Hereinafter, exemplary embodiments of the invention will be explained with reference to the drawings, the following exemplary embodiments do not limit the scope of the invention. In the exemplary embodiments, description will be given of a sewing machine operable to perform a buttonhole stitch.
As shown in
The presser bar 1 includes, in the lower end thereof, a presser holder 1a which is made of synthetic resin and has a forked lower end portion. On the presser holder 1a, there is mounted a buttonhole stitch device 2 which is used to hold a piece of cloth used as a workpiece.
The buttonhole stitch device 2 is disposed such that its lower surface faces the upper surface of a throat plate on which the cloth is placed.
As shown in
As shown in
The presser body 21 is connected to a spiral spring 22a which is disposed on one end of the presser frame 22 and, unless the presser frame 22 is moved by applying an external force thereto, the presser body 21 is biased in such a manner that it is contacted with a stopper 22s provided on one end of the presser frame 22.
As shown in
As shown in
As shown in
The variable resistor 24a is disposed on the presser frame 22 in such a manner that it extends substantially parallel to the presser frame 22 along the longitudinal direction thereof, in other words, along the cloth feeding direction. When the variable resistor 24a is moved along the cloth feeding direction, the volume lever 24b can be slid relatively on the variable resistor 24a along the cloth feeding direction; and, the resistance value of the variable resistor 24a varies depending on the position of the volume lever 24b on the variable resistor 24a. The volume lever 24b is connected to the presser body 21 by a connecting lever 24c. That is, since the presser body 21 is fixed to the presser bar 1, when the presser frame 22 moves along the cloth feeding direction, the volume lever 24b moves relatively with respect to the variable resistor 24a, the resistance value of the variable resistor 24a varies according to the moving amount of the presser frame 22, and thus the voltage value detected varies accordingly. Use of this makes it possible to measure the shift amount of the presser frame 22, in other words, the sewing length, to which the buttonhole stitch has been executed, according to the size of the voltage value detected.
To the variable resistor 24a, there is connected a lead wire 24d, whereby the value of a voltage applied to the variable resistor 24a can be detected by a control device 3 (which will be discussed later). Also, the control device 3 is able to constantly detect the amount of shift of the presser frame 22 with respect to the presser body 21 from the sewing start position, that is, from the state of the presser frame 22 where one end of the presser frame 22 is in contact with the presser body 21.
As shown in
As shown in
To the detecting portion 25a, there is connected a lead wire 25d; and thus, the value of a voltage applied to the detecting portion 25a due to its contact with the abutting portion 25b can be detected by the control device 3 (which will be discussed later).
Meanwhile, the lead wire 24d connected to the variable resistor 24a and the lead wire 25d connected to the detecting portion 25a are tied up in a bundle and, on the leading end of the bundle, there is mounted a connector 26 which can be detachably mounted on the control device 3.
The main body of the sewing machine includes the control device 3 which serves as controlling means and controls the driving of a sewing machine motor 44, a needle oscillation step motor 46 and a feed step motor 48 (which will be respectively described later) according to a given sewing program.
As shown in
To the control device 3, there are connected a pattern selecting switch 41 for selecting the sewing patterns, and a start/stop switch 42 for inputting the start and stop of the sewing operation. These switches are disposed on the surface of the sewing machine main body, while an input signal to these switches is transmitted to the control device 3.
Also, to the control device 3, there is connected a sewing machine motor drive circuit 43 and, to the sewing machine motor drive circuit 43, there is connected a sewing machine motor 44.
Further, to the control device 3, there is connected a needle oscillation step motor drive circuit 45 and, to the needle oscillation step motor drive circuit 45, there is connected a needle oscillation step motor 46.
To the control device 3, there is connected a feed step motor drive circuit 47 and, to the feed step motor drive circuit 47, there is connected a feed step motor 48.
To the control device 3, there is connected a button diameter detecting switch 25, while the detect output of the button diameter detecting switch 25 is input to the control device 3.
To the control device 3, there is connected a position detecting device 24 through an A/D converter 24f, while a detected voltage applied to the variable resistor 24a is input to the control device 3 as a detect output.
Next, description will be given below of a procedure for the buttonhole stitch, by taking an eyelet sewing as an example of sewing patterns.
As shown in
When the control device 3 judges that the eyelet sewing is selected (Step S1: YES), it checks whether the connector 26 is inserted into a given portion of the sewing machine main body or not (Step S2).
When the control device 3 judges that the connector 26 is inserted into the sewing machine main body (Step S2: YES), it checks whether the volume lever 24b is present at the initial position (the position shown in
When the control device 3 judges that the volume lever 24b is present at the initial position of the variable resistor 24a and thus the stopper 22s of the presser frame 22 is contacted with the presser body 21 (Step S3: YES), it checks whether the start/stop switch 42 is depressed or not (Step S4).
When the control device 3 judges that the start/stop switch 42 is depressed (Step S4: YES), as shown in
The control device 3 calculates an actual buttonhole stitching length L (see
Next, since the buttonhole stitching length L is calculated from the voltage value applied to the variable resistor 24a (which is constantly read by the control device 3), the control device checks whether a position distant by the buttonhole stitching length from the initial position is coincident with the switching position P0 or not (Step S10).
When the control device 3 judges that the point is coincident with the switching position P0 (Step S10: YES), the control device 3 carries out the tack 51 of the round portion as shown in
Next, the control device 3 checks whether a position corresponding to the distance from the initial position calculated from the value of the voltage applied to the variable resistor 24a is the right switching position P1 or not, that is, whether the position is coincident with the left switching position P0 or not (Step S12).
When the control device 3 judges that the tack 51 of the chain stitch has arrived at the switching position P1 (Step S12: YES), as shown in
During the process of the zigzag stitch 53 of the left linear portion, the control device 3 checks whether the distance from the initial position calculated from the value of the voltage applied to the variable resistor 24a has become 0 or not, that is, whether the presser frame 22 has returned to the initial position or not (Step S15). When the control device 3 judges that the distance from the initial position calculated from the value of the voltage applied to the variable resistor 24a has become 0 (Step S15: YES), as shown in
During the process of the tack 54 of the right linear portion, the control device 3 checks whether the position distant from the initial position by the distance calculated from the value of the voltage applied to the variable resistor 24a is coincident with the switching positions P0, P1 or not (Step S17).
In Step S17, when the control device 3 judges that the position distant from the initial position by the distance calculated from the value of the voltage applied to the variable resistor 24a is coincident with the switching positions P0, P1 (Step S17: YES), as shown in
In the process of the zigzag stitch of the right linear portion, the control device 3 checks whether the distance from the initial position calculated from the value of the voltage applied to the variable resistor 24a has become 0 or not, that is, whether the presser frame 22 has returned to the initial position or not (Step S19). When the control device 3 judges that the distance from the initial position calculated from the value of the voltage applied to the variable resistor 24a has become 0 (Step S19: YES), the control device 3 carries out a bar tack (Step S20) and, when the bar tack is formed, the control device 3 ends the present processing (Step 521).
According to the sewing machine 10 of the exemplary embodiment, in a state where the button B is held by the button holding device 23 and a workpiece is pressed by the presser frame 22 slidably held by the presser body 21, when the workpiece is sewn while feeding the workpiece, the presser frame 22 is also moved in the feeding direction of the workpiece in linking with the sewing operation. With the movement of the presser frame 22, the variable resistor 24a provided on the presser frame 22 is also moved along the feeding direction of the workpiece, while the volume lever 24b is moved on the variable resistor 24a with respect to the variable resistor 24a. Owing to this, the position detecting device 24 is able to measure the moving distance of the presser body 21 from the sewing start position according to the contact position between the variable resistor 24 and volume lever 24b.
Also, since the presser frame 22 moves along the feeding direction of the workpiece, the detecting portion 25a formed in the sliding portion 23a is contacted with the abutting portion 25b formed in the presser body 21. This allows the button diameter detecting switch 25 to detect that the sewing operation has been carried out up to the length corresponding to the diameter of the button.
When the control device 3 detects that the sewing operation has been carried out up to the length corresponding to the diameter of the button, the control device 3 obtains the shift amount of the presser body 21 from the position detecting device 24, and also controls the driving of the sewing needle and the feeding of the workpiece in such a manner that the buttonhole stitch corresponding to the diameter of the button can be executed.
As described above, since the detecting portion 25a of the button diameter detecting switch 25 is not disposed on the presser body 21 but on the presser frame 22 which is larger than the presser body 21, it is possible to reduce a detection error in the sewing length detection due to the rickety motion of the detecting portion 25a or the like.
Also, since the abutting portion 25b of the button diameter detecting switch 25 is disposed on the presser body 21 and the detecting portion 25a is disposed on the sliding portion 23a, there is eliminated the need for the variable resistor 24a of the position detecting device 24 to detect that the sewing operation has been carried out up to the length corresponding to the diameter of the button as in the conventional sewing machine. This makes it possible to reduce the detection error as much as possible that occurs in the conventional sewing machine when detecting the timing for switching the sewing operation due to provision of an arm portion or the like, thereby being able to enhance the quality of the buttonhole stitch.
Further, because the button holding device 23 and position detecting device 24 are not directly connected to each other, there is eliminated the possibility of the occurrence of the poor torque and poor position accuracy that is caused by the direct connection between the position detecting device 24 and button holding device 23.
The scope of the invention is not limited to the above-mentioned exemplary embodiment. For example, the invention can also apply to a sewing machine which includes such a buttonhole stitch device 6 as shown in
According to this structure, when the buttonhole stitch is started and the presser frame 62 is moved along the cloth feeding direction, the detecting portion 65a disposed on the presser frame 62 is contacted with the abutting portion 65b disposed on the sliding portion 63. This makes it possible to detect that the sewing operation has been carried out up to the length corresponding to the diameter of the button held by the button holding device 63. Therefore, in this structure as well, there can be provided similar effects to those in the above-mentioned exemplary embodiment.
Also, although the slide volume is employed as the position detecting device 24, a rotation type volume, a photo sensor, or a magnetic sensor may be employed as the position detecting device 24.
While description has been made in connection with exemplary embodiments of the present invention, it will be obvious to those skilled in the art that various changes and modification may be made therein without departing from the present invention. It is aimed, therefore, to cover in the appended claims all such changes and modifications falling within the true spirit and scope of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
P.2006-185744 | Jul 2006 | JP | national |