This application claims priority to Japanese Patent Application No. 2011-170622, filed Aug. 4, 2011, the disclosure of which is hereby incorporated by reference in its entirety.
The present disclosure relates to a sewing machine that can perform sewing of an embroidery pattern, an embroidery data creation device that creates data for sewing an embroidery pattern, and a non-transitory computer-readable medium that stores an embroidery data creation program.
A sewing machine is known that can sew an embroidery pattern based on a design that a user has selected. An embroidery data creation device is also known that creates embroidery data for sewing an embroidery pattern. Specifically, the embroidery data creation device is also known that acquires a design that a user has selected. The embroidery data creation device creates embroidery data for sewing the acquired design as an embroidery pattern. The embroidery data creation device can recognize characters in the acquired design and convert them into other characters of a different style. The embroidery data creation device is thus able to create embroidery data for sewing an embroidery pattern of a design that contains the characters of the different style.
Demand has arisen to have characters of a particular style acquired in advance by a sewing machine, to have a character string created by combining the acquired characters as the user desires, and to have an embroidery pattern of the character string sewn by the sewing machine. The characters of a particular style may be characters in a handwritten style, for example. The known devices described above are not able to acquire characters of a particular style in advance. Therefore, cases may occur in which the embroidery data for sewing a character string that includes characters of a particular style cannot be created.
There may also be cases in which, after the embroidery data are created based on a character string that includes characters of a particular style, and that is acquired by the sewing machine as it is the user wants to change only a specific character within the character string to a different character and then sew the embroidery pattern.
In that case, it may be necessary for the sewing machine to acquire the entire character string once again, even if the greater part of the character string is the same, and to create the embroidery data all over again. Therefore, it may be not always be possible to create the embroidery data and perform the sewing efficiently.
Various exemplary embodiments of the general principles herein provide a sewing machine that may comprise a processor; and a memory. The memory may be configured to store computer-readable instructions therein, wherein the computer-readable instructions instruct the sewing machine to execute steps comprising acquiring image data including one or more characters, extracting, from acquired image data, one or more character designs with respect to each character included in the acquired image data, wherein the character design represents each character included in the acquired image data, generating embroidery data with respect to each character based on the extracted character design, wherein the embroidery data represents an embroidery pattern in a predetermined size, selecting specific embroidery data, in response to accepting an instruction for specifying character design, from the generated embroidery data corresponding to the specified character design, and generating a signal based on the selected embroidery data, wherein the sewing machine is configured to sew an embroidery pattern represented by the selected embroidery data based on the signal.
Exemplary embodiments herein provide an apparatus that may comprise a processor and a memory. The memory may be configured to store computer-readable instructions therein, wherein the computer-readable instructions instruct the apparatus to execute steps comprising acquiring image data including one or more characters, extracting, from acquired image data, one or more character designs with respect to each character included in the acquired image data, wherein the character design represents each character included in the acquired image data, and generating embroidery data with respect to each character based on the extracted character design, wherein the embroidery data represents an embroidery pattern in a predetermined size.
Exemplary embodiments also provide a non-transitory computer readable medium. The non-transitory computer readable medium may store computer readable instructions that, when executed, instruct an apparatus to execute steps comprising acquiring image data including one or more characters, extracting, from acquired image data, one or more character designs with respect to each character included in the acquired image data, wherein the character design represents each character included in the acquired image data, and generating embroidery data with respect to each character based on the extracted character design, wherein the embroidery data represents an embroidery pattern in a predetermined size.
Exemplary embodiments of the present disclosure will be described below in detail with reference to the accompanying drawing in which:
Hereinafter, an embodiment will be explained with reference to the drawings. A configuration of a sewing machine 1 will be explained with reference to
As shown in
An embroidery frame 34 that holds a work cloth 100 can be disposed on the top side of the bed 11. The embroidery frame 34 may be a known structure that is configured to hold the work cloth 100 by clamping it with an inner frame and an outer frame. An embroidery frame moving device 33 has a known structure that is configured to move the embroidery frame 34, so it will be explained briefly. The embroidery frame moving device 33 can be removably mounted on the bed 11. A carriage 35 that extends in the front-rear direction is provided on top of the embroidery frame moving device 33. A frame holder (not shown in the drawings) on which the embroidery frame 34 can be removably mounted and a Y axis moving mechanism (not shown in the drawings) that is configured to move the frame holder in the front-rear direction (the Y axis direction) are provided in the interior of the carriage 35. The Y axis moving mechanism may be driven by a Y axis motor 84 (refer to
An X axis moving mechanism (not shown in the drawings) that is configured to move the carriage 35 in the left-right direction (the X axis direction) is provided inside the embroidery frame moving device 33. The X axis moving mechanism may be driven by an X axis motor 83 (refer to
A needle bar 6 (refer to
A vertically rectangular liquid crystal display (hereinafter called an LCD) 15 is provided in the front face of the pillar 12. An image may be displayed on the LCD 15 based on image data that includes various types of items, such as commands, illustrations, setting values, messages, and the like. A touch panel 26 is provided on the front face of the LCD 15. Using a finger or a special touch pen, a user may perform a pressing operation on the touch panel 26. Hereinafter, this operation is called a panel operation. The touch panel 26 detects a position which is pressed by a finger or a special touch pen etc., and the sewing machine 1 determines the item that corresponds to the detected position. Thus, the sewing machine 1 recognizes the selected item. By performing the panel operation, the user can select a pattern to be sewn or a command to be executed.
The arm 13 is provided in its top portion with a cover 16 that can be opened and closed. Underneath the cover 16, that is, approximately in the middle of the arm 13, a thread container portion 18 is provided that is a recessed portion that may contain a thread spool 20. A thread spool pin 19 that projects leftward toward the head 14 is provided on an inner side wall on the pillar 12 side of the thread container portion 18. The thread spool 20 may be mounted in the thread container portion 18 in a state in which the thread spool pin 19 has been inserted into an insertion hole (not shown in the drawings) of the thread spool 20.
An upper thread (not shown in the drawings) that is wound around the thread spool 20 may be supplied from the thread spool 20, through a thread hook portions (not shown in the drawings) that are provided in the head 14, to the sewing needle 7 that is mounted in the needle bar 6 (refer to
An electrical configuration of the sewing machine 1 will be explained with reference to
The ROM 62 stores various types of programs for controlling the operation of the sewing machine 1. The CPU 61 may perform various types of computations and processing in accordance with the programs that are stored in the ROM 62, temporarily storing various types of data in the RAM 63. Standard character embroidery data are also stored in the ROM 62. The standard character embroidery data are data for sewing characters in a standard style as embroidery patterns. The standard character embroidery data may represent an embroidery data of a standard design of a character. Data that indicate needle drop points, which are positions where the sewing needle 7 pierces the work cloth 100, are also included in the standard character embroidery data. A sewing order, a sewing starting point, and a sewing ending point of an embroidery pattern are also included in the standard character embroidery data. The sewing order, the sewing starting point, and the sewing ending point will be described in detail later. Hereinafter, the sewing order, the sewing starting point, and the sewing ending point are also called setting information. The sewing machine 1 is able to sew characters in the standard style as embroidery patterns, based on the standard character embroidery data.
The setting information that is included in the standard character embroidery data will be explained with reference to
The setting information, that is, the sewing order, the sewing starting point, and the sewing ending point, have been adjusted such that an embroidered pattern with high quality can be sewn in the work cloth 100 based on the standard character embroidery data. Specific examples will be explained. Value of the setting information is adjusted such that jump stitches and basting occur as little as possible, or to put it another way, such that the character is sewn, to the extent possible, as if it were written as a single continuous line. Thus the high quality of the embroidered pattern may be ensured. This may prevent the occurrence of boundary lines and differences in the sewing direction within the embroidery pattern. The parameters in the setting information are also adjusted such that the sewing starts and stops on the underside of the standard character, to the extent possible. In a case where embroidery patterns of a character string in which a plurality of the standard characters are combined and sewn, this may prevent jump stitches from passing over the embroidered pattern between the embroidered patterns for the individual characters, thereby ensuring the high quality of the embroidered pattern. It may also minimize the amount of jump stitch removal work the user must do.
As shown in
Drive circuits 71 to 74, 85, and 86 are electrically connected to the output interface 66. The drive circuit 71 may drive a feed adjustment pulse motor 78. The drive circuit 72 may drive a sewing machine motor 79. The drive circuit 73 may drive a swinging pulse motor 80. The swinging pulse motor 80 may drive a needle bar swinging mechanism (not shown in the drawings) that swings the needle bar 6. The feed adjustment pulse motor 78 and the swinging pulse motor 80 are not driven during the sewing of the embroidery pattern. The drive circuit 74 may drive the LCD 15. The drive circuits 85 and 86 may respectively drive the X axis motor 83 and the Y axis motor 84 for moving the embroidery frame 34.
Character acquisition processing and sewing processing that are performed by the sewing machine 1 will be explained with reference to
The character acquisition processing will be explained with reference to
As shown in
The characters 51 that are contained in the binary image 70 (refer to
In a case where the extracting and storing have been completed for all of the characters 51 that are contained in the binary image 70 (YES at Step S19), the image data of the first one of the plurality of character designs 53 that have been stored in the RAM 63 is selected, as shown in
The size of the character design 55 is adjusted. Specifically, in a case where the length of one side of the square 54 that contains the character design 55 is not a specified value, the character design 55 is one of enlarged and shrunk such that the length of one side of the square 54 becomes the specified value (Step S23). The character design 55 whose size has been adjusted is then redefined as a character design 56 (refer to
The character 51 that is contained in the character design 56 is recognized by a known character recognition method, and the type of the character 51 is specified (Step S25). Pattern matching by feature extraction, for example, can be used as the known character recognition method. The specified character is compared to a standard character that is sewn according to the standard character embroidery data that are stored in the ROM 62 (Step S27). A determination is made as to whether the standard character embroidery data for a character that is the same as the specified character are stored in the ROM 62 (Step S29). In the present example, a determination is made as to whether the standard character embroidery data are stored in the ROM 62 for a character that is the same as whichever one of the character 51A, the character 51B, the character 51C, the character 51D, the character 51E, the character 51F, the character 51G, the character 51H, the character 51I, and the character 51J (refer to
In a case where the standard character embroidery data for the same character that is the same as the specified character are not stored in the ROM 62 (NO at Step S29), the image data of the character design 56 is converted using a known conversion technology, and the embroidery data for sewing the character design 56 as an embroidery pattern are created (Step S33). The embroidery data for the character design 56 are stored in the EEPROM 64 (Step S35). The processing advances to Step S37.
The embroidery pattern that is sewn based on the embroidery data that have been created using the known conversion technology will be explained. With the known conversion technology, a character is ordinarily divided into block units. The setting information (the sewing order, the sewing starting point, and the sewing ending point) that is included in the embroidery data is set such that the sewing will be performed with adjacent blocks being taken into account. The blocks are sections into which the character is divided by curving portions. That means that even where it is possible to sew the character as if it were written as a single continuous line, in many cases the character is actually sewn in part. Therefore, cases may occur in which the quality of the embroidered pattern is affected by differences in the sewing direction and boundary lines that are formed within the character. Furthermore, with the known conversion technology, the sewing starting point and the sewing ending point are set such that the sewing is started at the upper left of the character, and the sewing ends at any chosen point in the character. Therefore, a case may occur in which a jump stitch passes over the embroidered character.
On the other hand, as shown in
At Step S37, a determination is made as to whether the processing at Steps S21 to S35 has been performed for all image data of character designs 53 that were stored in the RAM 63 at Step S17 (refer to
The sewing processing will be explained with reference to
First, in a case where the user's desired character string is input through the touch panel 26, the input character string is accepted (Step S41). The characters that are included in the accepted character string are specified. The embroidery data for sewing the specified characters as embroidery patterns are selected from among the embroidery data that were stored in the EEPROM 64 at Step S35 in the character acquisition processing (refer to
Next, in a case where the user performs, through the touch panel 26, an operation that edits the character string, the content of the editing is accepted (Step S45). The content of the editing may include alignment of the characters, adjustment of the embroidery position, rotation, and the like, for example. In accordance with the accepted editing content, edit processing is performed on the embroidery data that were selected at Step S43 (Step S45). The sewing of the embroidery patterns is performed by controlling the various types of motors based on the edited embroidery data (Step S47). The result, as shown in
Now, another case will be given in which in addition to the image data of the image 50 (refer to
For example, the character 51K, the character 51B, the character 51L, the character 51M, the character 51N, the character 51O, the character 51F, the character 51G, the character 51H, the character 51I, and the character 51P (refer to
As explained above, the sewing machine 1 is able to extract, character by character, the characters 51 that are contained in the acquired image 50 without changing the style of the characters 51 (Step S17), and is able to sew the embroidery patterns for the character designs 56 of the extracted characters 51 (Step S47). Therefore, the user is able to sew an embroidery pattern of a character that is not registered in the sewing machine 1 in advance, such as a character that is handwritten by the user or a character that is prepared in a special font, for example. Because the embroidery data are created character by character (Step S17), the sewing machine 1 is also able to easily sew an embroidery pattern in which a plurality of character designs 56 are combined as the user desires (Steps S41 to S47). Even in a case where the sizes of the characters that are contained in the image 50 are not uniform, the sewing machine 1 creates the character designs 56 such that the character sizes are the same (Step S23) and creates the embroidery data (Step S31) that make it possible to sew the embroidery pattern. Therefore, in a case where the embroidery pattern that is sewn is of a character string in which a plurality of characters are positioned side by side, the characters can be sewn in a uniform size, so an attractive embroidery pattern that shows unity as a whole can be sewn. Note that the embroidery data are created after the character designs 56 have been adjusted by making the sizes of the character designs 55 uniform. Therefore, the sizes of the embroidery patterns to be sewn can be reliably made uniform.
The sewing machine 1 is also able to create the embroidery data based on the standard character embroidery data (Step S31), so it is able to sew the embroidery pattern with a good finish. Specifically, the sewing machine 1 is able to make the setting information (the sewing order, the sewing starting point, and the sewing ending point) for the embroidery pattern of the character designs 56 resemble the setting information of the standard character embroidery data. This makes it possible for the sewing machine 1 to sew the embroidery pattern with an even better finish.
The sewing machine 1 can also create embroidery data of a character string by selecting from the EEPROM 64 (Step S43) the embroidery data for the embroidery patterns of the character designs 56 that were created character by character in accordance with a character string that was input. Therefore, by using the sewing machine 1, the user can freely create a character string that includes characters in a desired style and can perform the embroidering of the embroidery patterns for that character string.
Note that the present disclosure is not limited to the embodiment that is described above, and various types of modifications can be made. The sewing machine 1 may also always use a known conversion method to create the embroidery data for sewing the character designs 56 as embroidery patterns, without referring to the standard character embroidery data that are stored in the ROM 62. The setting information that is included in the standard character embroidery data is not limited to being the sewing order, the sewing starting point, and the sewing ending point. Instead of creating the embroidery data after the sizes of the character designs 56 have been modified, the sewing machine 1 may first create the embroidery data based on the unmodified character designs 56, then change the embroidery data such that the sizes of the embroidery patterns to be sewn according to the embroidery data are changed. The sewing machine 1 may also acquire the standard character embroidery data from a server or the like to which the sewing machine 1 is connected through a network.
The present disclosure may also be implemented in an embroidery data creation device that creates the embroidery data. The embroidery data creation device may be configured as a general-purpose computer, for example. In the embroidery data creation device, the embroidery data may be created by the performing of the character acquisition processing (refer to
In the embodiment that is described above, the image data of the image 50 that is stored in the memory card 171 is acquired, and the character designs 56 are extracted. The image data of the image 50 may also be acquired by another method. For example, in a case where the sewing machine 1 is connected to a camera or a scanner, the sewing machine 1 may acquire the image data from the camera or the scanner. In a case where the embroidery data are created in the sewing machine 1 based on a plurality of character designs in which the characters are the same, the sewing machine 1 may also be made such that the user can select the embroidery data that are based on the desired character designs.
The setting information in the standard character embroidery data may also be made such that the user can adjust it. For example, the sewing machine 1 may be made such that the user can set the setting information in the embroidery data manually in a case where the standard character embroidery data for characters that are the same as the characters in the created character designs have not been stored in the ROM 62. The sewing machine 1 may also create the embroidery data for sewing the character designs as the embroidery patterns based on the setting information that has been set.
In a case where the standard character embroidery data for characters that are the same as the characters in the created character designs have not been stored in the ROM 62, the sewing machine 1 may also create the embroidery data for sewing the character designs as the embroidery patterns based on the setting information that is included in the standard character embroidery data for other characters whose shapes resemble those of the characters in the character designs.
The apparatus and methods described above with reference to the various embodiments are merely examples. It goes without saying that they are not confined to the depicted embodiments. While various features have been described in conjunction with the examples outlined above, various alternatives, modifications, variations, and/or improvements of those features and/or examples may be possible. Accordingly, the examples, as set forth above, are intended to be illustrative. Various changes may be made without departing from the broad spirit and scope of the underlying principles.
Number | Date | Country | Kind |
---|---|---|---|
2011-170622 | Aug 2011 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
4991524 | Ozaki | Feb 1991 | A |
5386789 | Futamura et al. | Feb 1995 | A |
5558031 | Muto et al. | Sep 1996 | A |
5563795 | Futamura et al. | Oct 1996 | A |
5740056 | Futamura | Apr 1998 | A |
5765496 | Futamura | Jun 1998 | A |
5791271 | Futamura | Aug 1998 | A |
6032596 | Hayakawa | Mar 2000 | A |
6397120 | Goldman | May 2002 | B1 |
7587256 | Goldman | Sep 2009 | B2 |
Number | Date | Country |
---|---|---|
A-2-133648 | May 1990 | JP |
A-5-42278 | Feb 1993 | JP |
A-8-44848 | Feb 1996 | JP |
A-10-118367 | May 1998 | JP |
A-11-76664 | Mar 1999 | JP |
A-2001-17758 | Jan 2001 | JP |
Entry |
---|
Jul. 16, 2013 Office Action issued in Japanese Patent Application No. 2011-170622 (with translation). |
Number | Date | Country | |
---|---|---|---|
20130035780 A1 | Feb 2013 | US |