This application claims priority from Japanese Patent Application No. 2012-072930, filed on Mar. 28, 2012, the content of which is hereby incorporated by reference.
The present disclosure relates to a sewing machine module that is provided with a feed mechanism and a shuttle mechanism, and to a sewing machine that is provided with the sewing machine module.
Cases are known in which a sewing machine module that has been manufactured such that the sewing machine module combines a plurality of mechanisms is mounted on a sewing machine in order to improve the production efficiency of the sewing machine. For example, the sewing machine module is manufactured by attaching a feed mechanism and a shuttle mechanism to a base plate.
The sewing machine module must be provided with high rigidity. In a known sewing machine module, the rigidity of the sewing machine module is ensured by bending a metal plate with high rigidity into a complex shape to form the base plate. Members that configure the feed mechanism and the shuttle mechanism are attached to the formed base plate from various directions.
However, the process by which the base plate is formed by bending and the process by which the members are attached to the base plate from various directions are both complicated processes. Therefore, with the known technology, it is difficult to manufacture a sewing machine module that is provided with high rigidity.
The present disclosure provides a sewing machine module that is provided with high rigidity and can be manufactured easily, and also provides a sewing machine that is provided with the sewing machine module.
A sewing machine module mounted in a sewing machine according to a first aspect of the present disclosure includes a feed mechanism, a shuttle mechanism, a frame, a cover member, and a joining mechanism. The frame covers at least a portion of a side face of the feed mechanism, a portion of a side face of the shuttle mechanism, a portion of a bottom face of the feed mechanism, and a portion of a bottom face of the shuttle mechanism. The frame supports the feed mechanism and the shuttle mechanism in a state in which a top side of the feed mechanism and a top side of the shuttle mechanism are open. The cover member is formed into a flat plate shape and covers the top side of the feed mechanism and the top side of the shuttle mechanism that are supported by the frame. The joining mechanism joins the frame and the cover member.
A sewing machine according to a second aspect of the present disclosure includes a sewing machine module. The sewing machine module includes a feed mechanism, a shuttle mechanism, a frame a cover member, and a joining mechanism. The frame covers at least a portion of a side face of the feed mechanism, a portion of a side face of the shuttle mechanism, a portion of a bottom face of the feed mechanism, and a portion of a bottom face of the shuttle mechanism. The frame supports the feed mechanism and the shuttle mechanism in a state in which a top side of the feed mechanism and a top side of the shuttle mechanism are open. The cover member is formed into a flat plate shape and covers the top side of the feed mechanism and the top side of the shuttle mechanism that are supported by the frame. The joining mechanism joins the frame and the cover member. The sewing machine module is mounted in a sewing machine casing of the sewing machine in a state in which the frame and the cover member are joined by the joining mechanism.
Embodiments of the invention will be described below in detail with reference to the accompanying drawings in which:
Hereinafter, an embodiment of the present disclosure will be explained with reference to the drawings. Note that the drawings are used for explaining technological features that the present disclosure can utilize, and the drawings are not drawings whose purpose is to restrict the nature of the present disclosure. First, a physical configuration of a sewing machine 1 will be explained with reference to
As shown in
A needle plate 14 and a needle plate cover 16 that can be opened and closed are provided on the top face of the bed 2. A sewing machine module 8 (refer to
The sewing machine motor (not shown in the drawings) is provided underneath the interior of the pillar 3. The sewing machine motor rotates the drive shaft. When the drive shaft rotates, a needle bar up-and-down moving mechanism (not shown in the drawings) operates, the needle bar 6 moves up and down, and sewing is performed. The rotating of the drive shaft is transmitted to an intermediate shaft (not shown in the drawings) through a drive belt (not shown in the drawings). The intermediate shaft is supported in the interior of the bed 2 such that the intermediate shaft can rotate. The intermediate shaft is coupled to and rotates as a single unit with the lower shaft 50.
Hereinafter, the sewing machine module 8 will be explained. The lower left side, the upper right side, the upper left side, and the lower right side in
The overall structure of the sewing machine module 8 will be explained. As shown in
The lower shaft 50 will be explained. As shown in
The shuttle mechanism 90 will be explained. As shown in
The feed mechanism 60 will be explained. As shown in
The feed arm 61 has an approximately rectangular shape in a front view, and is formed from a metal plate. The left and right ends of the feed arm 61 are provided with flange portions 62 that are formed by being bent toward the rear. A hole 64, through which a support shaft 63 (refer to
The feed bar 67 includes a body portion 68 and a pair of beam portions 70. The body portion 68 is a plate-shaped portion that is disposed substantially horizontally. The feed dog 69 is fixed to the top face of the body portion 68. As will be described in detail later, an urging portion 116 for urging the feed bar 67 downward is provided in the center of the rear edge of the body portion 68 (to the rear of the feed dog 69). The pair of the beam portions 70 are each plate-shaped and extend parallel to one another toward the front from the left and right edges of the body portion 68. The distance between the pair of the beam portions 70 is slightly narrower than the distance between the pair of the flange portions 62. A round hole 71 for coupling the feed bar 67 to the feed arm 61 is provided in the tip of the front end of the each of the beam portions 70. The feed bar 67 and the feed arm 61 are coupled by coupling members 73 such that the feed bar 67 and the feed arm 61 can swing in relation to one another. Notches 72 for locking the coupling members 73 are formed to the rear of the holes 71 in the beam portions 70.
The coupling members 73 will be explained. The coupling members 73 are formed from a synthetic resin material that has flexibility. As shown in
In a case where the feed arm 61 and the feed bar 67 are coupled, as shown in
The structure that causes the feed dog 69 to move toward the front and toward the rear will be explained. As shown in
The sewing machine module 8 is provided with a front-rear feed amount adjustment mechanism 81 that adjusts a feed amount in the front-rear direction. A feed adjuster 82 is provided on the left side of the front-rear feed amount adjustment mechanism 81. An engaging groove (not shown in the drawings) with which the projecting portion 80 of the swivel link 78 engages such that the swivel link 78 can slide is formed on a left side face of the feed adjuster 82. The feed adjuster 82 is supported in a way that allows its orientation to be changed such that the angle of the engaging groove changes. The angle of the engaging groove, that is, the orientation of the feed adjuster 82, is controlled by a feed amount setting mechanism (not shown in the drawings) that is provided in the interior of the sewing machine 1.
When the lower shaft 50 rotates, the swivel link 78 is swiveled up and down by the front-rear feed earn 52. The engaging groove of the feed adjuster 82 is inclined in relation to the vertical. The reciprocal up-and-down movement of the projecting portion 80 within the engaging groove of the feed adjuster 82 causes the coupling shaft 66, which supports the swivel link 78, to swing toward the front and toward the rear around the support shaft 63, which supports the feed arm 61. The feed bar 67 and the feed dog 69 thus swing toward the front and toward the rear. When the orientation of the feed adjuster 82 is changed, the angle of the engaging groove changes, so the amount that the coupling shaft 66 moves toward the front and toward the rear (that is, the feed amount for feeding toward the front and toward the rear) changes.
The mechanism that moves the feed dog 69 up and down will be explained. As shown in
As shown in
The adjusting screw 100 and the urging portion 116 will be explained. As shown in
The upper portion (the base end portion) of the leaf spring 105 is fixed to a portion of the feed bar 67 on the rear side of the adjusting screw 100. The lower portion (the free end portion) of the leaf spring 105 is urged toward the flange portion 102 of the adjusting screw 100. A projecting portion 106 is formed on the front side of the lower portion of the leaf spring 105. The projecting portion 106 restricts the rotating of the adjusting screw 100 by being in contact with the knurling (the ridges and grooves of the knurling) that is formed on the flange portion 102 of the adjusting screw 100. It is therefore possible to prevent the position of the feed bar 67 in the up-down direction from being changed by the unintentional rotating of the adjusting screw 100 by the operator. Because the outside diameter of the flange portion 102 is greater than the outside diameter of the threaded portion 101, the rotation of the adjusting screw 100 can be adequately restricted even if the urging force of the leaf spring 105 is made smaller.
A circular cylindrical spring cover 110 is fitted over the threaded portion 101 of the adjusting screw 100. A contact portion 112 on the upper end of the spring cover 110 has a curved shape that protrudes upward. Specifically, the contact portion 112 has a smoothly curved shape that, in a section view, protrudes upward in a direction that is orthogonal to the axial direction of the lower shaft 50 (the left-right direction). A ring-shaped slot 111 into which a compression spring (a coil spring) 114 is inserted from below is formed inside the spring cover 110. The inserting of the compression spring 114 into the slot 111 causes the spring cover 110 to cover the compression spring 114 from above (from the cover member 40 side). The lower end of the compression spring 114 is in contact with the top face of the feed bar 67. Therefore, the spring cover 110 is urged upward by the compression spring 114 toward the cover member 40. Because the spring cover 110 is fitted over the threaded portion 101, the up-and-down movement of the spring cover 110 is guided smoothly by the threaded portion 101.
The cover member 40 is mounted such that the cover member 40 covers the spring cover 110, the feed bar 67, and the like from above. Therefore, the bottom face of the cover member 40 is in contact with the contact portion 112 on the upper end of the spring cover 110. The urging portion 116 in which the spring cover 110 and the compression spring 114 are provided therefore urges the feed bar 67 downward, and the state of contact between the up-down feed cam 53 and the cam contacting portion 85 of the up-down feed lever 83 is maintained. Accordingly, the feed bar 67 swings up and down smoothly. In the feed mechanisms of the known sewing machines, the feed bar is generally urged downward by a tension spring. The tension spring must be installed between the feed bar and one of the frame and the machine casing that forms the bed, a task that is cumbersome. In the present embodiment, the operator simply mounts the cover member 40 from above, which completely eliminates the task of mounting the tension spring and dramatically improves the work efficiency.
The feed bar 67 is swung upward and downward, as well as toward the front and toward the rear, by the feed mechanism 60 (refer to
The contact portion 112 on the upper end of the spring cover 110 has an upwardly protruding curved shape. Therefore, even if the feed bar 67 swings toward the front and toward the rear, as well as upward and downward, the spring cover 110 can slide smoothly against the cover member 40.
The frame 20 will be explained. The frame 20 is formed from a synthetic resin material. As described previously, the frame 20 forms what is approximately a box shape, with its top side open. As shown in
A shuttle mounting portion 24 is formed close to the center of the bottom face of the frame 20. The shuttle mechanism 90 can be mounted in the frame 20 by screwing the screws 96 into threaded holes (not shown in the drawings) in the shuttle mounting portion 24 from above. U-shaped support shaft insertion portions 25 that are open at the top are formed close to the front edge of the frame 20 in two locations on the left and the right. The support shaft 63 of the feed mechanism 60 is placed into the support shaft insertion portions 25 from above. Next, the keep plates 58 (only the keep plate 58 on the right side being shown in
Threaded holes 27 for fixing the front-rear feed amount adjustment mechanism 81 in place are formed in two locations close to the right edge of the frame 20. The front-rear feed amount adjustment mechanism 81 can easily be fixed in place in the frame 20 from above by screwing screws 89 into the two threaded holes 27 from above. U-shaped pivot shaft insertion portions 28 that are open at the top are formed close to the rear edge of the frame 20 in two locations on the left and the right. The pivot shaft 84 of the up-down feed lever 83 can easily be placed into the pivot shaft insertion portions 28 from above and fixed in place with screws (not shown in the drawings). Threaded holes 29 for fixing the cover member 40 are formed in four corners of the upper portion of the frame 20. The cover member 40 is joined to the frame 20 by the screwing of the screws 49 into the four threaded holes 29.
The cover member 40 will be explained. As shown in
As explained above, in the sewing machine module 8, the frame 20 is formed such that the frame 20 encloses the side faces and the bottom faces of the feed mechanism 60 and the shuttle mechanism 90. The top side of the frame 20 is open. The operator is therefore able to attach the members that form the feed mechanism 60, the shuttle mechanism 90, and the like to the frame 20 from above the frame 20. In a state in which the feed mechanism 60 and the shuttle mechanism 90 have been attached to the frame 20, the rigidity of the entire sewing machine module 8 is ensured by using the screws 49 to join the cover member 40 and the frame 20. The operator is therefore easily able to manufacture the sewing machine module 8 such that the sewing machine module 8 is provided with high rigidity. More specifically, there is no need to create a base for the mounting of the feed mechanism 60, the shuttle mechanism 90, and the like by bending a metal plate. It is also not necessary for the operator to attach members to a base from a plurality of directions. The sewing machine module 8 can thus be manufactured with high rigidity easily and at a low cost.
The urging portion 116 urges the feed bar 67 downward by coming into contact with the bottom face of the cover member 40. Therefore, the state of contact between the up-down feed lever 83 and the up-down feed cam 53 is maintained, and the feed bar 67 is swung upward and downward smoothly, just by the joining of the cover member 40 to the frame 20. The operator can thus easily manufacture the sewing machine module 8 such that the feed bar 67 swings smoothly.
The operator is able to adjust the position of the feed bar 67 by turning the adjusting screw 100 to adjust the distance between the up-down feed lever 83 and the feed bar 67. Furthermore, the leaf spring 105, which is urged toward the adjusting screw 100, restricts the rotation of the adjusting screw 100. Therefore, with a simple structure, the sewing machine module 8 is able to prevent the position of the feed bar 67 from being changed by the unintentional rotating of the adjusting screw 100 by the operator.
In the present embodiment, the spring cover 110, which covers the compression spring 114, comes into contact with the bottom face of the cover member 40. Therefore, falling of and damage to the compression spring 114 are prevented, as are similar problems, unlike in a case where the compression spring 114 makes direct contact with the cover member 40. Moreover, no damage is done to the bottom face of the cover member 40 by the compression spring 114. The sewing machine module 8 can therefore operate smoothly. In addition, the contact portion 112 of the spring cover 110 has a curved shape that protrudes upward. The spring cover 110 is therefore able to slide more smoothly against the cover member 40.
In the present embodiment, the feed arm 61 and the feed bar 67 are coupled by the coupling members 73. The locking portions 76 of the coupling members 73 allow the movements by which the shaft portions 75 are inserted into the holes 65 and the holes 71, and the locking portions 76 are locked to the beam portions 70 in a state in which the shaft portions 75 extend through the holes 65 and the holes 71. Therefore, unlike in a case where retaining rings or the like are used, the operator can easily couple the feed arm 61 and the feed bar 67 simply by pushing the shaft portions 75 of the coupling members 73 into the holes 65 and the holes 71. The operator can also easily release the coupling by undoing the locking of the locking portions 76.
In the present embodiment, the rotation-stopping member 42 and the hold-down member 44 are provided as integral parts of the cover member 40. Therefore, the locking of the rotation of the inner shuttle 92 and the restricting of the upward movement of the inner shuttle 92 are easily accomplished simply by joining the cover member 40 to the frame 20. Because the number of parts is less than in the known sewing machine module, the manufacturing cost and the operating burden are further reduced.
In the present embodiment, the frame 20 is formed from a synthetic resin material, and the cover member 40 is formed from a metal plate. The forming of the frame 20 from the synthetic resin material makes it possible for the operator to manufacture the frame 20, which is designed to allow many parts to be mounted from above, easily and at low cost. In contrast, a metal plate with high rigidity is used for the cover member 40, so the rigidity of the entire sewing machine module 8 can be enhanced by the joining of the frame 20 and the cover member 40. Moreover, because the cover member 40 has a substantially flat plate shape, processes such as complex bending and the like of the metal plate are not required.
The present disclosure is not limited to the embodiment that is described above, and various types of modifications can be made. For example, in the embodiment that is described above, the frame 20 is formed from a synthetic resin material. The frame 20 can therefore easily be created with a complex shape. However, the frame 20 may also be formed from a material other than a synthetic resin material. Furthermore, in the embodiment that is described above, the cover member 40 is formed from a metal plate with high rigidity, so the rigidity of the entire sewing machine module 8 is ensured. However, the material of the cover member 40 may also be changed. In the embodiment that is described above, it is also desirable for the rotation-stopping member 42 and the hold-down member 44 to be provided as integral parts of the cover member 40. However, at least one of the rotation-stopping member 42 and the hold-down member 44 may also be provided as a separate member.
In the embodiment that is described above, some of the areas to the sides and below the feed mechanism 60 and the shuttle mechanism 90 are covered by the frame 20, while other areas are left open. However, the entire area to the sides and below the feed mechanism 60 and the shuttle mechanism 90 may also be covered by the frame 20. In that case, the rigidity is improved even more. Furthermore, in the embodiment that is described above, the cover member 40 is joined to the frame 20 by the screws 49. Therefore, the frame 20 and the cover member 40 can be joined easily and strongly, and the joining can be easily undone. However, the frame 20 and the cover member 40 may also be joined by snap fits, welding or the like.
In the embodiment that is described above, the up-down feed lever 83 comes into contact with the up-down feed cam 53. However, one of a portion of the feed bar 67 and a member that is fixed to the feed bar 67 (for example, the adjusting screw 100) may also come into direct contact with the up-down feed cam 53. Even in that case, the feed bar 67 will swing up and down smoothly.
In the embodiment that is described above, the urging portion 116 is configured using the spring cover 110 and the compression spring 114. However, as long as the spring cover 110 covers at least the end of the compression spring 114 on the side toward the cover member 40, it is not necessary for the spring cover 110 to cover the entire compression spring 114. A leaf spring may also be used instead of the compression spring 114. In a case where a leaf spring is used, it is also acceptable for the spring cover 110 not to be used.
In the embodiment that is described above, the spring cover 110 is fitted over the threaded portion 101 of the adjusting screw 100, so the up-and-down movement of the spring cover 110 is guided smoothly by the threaded portion 101. However, the urging portion 116 may also be provided in a position other than the position of the adjusting screw 100. In the embodiment that is described above, the lower end of the compression spring 114 is in contact with the top face of the feed bar 67, so the feed bar 67 is urged downward. However, it is also acceptable for the compression spring 114 not to be in contact with the feed bar 67. For example, the compression spring 114 may also downwardly urge the feed bar 67, to which the adjusting screw 100 is attached, by coming into contact with the adjusting screw 100 and urging the adjusting screw 100 downward. In other words, the wording “the compression spring that is provided on the feed bar” is not wording that is intended to be limited to a case in which the compression spring is in contact with the feed bar.
In the embodiment that is described above, the rotation of the adjusting screw 100 is restricted by the contact of the projecting portion 106 of the leaf spring 105 with the knurling on the flange portion 102 of the adjusting screw 100. However, the structure for restricting the rotation of the adjusting screw 100 may also be modified. For example, the flange portion 102 of the adjusting screw 100 may be omitted, and the leaf spring 105 may be made to come into direct contact with the threaded portion 101 of the adjusting screw 100. In a case where the flange portion 102 is provided, it may also be provided above the feed bar 67 instead of below the feed bar 67. The projecting portion 106 of the leaf spring 105 may also be omitted. The rotation of the adjusting screw 100 may also be restricted by using a member other than the leaf spring 105 to apply a force to the adjusting screw 100.
The structures of the coupling members 73, the method of using the coupling members 73 for coupling the feed arm 61 and the feed bar 67, and the like can be modified as desired. For example, in the embodiment that is described above, the coupling members 73 are inserted into the holes 65 and the holes 71 from the outer sides on the left and the right. However, the coupling members 73 may also be mounted from the inner sides. In the embodiment that is described above, two of the locking portions 76 are provided on each of the coupling members 73, but the number of the locking portions 76 can also be changed.
Number | Date | Country | Kind |
---|---|---|---|
2012-072930 | Mar 2012 | JP | national |