpiece is configured to be detachably mounted on the frame support portion 58. A selected one of the embroidery frames 84, 184 and 284 can be mounted on the frame support portion 58. In each of the embroidery frames 184 and 284, the long side direction of the rectangular holding portion 83 is inclined by a predetermined angle with respect to the extension direction of the frame support portion 58.
The frame support portion 58 mainly includes the main body 100 and a frame retainer plate 50. The main body 100 is a plate member that extends in the left-right direction, and has a support plate portion 101, a mounting plate portion 107 and a guide plate portion 112. The support plate portion 101 is a plate-like portion that extends in the horizontal direction on the front side of the main body 100. The support plate portion 101 is provided with the engagement portions 102 and 103, a support portion 104 and screw holes 105 and 106. Each of the engagement portions 102 and 103 is a convex portion that protrudes upward and has a circular shape in a plan view. The engagement portions 102 and 103 are configured to be respectively engaged with the engagement portion 391 and the through hole 392 that are provided in the embroidery frame 5. The support portion 104 is a portion that protrudes upward from the top surface of the support plate portion 101. The support portion 104 is inserted through a through hole 79 of the switching plate 70, and is configured to support the left end of an urging member 80. The urging member 80 of the present embodiment is a coil spring. The right end of the urging member 80 is supported by the switching plate 70 that will be described later. The screw holes 105 and 106 are respectively engaged with screws 56 and 57 that are used to fix the frame retainer plate 50 to the main body 100.
The mounting plate portion 107 is a plate-like portion that extends in the left-right direction. The mounting plate portion 107 is a portion that is configured to fix the frame mounting mechanism 59 to the holder 24 of the X carriage 26, and that is configured to guide the movement of the switching plate 70. The mounting plate portion 107 is provided with a pair of left and right guide pins 108 and 109 and screw holes 110 and 111. The guide pins 108 and 109 protrude upward from the top surface of the mounting plate portion 107. The guide pins 108 and 109 are respectively inserted through elongated holes 76 and 77 of the switching plate 70, and are configured to regulate the movement direction of the switching plate 70 together with the elongated holes 76 and 77. The screw holes 110 and 111 are engaged with screws (not shown in the drawings) that are used to fix the frame mounting mechanism 59 to the holder 24. The guide plate portion 112 is a plate-like portion that extends upward from a central portion of the rear edge of the mounting plate portion 107, and is configured to regulate the movement direction of the switching plate 70.
The frame retainer plate 50 is a member that is configured to hold down the mounting portion 390 of the embroidery frame 5 mounted on the frame mounting mechanism 59, from above. The frame retainer plate 50 is provided with a pair of left and right retaining portions 51 and 52, a main body 53 and a pair of left and right screw holes 54 and 55. The retaining portions 51 and 52 extend to the front from the main body 53, and are configured to hold down the mounting portion 390 of the embroidery frame 5 mounted on the frame mounting mechanism 59, from above. The frame retainer plate 50 is fixed to the main body 100 by the screws 56 and 57 that are inserted through the screw holes 54 and 55, respectively.
The switching plate 70 is a movable member that is configured to move in a first direction in conjunction with an operation to mount the mounting portion 390 of the embroidery frame 5 on the frame support portion 58. The amount of movement of the switching plate 70 is set corresponding to the type of the embroidery frame 5. The first direction of the present embodiment is the rightward direction. The switching plate 70 has a first plate portion 71, a second plate portion 75 and an engagement portion 78.
The first plate portion 71 is a plate-like portion that extends in the horizontal direction on the front side of the switching plate 70. The first plate portion 71 is disposed above the support plate portion 101 of the main body 100 and below the frame retainer plate 50. The first plate portion 71 has a first contact portion 72, a second contact portion 73, a support portion 74 and the through hole 79. The first contact portion 72 is a large inverted V-shaped cut out portion formed on the front edge of the first plate portion 71 in a plan view. The first contact portion 72 is configured to guide the pressing portion 393 of the embroidery frame 5 to the second contact portion 73. The second contact portion 73 is a portion that is configured to come into contact with and holds the pressing portion 393 of the embroidery frame 5 when the embroidery frame 5 is mounted on the sewing machine 1. The second contact portion 73 forms a concave portion that is slightly larger than the diameter of the pin-shaped pressing portion 393. The support portion 74 is a portion that protrudes upward from the top surface of the first plate portion 71, and is configured to support the right end of the urging member 80. The switching plate 70 is urged by the urging member 80 in a second direction that is a direction opposite to the first direction. In the present embodiment, the first direction is the rightward direction and the second direction is the leftward direction.
The second plate portion 75 is a plate-like portion that extends in the left-right direction, and is provided with the pair of left and right elongated holes 76 and 77. The elongated holes 76 and 77 each extend in the left-right direction. The guide pins 108 and 109 are inserted through the elongated holes 76 and 77, respectively. The engagement portion 78 is a portion that has a hook-like shape and that extends upward from the left rear end of the second plate portion 75. The engagement portion 78 is configured to be engaged with a detecting element 46 of a detector 47. The detector 47 is a rotary potentiometer. The detecting element 46 rotates corresponding to the amount of movement of the switching plate 70. Therefore, the detector 47 can detect the amount of movement of the switching plate 70 based on the amount of rotation of the detecting element 46.
Operations to mount the embroidery frame 5 on the sewing machine 1 will be explained. As an example, a case will be explained in which the embroidery frame 284 is mounted on the frame support portion 58 in a state in which the holding portion 83 holds a side surface of the shoe S such that the long sides of the holding portion 83 are substantially in parallel with a shoe bottom or a shoe opening of the shoe S, which is the sewing workpiece. As shown in
When the user further rotates the embroidery frame 284 in the clockwise direction in a plan view, the pressing portion 293 is guided by the first contact portion 72 to the second contact portion 73, and is accommodated in the second contact portion 73. When the user further rotates the embroidery frame 284 in the clockwise direction in a plan view, the through hole 292 and the engagement portion 103 engage with each other, as shown in
A method for detecting the type of the embroidery frame 5 will be explained. In the mounting portion 390 of the embroidery frame 5 of the present embodiment, the position of the pressing portion 393 with respect to the engagement portion 391 differs in accordance with the type of the embroidery frame 5. Therefore, the amount of movement of the switching plate 70 in the first direction varies in accordance with the position of the pressing portion 393 with respect to the engagement portion 391. The engagement portion 78 of the switching plate 70 is engaged with the detecting element 46 of the detector 47. When the switching plate 70 moves, the detecting element 46 rotates. The amount of rotation of the detecting element 46 is different depending on whether the embroidery frame 84 is mounted on the sewing machine 1, whether the embroidery frame 184 is mounted on the sewing machine 1, or whether the embroidery frame 284 is mounted on the sewing machine 1. The detector 47 can detect the type of the embroidery frame 5 by detecting the amount of rotation of the detecting element 46.
An electrical configuration of the sewing machine 1 will be explained with reference to
The needle drive portion 120 is provided with a drive shaft motor 122, a drive circuit 121, a needle bar case motor 45, and a drive circuit 123. The drive shaft motor 122 causes the needle bar 31 to move in the up-down direction. The drive circuit 121 may drive the drive shaft motor 122 in accordance with a control signal from the control portion 60. The needle bar case motor 45 causes the needle bar case 21 to move in the left-right direction. The drive circuit 123 may drive the needle bar case motor 45 in accordance with a control signal from the control portion 60.
The sewing target drive portion 130 is provided with the X-axis motor 132, a drive circuits 131, the Y-axis motor 134, and a drive circuits 133. The X-axis motor 132 may drive the embroidery frame movement mechanism 11 and thereby causes the embroidery frame 5 (refer to
The operation portion 6 is provided with the touch panel 8, a drive circuit 135, the LCD 7 and the start/stop switch 41. The drive circuit 135 may drive the LCD 7 in accordance with a control signal from the control portion 60.
The control portion 60 is provided with the CPU 61, a ROM 62, a RAM 63, a flash ROM 64 and an input/output (I/O) interface 66, and they are mutually connected by a signal line 65. The needle drive portion 120, the sewing target drive portion 130, the operation portion 6 and the detector 47 are respectively connected to the I/O interface 66.
The CPU 61 performs main control of the sewing machine 1. The CPU 61 performs various operations and processing that relate to sewing, in accordance with various programs stored in a program storage area (not shown in the drawings) of the ROM 62. Although not shown in the drawings, the ROM 62 is provided with a plurality of storage areas including the program storage area and a pattern storage area. Various programs to operate the sewing machine 1, including a main program, are stored in the program storage area. The main program is a program to perform main processing. In the main processing, processing is performed in which a sewing area 87 is set inside the inner frame 81 corresponding to the type of the embroidery frame 5 that has been mounted on the frame support portion 58. In the main processing, processing is further performed in which the pattern selected by the user is arranged in accordance with settings of the sewing area 87 and sewing is performed on the sewing workpiece held by the embroidery frame 5. The RAM 63 includes, as necessary, a storage area to store operation results etc. processed by the CPU 61. The flash ROM 64 stores various parameters including a frame table 68 that are used for the sewing machine 1 to perform various types of processing.
The frame table 68 stores corresponding relationships between the angle (degree) of the detecting element 46 shown by an output result of the detector 47 and the settings of the sewing area 87 that corresponds to the type of the embroidery frame 5. That is, the frame table 68 stores pieces of information about the size, the position and the angle of the sewing area 87. The pieces of information correspond to the plurality of embroidery frames 5, respectively. The settings of the sewing area 87 that corresponds to the type of the embroidery frame 5 of the present embodiment include the size of the sewing area 87, the angle (degree) of the sewing area 87 in the long side direction with respect to the extension direction of the frame support portion 58, and the position of the sewing area 87 with respect to the frame support portion 58. The sewing area 87 is an area which is set inside the inner frame 81 and in which stitches can be formed. The sewing area 87 of the present embodiment has a rectangular shape, and the size of the sewing area 87 is represented by the length of the shorter sides and the length of the longer sides. The angle (degree) of the sewing area 87 in the long side direction with respect to the extension direction of the frame support portion 58 is set to match the angle (degree) of the holding portion 83 in the long side direction with respect to the extension direction of the frame support portion 58. The position of the sewing area 87 with respect to the frame support portion 58 is represented by the amount of movement of the embroidery frame 5 when the needle drop point is set to the position of the center point of the sewing area 87. The CPU 61 performs the main processing based on the output result of the detector 47 and the frame table 68.
Processing that is performed by the sewing machine 1 of the present embodiment will be explained with reference to
As shown in
The CPU 61 sets the sewing area 87 based on information that corresponds to the type of the embroidery frame 5 indicated by the type signal acquired at step S3. Specifically, when the CPU 61 determines that the amount of rotation of the detecting element 46 is not less than B1 and less than B2 based on the type signal acquired at step S3, the CPU 61 determines that the embroidery frame 5 mounted on the frame support portion 58 is the embroidery frame 184 (the 45 degree frame) shown in
When the amount of rotation of the detecting element 46 that is indicated by the type signal acquired at step S3 is not less than B2 and less than B3, the CPU 61 determines that the embroidery frame 5 mounted on the frame support portion 58 is the embroidery frame 84 (the 0 degree frame) shown in
When the amount of rotation of the detecting element 46 that is indicated by the type signal acquired at step S3 is not less than B3, the CPU 61 determines that the embroidery frame 5 mounted on the frame support portion 58 is the embroidery frame 284 (the −45 degree frame) shown in
After the processing at step S5, step S7 or step S9, the CPU 61 sets the area on the inside of the holding portion 83 as the sewing area 87 in which stitches can be formed, corresponding to the type of the embroidery frame 5 indicated by the type signal acquired at step S3 (step S11). Corresponding to the type of the embroidery frame 5, the CPU 61 sets the size of the sewing area 87 and the position and angle of the sewing area 87 with respect to the frame support portion 58. Specifically, the CPU 61 sets the sewing area 87 based on the values set at step S5, step S7 or step S9.
When the embroidery frame 5 is the embroidery frame 84 (the 0 degree frame), a sewing area 88 is set inside the inner frame 81, as shown in
When the embroidery frame 5 is the embroidery frame 184 (the 45 degree frame), a sewing area 188 is set inside the inner frame 81, as shown in
When the embroidery frame 5 is the embroidery frame 284 (the −45 degree frame), a sewing area 288 is set inside the inner frame 81, as shown in
The CPU 61 arranges the embroidery pattern identified at step S2, corresponding to the sewing area 87 set at step S11 (step S12). Specifically, the CPU 61 sets the central position of the embroidery pattern to the center point of the sewing area 87. Further, the CPU 61 sets the angle of the embroidery pattern to match the long side direction of the rectangular sewing area 87. The CPU 61 sets the angle of the sewing area 87 as the angle of the embroidery pattern. When the embroidery frame 5 is the embroidery frame 84 (the 0 degree frame), the embroidery pattern is arranged at an initial angle that is defined by the embroidery data. When the embroidery frame 5 is the embroidery frame 184 (the 45 degree frame), the embroidery pattern is arranged at an angle that is rotated clockwise by 45 degrees from the initial angle defined by the embroidery data. When the embroidery frame 5 is the embroidery frame 284 (the −45 degree frame), the embroidery pattern is arranged at an angle that is rotated counterclockwise by 45 degrees from the initial angle defined by the embroidery data.
Next, the CPU 61 controls the drive circuit 135 and displays on the LCD 7 at least one of the sewing area 87 set at step S11 and the layout of the embroidery pattern set at step S12 (step S13). In the present embodiment, the CPU 61 displays on the LCD 7 both the sewing area 87 set at step S11 and the layout of the embroidery pattern set at step S12. When the embroidery frame 84 (the 0 degree frame) is used, a screen 150 shown in
When the embroidery frame 184 (the 45 degree frame) is used, a screen 153 shown in
The CPU 61 waits until the CPU 61 detects the command to start sewing (no at step S14). In the present embodiment, when the start/stop switch 41 is depressed, the command to start sewing is input. When the CPU 61 detects the command to start sewing (yes at step S14), stitches that represent the embroidery pattern are formed corresponding to the layout in accordance with the embroidery data (step S15). Specifically, the CPU 61 controls the drive circuit 123 and causes the needle bar case 21 to move in the left-right direction. As a result, one of the ten needle bars 31 is moved to the sewing position. The CPU 61 drives the embroidery frame movement mechanism 11 by controlling the drive circuits 131 and 133, and moves the embroidery frame 5 to the position indicated by the embroidery data. The CPU 61 controls the drive circuit 121 to rotate and drive a drive shaft (not shown in the drawings) by the drive shaft motor 122. As a result, the needle bar drive mechanism 32 and the thread take-up lever drive mechanism are driven, and the needle bar 31 located in the sewing position and the thread take-up lever 19 corresponding to the needle bar 31 located in the sewing position are driven to move in the up-down direction. The shuttle drive mechanism (not shown in the drawings) is driven by the rotation of the drive shaft motor 122, and the shuttle (not shown in the drawings) is rotated and driven. In this manner, the needle (not shown in the drawings), the thread take-up lever 19 and the shuttle are synchronized and driven, and the stitches are formed on the sewing workpiece. When the sewing is complete, the CPU 61 ends the main processing.
The sewing machine 1 is configured to be mounted with one of a plurality of types of the embroidery frames 5 in which combinations of the sizes of the sewing area 87 and the position and the angle of the holding portion 83 with respect to the frame support portion 58 of the embroidery frame 5 are different from each other. Based on the detection result of the detector 47, the sewing machine 1 sets the size of the sewing area 87 and the position and the angle of the holding portion 83 with respect to the frame support portion 58. Therefore, when a selected one of the plurality of types of the embroidery frames 5 is mounted on the frame support portion 58, the sewing machine 1 can automatically set the sewing area 87 corresponding to the type of the embroidery frame 5. With the sewing machine 1, depending on the sewing workpiece, the user can select and use any one of the plurality of types of the embroidery frames 5, such as one of the embroidery frames 84, 184 and 284, which have the same size and in which the angles of the embroidery frame 5 with respect to the frame support portion 58 are different from each other. The sewing machine 1 can set the sewing area 87 corresponding to a variety of types of the embroidery frames 5 in comparison to the related art. It is therefore possible to perform embroidery sewing on a variety of sewing workpieces in comparison to the related art.
The sewing machine 1 can set, corresponding to the type of the embroidery frame 5, the size of the sewing area 87, as well as the angle of the sewing area 87 with respect to the frame support portion 58, by referring to the frame table 68 of the flash ROM 64. The sewing machine 1 can automatically set the layout of the embroidery pattern in accordance with the settings of the sewing area 87. Therefore, the sewing machine 1 can eliminate the user's troublesome operations, such as inputting the information to identify the type of the embroidery frame 5 into the sewing machine 1, or inputting the command to change the layout of the embroidery pattern in accordance with the settings of the sewing area 87.
The shoe S of the above-described embodiment interferes with the pair of left and right support portions 2 of the sewing machine 1 when the shoe S is held by the embroidery frame 84. Therefore, the sewing machine 1 cannot perform embroidery sewing on the shoe S held by the embroidery frame 84. In this manner, depending on the size and the shape of the sewing workpiece, there are cases in which a member (for example, the support portions 2) provided in the sewing machine 1 interferes with the sewing workpiece and the sewing machine 1 cannot sew the sewing workpiece. With a known sewing machine, a user can mount a selected one of the plurality of types of embroidery frames having different sizes on the sewing machine However, the known embroidery frames may not be suitable for sewing the shoe S. In contrast to those, the embroidery frames 184 and 284 are configured such that the holding portion 83 holds the sewing workpiece in a position in which the long side direction of the sewing workpiece is inclined at the predetermined angle with respect to the extension direction of the frame support portion 58 (the long side direction of the mounting portion 190 and 290). Thus, as shown in
In the related art, there are no embroidery frames 5, such as the embroidery frames 184 and 284 exemplified in the present embodiment, in which each of the long side direction and short side direction of the rectangular holding portion 83 is inclined with respect to the extension direction of the frame support portion 58 (the long side direction of the mounting portion of the embroidery frame). For that reason, the known sewing machine need not set the angle of the embroidery pattern corresponding to the type of the embroidery frame 5. In contrast to this, the sewing machine 1 matches the angle of the holding portion 83 with the angle of the sewing area 87 and with the angle of the embroidery pattern. The sewing machine 1 can automatically arrange the embroidery pattern by aligning the embroidery pattern in the long side direction of the holding portion 83 (the sewing area 87) with respect to the frame support portion 58. Therefore, the user can adjust the holding position by the holding portion 83 by using the long side of the rectangular holding portion 83 as a reference. Therefore, the user can adjust the holding position while predicting the finish of the embroidery. For example, when the embroidery pattern 158 shown in
Through the processing at step S13, the settings of the sewing area 87 and the layout of the embroidery pattern are displayed on the LCD 7. Therefore, the user can easily confirm the layout of the sewing area 87 and the embroidery pattern. The sewing machine 1 can reduce the possibility that the finish of the embroidery is different from the screen displayed on the LCD 7.
In the present embodiment, the X-axis motor 132 and the Y-axis motor 134 are stepping motors. The stepping motor rotates in a step unit that is defined by the product of the step angle and the number of pulse signals. Therefore, when the embroidery frame movement mechanism 11 moves the embroidery frame 184 in the direction of 45 degrees or the embroidery frame 284 in the direction of −45 degrees, it is sufficient that the X-axis motor 132 and the Y-axis motor 134 rotate simultaneously at the same angle, and efficiency is therefore good. That is, when the embroidery pattern is rotated in accordance with the angle of the sewing area 87 and is sewn, it is possible to perform sewing more efficiently using one of the embroidery frames 184 and 284, in comparison to a case in which the angle of the long sides of the holding portion 83 with respect to the extension direction of the frame support portion 58 is an angle that is neither 45 degrees nor −45 degrees.
The sewing machine according to the present disclosure is not limited to the embodiments described above, and various types of modifications may be made insofar as they are within the scope of the present disclosure. For example, the modifications (A) to (D) described below may be made as desired.
(A) The configuration of the sewing machine 1 may be modified as desired. The sewing machine may also be another type of sewing machine, such as an industrial sewing machine, a home-use sewing machine, or the like, for example. As long as the detector 47 can detect the type of the embroidery frame 5, the detector 47 may be another sensor, such as a position sensor, instead of the rotary potentiometer.
(B) For example, the holding portion of the embroidery frame 5 may include an upper frame and a lower frame, and may hold the sewing workpiece by clamping the sewing workpiece in the up-down direction. The pressing portion 393 of the embroidery frame 5 may have a shape other than a pin shape. The types and the number of types of the embroidery frames that can be mounted on the sewing machine 1 may be changed as necessary. The type of the embroidery frame may be shown, for example, by the shape and the size of the holding portion and a combination of the position and the angle of the holding portion with respect to the frame support portion. The angle of the holding portion in the long side direction with respect to the extension direction of the frame support portion (the long side direction of the mounting portion of the embroidery frame) may be changed as necessary.
(C) The programs that contain the instructions for performing the main processing in
(D) The individual steps in the main processing in
(D-1) The method for identifying the embroidery pattern may be changed as necessary. For example, the embroidery pattern may be automatically set in accordance with conditions, such as the size of the sewing area and a color of the thread supplied to the needle.
(D-2) The processing that sets the sewing area may be changed corresponding to the type of the embroidery frame 5 that can be mounted on the sewing machine 1. For example, when the size of the sewing area is the same between each of the plurality of types of the embroidery frames 5, the sewing machine 1 may uniformly set the same size without depending on the type of the embroidery frame 5.
(D-3) It is sufficient that the layout of the embroidery pattern is set in accordance with the settings of the sewing area. For example, when the sewing area has an oval shape, the angle of the sewing area in the long side direction with respect to the extension direction of the frame support portion 58 may be the same as the angle of the embroidery pattern. The sewing machine 1 may arrange the embroidery pattern such that a representative point of the sewing area matches a representative point of the embroidery pattern. The representative point of the sewing area may be set, as appropriate, corresponding to the shape of the sewing area. When the sewing area is rectangular, the representative point may be, for example, one of the four vertices of the rectangular sewing area. The representative point of the embroidery pattern may be, for example, one of the four vertices of the smallest rectangle that contains the embroidery pattern.
(D-4) In the processing at step S13, the CPU 61 may display an image that shows one of the sewing area 87 and the layout of the embroidery pattern. The processing at step S13 may be omitted if necessary.
The apparatus and methods described above with reference to the various embodiments are merely examples. It goes without saying that they are not confined to the depicted embodiments. While various features have been described in conjunction with the examples outlined above, various alternatives, modifications, variations, and/or improvements of those features and/or examples may be possible. Accordingly, the examples, as set forth above, are intended to be illustrative. Various changes may be made without departing from the broad spirit and scope of the underlying principles.
Number | Date | Country | Kind |
---|---|---|---|
2013-057948 | Mar 2013 | JP | national |