The present disclosure relates to a sewing machine.
A sewing machine provided with a cloth presser device is known. The cloth presser device drives a presser member that holds down a cloth, in synchronization with driving of a needle bar. A drive shaft of the sewing machine is provided with a column-shaped drive cam. An outer peripheral surface of the drive cam is provided with a cam groove for driving a cloth presser foot. A roller is attached to the leading end of an arm portion of a lever such that the position of the roller is adjustable. The roller engages with the cam groove for driving the cloth presser foot. When the drive cam is rotated by the rotation of the drive shaft, the lever swings in accordance with the movement of the roller. The lever drives the cloth presser device.
A portion at which the cam groove and the roller engage with each other has a slight gap (backlash) in a width direction of the cam groove. Therefore, the operation of the presser member is not stable, and there is a possibility of occurrence of noise.
It is an object of the present disclosure to provide a sewing machine capable of stably driving a presser member that holds down a cloth.
An aspect of the present disclosure provides a sewing machine including a drive shaft, a cam member, a forked member, an urging device, and a presser mechanism. The drive shaft is configured to be rotated by a sewing machine motor. The cam member includes a first cam and a second cam. The first cam has an outer periphery on which a first cam surface is formed. The second cam has an outer periphery on which a second cam surface, whose shape is different from that of the first cam surface, is formed. The first cam and the second cam are provided side by side in an extending direction of the drive shaft. At least one of the first cam surface and the second cam surface is inclined with respect to the extending direction of the drive shaft. The cam member is fixed to the drive shaft and rotates integrally with the drive shaft. The forked member includes a main body member and an auxiliary member. The main body member is swingably and pivotally supported by a pivotally supporting shaft fixed to a machine frame of the sewing machine. The pivotally supporting shaft is provided parallel to the drive shaft. The auxiliary member is swingably supported by the main body member. The main body member and the auxiliary member are disposed to face each other such that the cam member is clamped between the main body member and the auxiliary member. The urging device is configured to constantly urge the main body member and the auxiliary member in a direction to clamp the cam member. The presser mechanism is configured to drive a presser member, which holds down a cloth, by swinging of the forked member caused by the rotation of the cam member.
Embodiments of the disclosure will be described below in detail with reference to the accompanying drawings in which:
Hereinafter, an embodiment of the present disclosure will be explained with reference to the drawings. Note that the drawings are used to explain technological features that can be adopted by the present disclosure, and are not intended to limit the content. In the following explanation, left and right directions, front and rear directions, and up and down directions as indicated by arrows in the drawings are used.
The structure of a sewing machine 1 will be explained with reference to
The support portion 2 is formed in a substantially U-shape in a plan view. The support portion 2 is provided with a pair of leg portions 21 and 22 and a base portion 23. The pair of leg portions 21 and 22 each extend in the front-rear direction, and are disposed side by side in the left-right direction. The base portion 23 is disposed between the leg portion 21 and the leg portion 22, on a rear side of each of the leg portions 21 and 22. The base portion 23 extends in the left-right direction and connects the leg portion 21 and the leg portion 22.
The cylinder bed 10, which has a cylindrical shape and extends forward, is provided at substantially the center in the left-right direction of the base portion 23. A cloth (not shown in the drawings) is disposed on a top surface of the cylinder bed 10. A shuttle mechanism (not shown in the drawings) is provided inside the cylinder bed 10. A lower shaft (not shown in the drawings) is provided such that it extends from the inside of the base portion 23 to the inside of the cylinder bed 10. The lower shaft is driven to rotate by a drive shaft 17 to be described later. A driving force of a sewing machine motor 16, which will be described later, is transmitted to the shuttle mechanism via the lower shaft. The shuttle mechanism drives and rotates a shuttle (not shown in the drawings) disposed inside a leading end portion of the cylinder bed 10. The shuttle houses a bobbin (not shown in the drawings) around which a lower thread (not shown in the drawings) is wound.
A needle plate 11 having a rectangular shape in a plan view is provided on a top surface of the leading end portion of the cylinder bed 10. The needle plate 11 is disposed above the shuttle. A needle hole 12 is formed in the needle plate 11. A sewing needle 9 mounted on a lower end portion of a needle bar 30 (refer to
As shown in
The sewing machine motor 16, a control portion (not shown in the drawings) of the sewing machine 1, and the like are provided inside the pillar 3. The sewing machine motor 16 drives and rotates the drive shaft 17 provided inside the arm portion 4. The drive shaft 17 and the lower shaft inside the support portion 2 are coupled by a timing belt (not shown in the drawings). Thus, the rotation of the drive shaft 17 is transmitted to the lower shaft, and the drive shaft 17 and the lower shaft rotate in synchronization.
The drive shaft 17 is provided inside the arm portion 4, and extends in the front-rear direction. The drive shaft 17 drives a thread take-up lever mechanism 20, a needle bar drive mechanism 40, a cloth presser drive mechanism 60 and the like that are provided inside the head portion 5 and that will be described later. A thread spool stand 7 is provided on a top surface of the arm portion 4. A plurality (four, for example) of thread spool pins 14 are arranged in a standing condition on the thread spool stand 7. The thread spool pins 14 are respectively inserted into holes of a plurality (four, for example) of thread spools 13, around which an upper thread 15 is wound. A plurality of the thread spools 13 can be placed on the thread spool stand 7.
A tensioner 18 is provided on an upper portion of the head portion 5. The tensioner 18 applies a tension to the upper thread 15 supplied from the thread spool stand 7. An operation portion 6 is provided on the right side of the head portion 5. The operation portion 6 is provided with a liquid crystal display 27, a touch panel 28, a start/stop switch 29 and the like. The liquid crystal display 27 displays various types of information such as, for example, an operation screen for a user to input a command. The touch panel 28 receives a command from the user. The start/stop switch 29 is a switch to command the start or stop of sewing.
An internal structure of the head portion 5 will be explained with reference to
The needle bar frame 31 extends in the up-down direction on the front side inside the head portion 5, and is fixed to the machine frame 5A. An upper end portion and a lower end portion of the needle bar frame 31 are provided with an upper support portion 36 and a lower support portion 37. The needle bar 30 extends in the up-down direction on the front side inside the head portion 5, and is supported by the upper support portion 36 and the lower support portion 37 of the needle bar frame 31 such that the needle bar 30 can move up and down. A coupling member 33 is fixed to an intermediate portion of the needle bar 30 in the up-down direction, namely, between the upper support portion 36 and the lower support portion 37. The coupling member 33 is provided with a coupling pin 34 that protrudes outwardly in a radial direction toward the rear. The coupling member 33 is coupled to a transmission member 51, to be described later, of the needle bar release mechanism 50, and transmits the driving force of the sewing machine motor 16 to the needle bar 30.
An annular spacer 35 made of rubber, for example, is fixed to an upper end portion of the coupling member 33. When the needle bar 30 is positioned at a top dead center in a vertically movable range, the spacer 35 abuts against an abutment member 61 (refer to
As shown in
The bearing portion 201 is provided at a substantially central portion of the link member 200, and is formed in a substantially cylindrical shape having a through hole (not shown in the drawings) that extends in the left-right direction. A shaft 211 that is supported by a holder 212 fixed to the machine frame 5A is inserted through the through hole of the bearing portion 201, and is rotatably and axially supported. The first link portion 202 extends diagonally upward from the bearing portion 201 toward the rear end portion of the thread take-up lever 19. A working portion 205 is provided at a leading end portion of the first link portion 202. A roller (not shown in the drawings), which is inserted into and engages with the inside of the grip portion 192 of the thread take-up lever 19, is rotatably provided on the working portion 205. The second link portion 203 extends diagonally downward and rearward from the bearing portion 201, and a rear end portion of the second link portion 203 is provided with a sliding portion 206. A roller (not shown in the drawings) is rotatably provided on the sliding portion 206. The roller of the sliding portion 206 abuts against a third cam surface 73A of a thread take-up lever cam 73 fixed to the drive shaft 17. Note that, although details will be described later, the thread take-up lever cam 73 is formed on the rear end of the composite cam 70.
The tension spring 210 is stretched in the front-rear direction between a spring fixing portion 208 provided on an upper end portion of the first link portion 202 of the link member 200, and a spring fixing portion 209 formed on the holder 212 fixed to the machine frame 5A. The tension spring 210 constantly urges the first link portion 202 to the rear. That is, the link member 200 is constantly urged in the clockwise direction in a right side view around the bearing portion 201. Therefore, the roller of the sliding portion 206 of the second link portion 203 constantly abuts against the third cam surface 73A of the thread take-up lever cam 73.
When the drive shaft 17 rotates due to the driving of the sewing machine motor 16, the thread take-up lever cam 73 rotates. Due to the rotation of the thread take-up lever cam 73, the second link portion 203, i.e., the link member 200, swings in accordance with the shape of the third cam surface 73A of the thread take-up lever cam 73. Due to the swinging of the link member 200, the working portion 205 of the first link portion 202 causes the grip portion 192 to swing. Due to the swinging of the grip portion 192, the leading end (the front end) of the thread take-up lever 19 swings in the up-down direction around the support shaft 191. In this manner, the thread take-up lever mechanism 20 causes the thread take-up lever 19 to move up and down in accordance with the rotation of the drive shaft 17. Further, the thread take-up lever 19 moves up and down in synchronization with the needle bar 30. During the sewing, the needle bar 30 operates in cooperation with the shuttle, and causes the upper thread 15 inserted through the eye 9A of the sewing needle 9 to be entwined with the lower thread pulled out from the bobbin housed in the shuttle. The thread take-up lever 19 pulls the upper thread 15 that has been entwined with the lower thread up to a position above the needle plate 11. Thus, the upper thread 15 and the lower thread are fastened and stitches are formed on the cloth.
As shown in
The crank rod 46 is formed in a long shape, and couples the lower end portion 44 of the drive member 42 and the needle bar crank 47. The needle bar crank 47 is fixed to a front end portion of the drive shaft 17, and rotates integrally with the drive shaft 17. One end portion (an upper end portion) of the crank rod 46 is rotatably coupled to the needle bar crank 47, and the other end portion (a lower end portion) is rotatably coupled to the lower end portion 44 of the drive member 42. Therefore, a rotary motion of the drive shaft 17 and the needle bar crank 47 is converted to an up-and-down motion of the lower end portion 44 of the drive member 42 by the crank rod 46. Thus, the drive member 42 reciprocates in the up-down direction along the base needle bar 41. In a state in which the needle bar release mechanism 50 connects the transmission of the driving force to the needle bar 30, the driving force of the sewing machine motor 16, which is transmitted to the needle bar drive mechanism 40 via the drive shaft 17, is transmitted to the needle bar 30. In this case, the needle bar release mechanism 50 and the needle bar 30 reciprocate in the up-down direction in conjunction with the drive member 42 that reciprocates in the up-down direction along the base needle bar 41.
The needle bar release mechanism 50 is a mechanism that connects or blocks the transmission of the driving force of the sewing machine motor 16 from the needle bar drive mechanism 40 to the needle bar 30. The needle bar release mechanism 50 is provided with a transmission member 51 and a coil spring 55. The transmission member 51 is externally fitted to the base needle bar 41, and is provided such that it can move up and down and can rotate with respect to an outer peripheral surface of the base needle bar 41. The transmission member 51 is provided with an upper engagement protrusion 52, a lower engagement protrusion 53 and an abutment pillar 54 (refer to
As shown in
The coil spring 55 is connected to an upper portion of the transmission member 51, and is externally fitted to the upper end portion 43 of the drive member 42. The coil spring 55 urges the transmission member 51 in the clockwise direction in a plan view with respect to the drive member 42. When the abutment pillar 54 of the transmission member 51 is not pressed by the first pin 142 of the drive unit (not shown in the drawings), the transmission member 51 is rotated by the coil spring 55. The upper engagement protrusion 52 and the lower engagement protrusion 53 move to the front of the base needle bar 41. More specifically, the upper engagement protrusion 52 and the lower engagement protrusion 53 move to a position where they can engage with the coupling pin 34 of the needle bar 30.
When the sewing machine 1 having the above-described structure is used, the control portion of the sewing machine 1 drives the sewing machine motor 16, and causes the drive member 42 of the needle bar drive mechanism 40 to move upward along the base needle bar 41. When the transmission member 51 of the needle bar release mechanism 50 is moved upward by the drive member 42, the upper engagement protrusion 52 abuts against the coupling pin 34 of the needle bar 30 from below. The coupling pin 34 presses the top surface of the upper engagement protrusion 52 formed as the inclined surface shape, and causes the transmission member 51 to rotate in the counterclockwise direction in a plan view. When the transmission member 51 further moves upward and the upper engagement protrusion 52 is positioned to be higher than the coupling pin 34, the upper engagement protrusion 52 and the lower engagement protrusion 53 are moved to the front of the base needle bar 41 by the coil spring 55. The coupling pin 34 is interposed between the upper engagement protrusion 52 and the lower engagement protrusion 53, and the coupling member 33 of the needle bar 30 engages with the transmission member 51 of the needle bar release mechanism 50. Thus, the sewing machine 1 is brought into a connected state in which the transmission of the driving force of the sewing machine motor 16 is connected between the needle bar 30 and the drive shaft 17.
The structure of the cloth presser drive mechanism 60 will be explained with reference to
The structure of the composite cam 70 will be explained with reference to
An outer peripheral surface of the auxiliary cam 72 is provided with a second cam surface 72A. The second cam surface 72A has a cam shape by which a distance of clamping on the inside of the forked member 80, which will be described later, is kept constant. In known sewing machines, there is a sewing machine having a structure in which a single triangular cam only is used to move a cloth presser foot up and down. In this case, the movement trajectory of the up and down movement of a cloth presser foot depends on the shape of the triangular cam. Therefore, if the shape of the triangular cam is deformed in order to change the movement trajectory, the outer diameter dimension of the triangular cam becomes non-uniform. More specifically, the distance of clamping on the inside of a forked member is not constant, and therefore, the swinging motion of the forked member becomes unstable. As a result, with the single triangular cam, the design freedom is restricted. In contrast to this, the composite cam 70 of the present embodiment is provided with the auxiliary cam 72, in addition to the main body cam 71. Therefore, in accordance with the cam shape of the main body cam 71, the distance of clamping on the inside of the forked member 80 can be kept constant. Thus, in the sewing machine 1, it is possible to inhibit limitation of the design freedom of the movement trajectory.
The thread take-up lever cam 73 is provided coaxially with the shaft hole 75, and is formed in a substantially circular shape when viewed from the axial direction. The thread take-up lever cam 73 is a known end face cam, and is provided with a third cam surface 73A formed by an end face that faces the rear end side in the axial direction. The roller of the sliding portion 206, which is provided on a rear end portion of the link member 200 of the thread take-up lever mechanism 20, abuts against and slides on the third cam surface 73A. Since the thread take-up lever cam 73 is provided integrally with the composite cam 70, it is possible to downsize the thread take-up lever mechanism 20 of the sewing machine 1.
Inclinations of the first cam surface 71A and the second cam surface 72A will be explained with reference to
The structure of the forked member 80 will be explained with reference to
The auxiliary member 82 is formed in a substantially straight line, and is disposed such that the composite cam 70 is interposed between the inner sides of the auxiliary member 82 and the main body side abutment portion 811 of the main body member 81. Therefore, the main body member 81 and the auxiliary member 82 are formed in a forked shape as a whole. The auxiliary member 82 is provided with a support shaft 85 that extends to the front. The support shaft 85 is inserted through a through hole (not shown in the drawings), which is formed in the support portion 812 of the main body member 81 and which extends in the front-rear direction, and is inhibited from slipping out by a retaining ring (not shown in the drawings). In this manner, the auxiliary member 82 is supported by the main body member 81 such that the auxiliary member 82 can swing around the support shaft 85. The auxiliary member 82 is provided with the auxiliary side abutment portion 821 and a support portion 822. The auxiliary side abutment portion 821 extends upward and diagonally to the left from the support shaft 85, and is provided with a contact surface 821A on a side that faces the composite cam 70. The contact surface 821A abuts against the second cam surface 72A of the auxiliary cam 72 of the composite cam 70. The contact surface 821A is inclined in the same direction as the inclination direction of the second cam surface 72A so that the contact surface 821A comes into close contact with the inclined surface of the second cam surface 72A. The support portion 822 extends downward and diagonally to the left from the support shaft 85.
The tension spring 83 is stretched between the lower end portion of the support portion 812 of the main body member 81 and a lower end portion of the support portion 822 of the auxiliary member 82. The tension spring 83 constantly urges the lower end portion of the support portion 822 such that the lower end portion of the support portion 822 is pulled toward the lower end portion side of the support portion 812. In other words, the tension spring 83 constantly urges the lower end portion of the support portion 822 to an opposite side to the composite cam 70 side. Therefore, the auxiliary member 82 rotates in the counterclockwise direction in a front view around the support shaft 85. The auxiliary side abutment portion 821 of the auxiliary member 82 constantly abuts against the second cam surface 72A of the auxiliary cam 72. Thus, the forked member 80 can reliably clamp the composite cam 70.
Here, a position at which the tension spring 83 is attached will be explained. As shown in
The structure of the drive mechanism 90 will be explained with reference to
As described above, the presser spring 114 mounted on the needle bar 30 constantly urges the presser holder 113 downward. As a result, the abutted portion 115 provided on the presser holder 113 urges the abutment portion 95 downward. Thus, the lower end portion of the support portion 812 of the main body member 81 is urged downward via the ascending/descending portion 92 and the push-up rod 91. Therefore, the forked member 80 constantly presses and urges the composite cam 70 in the clockwise direction around the pivotally supporting shaft 98.
The operation of the cloth presser drive mechanism 60 will be explained with reference to
After the drive shaft 17 further rotates in the clockwise direction and the needle bar 30 reaches a bottom dead center, the forked member 80 reverses the swing direction and starts to swing in the counterclockwise direction. As shown in
Operational effects obtained by causing the first cam surface 71A and the second cam surface 72A of the composite cam 70 to be inclined will be explained with reference to
To address this, in the composite cam 70 of the present embodiment, the first cam surface 71A is formed as an inclined surface that is inclined downward from the rear to the front of the drive shaft 17, and the second cam surface 72A is formed as an inclined surface that is inclined downward from the front to the rear of the drive shaft 17, in a reverse manner to the first cam surface 71A. In other words, in the present embodiment, the first cam surface 71A and the second cam surface 72A are inclined in the opposite directions to each other. Thus, a force direction F1 in which the main body side abutment portion 811 abuts against the first cam surface 71A, and a force direction F2 in which the auxiliary side abutment portion 821 abuts against the second cam surface 72A can be caused to approach each other while facing each other. Then, the force direction F1 and the force direction F2 applied to the forked member 80 work to cancel each other out, and the sewing machine 1 can effectively reduce the rotational moment Q generated in the forked member 80. Thus, the load in the twist direction applied to the pivotally supporting shaft 98 is reduced, and the swing operation of the forked member 80 is stabilized. Thus, the sewing machine 1 can properly drive the cloth presser foot 38.
Further, the contact surface 811A of the main body side abutment portion 811 is inclined in the same direction as the inclination direction of the first cam surface 71A, and the contact surface 821A of the auxiliary side abutment portion 821 is inclined in the same direction as the inclination direction of the second cam surface 72A. Thus, the contact surface 811A and the contact surface 821A can uniformly come into contact with the first cam surface 71A and the second cam surface 72A. Therefore, the forked member 80 can swing stably. Further, since the contact surface 811A and the contact surface 821A uniformly come into contact with the first cam surface 71A and the second cam surface 72A, it is possible to reduce wear of the first cam surface 71A and the second cam surface 72A.
As explained above, the sewing machine 1 of the present embodiment is provided with the drive shaft 17, the composite cam 70, the forked member 80, the tension spring 83 and the cloth presser drive mechanism 60. The drive shaft 17 is rotated by the sewing machine motor 16. The composite cam 70 is provided with the main body cam 71 and the auxiliary cam 72, and is fixed to the drive shaft 17 so as to rotate integrally therewith. The main body cam 71 and the auxiliary cam 72 are provided side by side in the extending direction of the drive shaft 17. The first cam surface 71A is formed on the outer periphery of the main body cam 71. The second cam surface 72A is formed on the outer periphery of the auxiliary cam 72. The forked member 80 is swingably and pivotally supported by the pivotally supporting shaft 98 fixed to the machine frame 5A of the sewing machine 1. The forked member 80 is provided with the main body member 81 and the auxiliary member 82 that is swingably supported by the main body member 81. The pivotally supporting shaft 98 is provided parallel to the drive shaft 17. The forked member 80 is disposed such that the composite cam 70 is clamped between the main body member 81 and the auxiliary member 82, and the main body member 81 and the auxiliary member 82 respectively come into contact with the first cam surface 71A and the second cam surface 72A. The tension spring 83 constantly urges the auxiliary member 82 in a direction to clamp the composite cam 70 between the auxiliary member 82 and the main body member 81. The cloth presser drive mechanism 60 drives the cloth presser foot 38, by the swinging of the forked member 80 caused by the rotation of the composite cam 70.
In the sewing machine 1 provided with the above-described structure, the first cam surface 71A and the second cam surface 72A of the composite cam 70 are inclined with respect to the extending direction of the drive shaft 17. As a result, in the sewing machine 1, the direction in which the main body member 81 comes into contact with the composite cam 70 and the direction in which the auxiliary member 82 comes into contact with the composite cam 70 can be caused to approach each other while facing each other. It is therefore possible to reduce the rotational moment Q generated in the forked member 80. Thus, the load in the twist direction applied to the pivotally supporting shaft 98 is reduced, and the swing operation of the forked member 80 is stabilized. Thus, the sewing machine 1 can favorably drive the cloth presser foot 38.
Further, in the above-described embodiment, the contact surface 811A of the main body member 81 of the forked member 80 comes into contact with the first cam surface 71A, and the contact surface 821A of the auxiliary member 82 of the forked member 80 comes into contact with the second cam surface 72A. The contact surface 811A is inclined in the same direction as the inclination direction of the first cam surface 71A, and the contact surface 821A is inclined in the same direction as the inclination direction of the second cam surface 72A. Thus, the contact surfaces 811A and 821A can uniformly come into contact with the first cam surface 71A and the second cam surface 72A. Therefore, the forked member 80 can swing stably. Further, it is possible to reduce the wear of the first cam surface 71A and the second cam surface 72A.
Further, in the above-described embodiment, the first cam surface 71A is inclined such that it becomes closer to the drive shaft 17 side the further it is toward the opposite side to the auxiliary cam 72 side, and the second cam surface 72A is inclined such that it becomes closer to the drive shaft 17 side the further it is toward the opposite side to the main body cam 71 side. As a result, the direction in which the main body member 81 comes into contact with the composite cam 70 and the direction in which the auxiliary member 82 comes into contact with the composite cam 70 can be caused to approach each other while facing each other. It is therefore possible to suppress the rotational moment Q generated in the forked member 80.
Further, in the above-described embodiment, with respect to the support shaft 85 that swingably supports the auxiliary member 82, the tension spring 83 is connected to the lower end portion of the support portion 822 on the opposite side to the auxiliary side abutment portion 821 that comes into contact with the composite cam 70, and constantly urges the lower end portion to the opposite side to the composite cam 70 side. Thus, in the sewing machine 1, the tension spring 83 can be disposed in a spatially advantageous position, which is on the opposite side to the side, of the forked member 80, that comes into contact with the composite cam 70.
Further, in the above-described embodiment, the thread take-up lever cam 73, which is the end face cam that drives the thread take-up lever 19, is integrally provided in the composite cam 70. It is therefore possible to downsize the thread take-up lever mechanism 20.
Note that the present disclosure is not limited to the above-described embodiment, and various changes may be made without departing from the spirit and scope of the present disclosure. The sewing machine 1 of the present embodiment is an embroidery sewing machine having a single needle bar. However, for example, it may be a so-called multi-needle embroidery sewing machine having a plurality of needle bars.
Various modifications are possible to the composite cam 70 of the above-described embodiment. For example, the inclination directions of the first cam surface 71A and the second cam surface 72A may be changed. For example, a composite cam 170 shown in
In the case of this structure, due to the urging force of the tension spring 83, in the main body side abutment portion 811 of the main body member 81 that abuts against the first cam surface 171A, a component of force is generated in the direction of movement to the second cam surface 172A side along the inclined surface of the first cam surface 171A. On the other hand, in the auxiliary side abutment portion 821 of the auxiliary member 82 that abuts against the second cam surface 172A, a component of force is generated in the direction of movement to the first cam surface 171A side along the inclined surface of the second cam surface 172A. As a result, the main body side abutment portion 811 and the auxiliary side abutment portion 821 operate so as to approach each other in the extending direction of the drive shaft 17. Therefore, the direction in which the main body member 81 comes into contact with the composite cam 170 and the direction in which the auxiliary member 82 comes into contact with the composite cam 170 can be caused to approach each other while facing each other. Therefore, in the sewing machine 1, although dependent on the urging force of the tension spring 83 and the angle of inclination of the first cam surface 171A and the second cam surface 172A, even when the composite cam 170 is used, it is possible to reduce the rotational moment Q generated in the forked member 80.
Further, in the composite cam 70 of the above-described embodiment and the composite cam 170 of the modified example, both of the first cam surface 71A (171) and the second cam surface 72A (172A) are inclined with respect to the extending direction of the drive shaft 17. However, only one of them may be inclined.
For example, a composite cam 270 shown in
A composite cam 370 shown in
Note that the second cam surface 272A of the composite cam 270 may be inclined such that it becomes separated from the drive shaft 17 side the further it is toward the opposite side to the first cam 271 side. Further, the first cam surface 371A of the composite cam 370 may be inclined such that it becomes separated from the drive shaft 17 side the further it is toward the opposite side to the second cam 372 side.
Further, although the thread take-up lever cam 73 is provided integrally with the composite cam 70 of the above-described embodiment, the thread take-up lever cam 73 may be a separate body from the composite cam 70.
Further, the shape of the main body can 71 shown in
Number | Date | Country | Kind |
---|---|---|---|
2015-174282 | Sep 2015 | JP | national |
This application is a Continuing application of International Application No. PCT/JP2016/069414, filed Jun. 30, 2016, which claims priority from Japanese Patent Application No. 2015-174282, filed on Sep. 4, 2015. This disclosure of the foregoing application is hereby incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
Parent | PCT/JP2016/069414 | Jun 2016 | US |
Child | 15715889 | US |