This application claims priority to Japanese Patent Application No. 2016-144317, filed on Jul. 22, 2016, the disclosure of which is incorporated herein by reference in its entirety.
The present invention relates to a sewing machine used when sewing two materials having annular edges.
Conventionally, when sewing a tubular sleeve to a tubular body such as sleeving operation of T-shirts, an overlock sewing machine, for example, shown in JP 2004-236769 A has been used. When sewing the sleeve to the body in this example, two materials (the material of the body and the material of the sleeve) having annular edges are sewn together. In the case of using the aforementioned overlock sewing machine, the annular edges of the materials are sewn while they are located above a stitch plate of the overlock sewing machine.
In such a conventional sewing method, the materials cover over the position where a needle that performs the sewing passes through the materials on the stitch plate (needle drop slot), thereby blocking the sight of the sewing operator. Therefore, the sewing operator has been forced to take an unreasonable posture such as a posture of lifting the materials, in order to ensure the sight so as to check the sewing state. Moreover, one hand needs to be used for lifting the materials or the like, and therefore the positioning of the two pieces of material has been also difficult. Accordingly, the operation efficiency has been deteriorated to hinder the mass production of sewn products.
In view of the aforementioned problems, it is therefore an object of the present invention to provide a sewing machine that allows good operation efficiency, particularly, when sewing two materials having annular edges.
The following presents a simplified summary of the invention disclosed herein in order to provide a basic understanding of some aspects of the invention. This summary is not an extensive overview of the invention. It is intended to neither identify key or critical elements of the invention nor delineate the scope of the invention. Its sole purpose is to present some concepts of the invention in a simplified form as a prelude to the more detailed description that is presented later.
The present invention is a sewing machine including: a cylinder unit configured to support two materials having annular edges by being inserted therethrough while the two materials are stacked, with one being located on the inner wheel side and the other being located on the outer wheel side; a stitch plate configured to support the material on the inner wheel side supported by the cylinder unit by abutting it from below; a material presser configured to press the material on the outer wheel side supported by the cylinder unit above the stitch plate; and a material sandwiching unit provided on the near side of the stitch plate and the material presser and configured to sandwich, from above and below, the two materials stacked, with the material on the inner wheel side being located on the lower side and the material on the outer wheel side being located on the upper side.
The configuration can be such that the material sandwiching unit includes a curl-removing mechanism configured to straighten curls occurring on the edges of the two materials, the material sandwiching unit includes, as the curl-removing mechanism, inclined parts having edges of shapes extending backward from the farther side of the edges of the materials toward the edge side at the position where the edges of the two materials pass therethrough, and the inclined parts have edge parts having a smaller thickness on the near side than on the back side.
The configuration can be such that an edge guide located rearward of the curl-removing mechanism and configured to abut the edges of the two materials; and a knife located rearward of the edge guide and configured to cut the two materials at a specific distance from the edge guide are further provided.
The configuration can be such that a relative position between the edge guide and the knife is adjustable so as to allow the specific distance to be changed.
The foregoing and other features of the present invention will become apparent from the following description and drawings of an illustrative embodiment of the invention in which:
Next, the present invention will be described with reference to an embodiment. In order to express the forward and backward directions, the closer side to the sewing operator will be referred to as “near side”, and the farther side will be referred to as “back side (rear side)”. Further, the upward, downward, left, and right directions are expressed as directions when a sewing machine 1 is seen from the operator.
The sewing machine 1 of this embodiment is suitable as a “sewing machine dedicated to sleeve application”, and is, for example, an overlock sewing machine used for operation of joining tubular materials to each other such as operation of sewing a tubular sleeve to an arm through hole of a tubular body (T-shirt sleeving operation, for example). The edge of the arm through hole of the body and the edge of the sleeve, through which an arm of a wearer of the cloth passes, are annular and are as they are cut without being subjected to processing such as folding, in this embodiment. The T-shirt sleeving operation is just an example, and the sewing machine 1 of this embodiment can be used widely for operations of sewing annular edges of two materials to each other. Further, as the tubular materials, materials formed by circular knitting so as not to have a joint (side seam) in the circumferential direction can be used.
As shown in
The sewing machine 1 of this embodiment includes a sewing machine body 2, a cylinder unit 3 projecting from the sewing machine body 2 toward one side (specifically, the left side), a curl-removing mechanism 4, and a material cutting mechanism 5. Mechanisms in common with general sewing machines are not described in detail except for those particularly in need of explanation.
The cylinder unit 3 is a part configured to support the two materials Fi and Fo on the inner wheel side and the outer wheel side from below by being inserted therethrough while they are stacked. Since the cylinder unit 3 can be inserted through the two materials Fi and Fo, the annular edges of the materials Fi and Fo can be sewn below a stitch plate 12, for example, as being different from the conventional overlock sewing machine disclosed in JP 2004-236769 A.
As shown in
Since the cylinder unit 3 can be inserted through the two materials Fi and Fo having annular edges, the materials Fi and Fo can be sewn with their annular edges below the stitch plate 12, as shown in
In particular, for example, the shape of the annular edge of the arm through hole of the tubular body and the shape of the annular edge of the sleeve, which are materials of the T-shirt, are not completely the same as each other in most cases, such as that the flat degree is different or a joint is present in the middle in the circumferential direction. Therefore, the operator constantly performs fine adjustment for positioning the two materials Fi and Fo during the sewing operation. Since the sewing machine 1 of this embodiment allows both hands to be concentrated on the sewing operation as described above, the fine adjustment can be reliably performed. Therefore, the sewing quality can be improved, and the sewing operation can be accelerated, so that the operation efficiency can be improved, and sewn products can be mass-produced. Accordingly, the production cost of sewn products can be reduced.
As shown in
The curl-removing mechanism 4 is a mechanism configured to straighten curls C occurring on the edges Fe on the sewing side of the two materials Fi and Fo on the inner wheel side and the outer wheel side. The curls C that can be straightened by the curl-removing mechanism 4 are portions formed by the near regions of the edges Fe of the materials Fi and Fo on the sewing side curling along the edges (see
As shown in
A moving mechanism makes the spacing in the vertical direction between the upper material sandwiching part 411 and the lower material sandwiching part 412 variable. The moving mechanism is a mechanism that allows the upper material sandwiching part 411 to be pivotable about the movement fulcrum 413 within a specific range from the lower material sandwiching part 412 in this embodiment. As the movement fulcrum 413, a screw is used in this embodiment, but the configuration is not limited as long as it can support the movement of the upper material sandwiching part 411 from the lower material sandwiching part 412. The moving mechanism includes an operating part, which is not shown, and the operating part is operated by the operator when the two materials Fi and Fo are sandwiched between the material sandwiching parts 411 and 412, so that the material sandwiching parts 411 and 412 can be moved so as to move away from each other in the vertical direction. In this embodiment, the upper material sandwiching part 411 is configured to pivot from the lower material sandwiching part 412, but the configuration may be, for example, such that the upper material sandwiching part 411 and the lower material sandwiching part 412 move in the perpendicular direction while they are kept parallel to each other. Further, the configuration can be also such that only the lower material sandwiching part 412 moves, or both of the upper material sandwiching part 411 and the lower material sandwiching part 412 move.
In this embodiment, the biasing part 414 is a coil spring provided around the screw serving as the movement fulcrum 413, and the spacing between the upper material sandwiching part 411 and the lower material sandwiching part 412 is maintained by the bias of the biasing part 414. Therefore, in the case where portions of the materials Fi and Fo, for example, to which tapes are attached and thus which have an increased thickness pass through the material sandwiching unit 41, the spacing between the upper material sandwiching part 411 and the lower material sandwiching part 412 expands, and after the portions pass therethrough, the spacing automatically returns to the original position by the bias of the biasing part 414. The spacing between the upper material sandwiching part 411 and the lower material sandwiching part 412 is adjustable by a bolt included in the space restricting part 415.
The two materials Fi and Fo sandwiched by the material sandwiching unit 41 can be fed between the stitch plate 12 and the material presser 13. Therefore, stable sewing is possible.
Further, there is only a space to sandwich the two materials Fi and Fo between the upper material sandwiching part 411 and the lower material sandwiching part 412, and thus, for example, a plate-shaped separator or the like to separate the two materials Fi and Fo does not intervenes therebetween. Therefore, there is no need to retract the separator or the like before the materials Fi and Fo being fed backward reach the needle drop slot of the stitch plate 12, and thus there is no need to reduce the sewing speed or to temporarily stop the sewing operation, which is advantageous in mass production of sewn products.
As shown in
The inclined parts 4111 and 4121 of this embodiment have shapes extending backward from the body side (left side in this embodiment) toward the sleeve distal end side (right side in this embodiment) at the position where the edges Fe (right edges in this embodiment) of the two materials Fi and Fo on the sewing side pass therethrough. The “shapes extending backward” means shapes such that edges 4113 and 4123 of the inclined parts 4111 and 4121 seem like “lines rising to the right” when the material sandwiching unit 41 is seen from above. Further, the edges 4113 and 4123 of the inclined parts 4111 and 4121 of this embodiment have linear shapes. However, there is no limitation to this, and the edges 4113 and 4123 can have curved shapes, for example.
The two materials Fi and Fo are moved backward, that is, in the feed direction M while they are sandwiched between the upper material sandwiching part 411 and the lower material sandwiching part 412. Therefore, as shown in
As shown in
As shown in
As shown in
As shown in
The edge guide 51 and the knife 52 automatically perform the processes of positioning the edges of the two materials Fi and Fo after the curls C are straightened and thereafter cutting the specific range from the edges. Therefore, the processes on the edges of the two materials Fi and Fo are performed with high accuracy and uniformity. Accordingly, sewn products with high quality can be efficiently produced.
The edge guide 51 of this embodiment is movable in the left and right direction from the upper material sandwiching part 411. The edge guide 51 is fixed to the upper material sandwiching part 411 by a screw 511, as shown in the figure, and can be moved in the left and right direction by loosening the screw 511. Thus, a relative position between the edge guide 51 and the knife 52 is adjustable so as to allow the specific distance to be changed. The width of the two materials Fi and Fo on the inner wheel side and the outer wheel side to be cut by the knife 52 can be optionally set by adjusting the relative position between the edge guide 51 and the knife 52. Therefore, the two materials Fi and Fo cut to a constant width can be sewn, thereby allowing desired sewn products to be stably and efficiently produced. However, there is no limitation to this, and the edge guide 51 can be fixed.
The embodiment of the present invention has been described as above, but the present invention is not limited to the aforementioned embodiment, and various modifications can be made without departing from the gist of the present invention.
For example, the material sandwiching unit 41 of the embodiment belongs to the curl-removing mechanism 4 but can be configured to have only the function of simply sandwiching the two materials Fi and Fo without having the function of removing the curls.
The configuration and action of the aforementioned embodiment will be summarized below. The aforementioned embodiment is the sewing machine 1 including: the cylinder unit 3 configured to support the two materials Fi and Fo having annular edges by being inserted therethrough while they are stacked, with one being located on the inner wheel side and the other being located on the outer wheel side; the stitch plate 12 configured to support the material Fi on the inner wheel side supported by the cylinder unit 3 from below by abutting it; the material presser 13 configured to press the material Fo on the outer wheel side supported by the cylinder unit 3 above the stitch plate 12; and the material sandwiching unit 41 provided on the near side of the stitch plate 12 and the material presser 13 and configured to sandwich, from above and below, the two materials Fi and Fo stacked, with the material Fi on the inner wheel side being located on the lower side and the material Fo on the outer wheel side being located on the upper side.
According to this configuration, the cylinder unit 3 can be inserted through the two materials Fi and Fo having annular edges, so that the materials Fi and Fo can be sewn with their annular edges below the stitch plate 12. Therefore, the sight of the sewing operator is less likely to be blocked by the materials Fi and Fo. Further, there is no need to use one hand for ensuring the sight, and therefore both hands can be concentrated on the sewing operation. Further, the two materials Fi and Fo sandwiched by the material sandwiching unit 41 can be fed between the stitch plate 12 and the material presser 13. Therefore, stable sewing is possible.
Further, the configuration can be such that the material sandwiching unit 41 includes the curl-removing mechanism 4 configured to straighten the curls C occurring on the edges of the two materials Fi and Fo, the material sandwiching unit 41 serving as the curl-removing mechanism 4 has the inclined parts 4111 and 4121 having edges of shapes extending backward from the farther side of the edges of the materials Fi and Fo toward the edge side at the position where the edges of the two materials Fi and Fo pass therethrough, and the inclined parts 4111 and 4121 have the edge parts 4112 and 4122 having a smaller thickness on the near side than on the back side.
According to this configuration, the material sandwiching unit 41 has the inclined parts 4111 and 4121 as the curl-removing mechanism 4, and the inclined parts 4111 and 4121 have the edge parts 4112 and 4122, so that it is easy to position the material sandwiching unit 41 along the portions of the curls C occurring on the edges of the two materials Fi and Fo. Therefore, the curls C can be straightened up. Accordingly, the sewing is not interfered by the curls C, and the sewing operation can be efficiently performed.
Further, the edge guide 51 located rearward of the curl-removing mechanism 4 and configured to abut the edges of the two materials Fi and Fo, and the knife 52 located rearward of the edge guide 51 and configured to cut the two materials Fi and Fo at a specific distance from the edge guide 51 can be further provided.
According to this configuration, the edge guide 51 and the knife 52 automatically perform the processes of positioning the edges of the two materials Fi and Fo after the curls C are straightened and thereafter cutting them. Therefore, the processes on the edges of the two materials Fi and Fo are performed with high accuracy and uniformity. Thus, sewn products with high quality can be efficiently produced.
Further, a relative position between the edge guide 51 and the knife 52 is adjustable so as to allow the specific distance to be changed.
According to this configuration, the length of the two materials Fi and Fo to be cut by the knife 52 can be optionally set by adjusting the relative position between the edge guide 51 and the knife 52. Therefore, desired sewn products can be efficiently produced.
As described above, according to the aforementioned embodiment, the sight of the sewing operator is less likely to be blocked by the materials, and both hands can be concentrated on the sewing operation. Further, stable sewing is made possible by the material sandwiching unit 41. Therefore, particularly when sewing the two materials Fi and Fo having annular edges, operation efficiency is good.
The sewing machine of this embodiment is as described above, but the present invention is not limited to the aforementioned embodiment, and the design can be appropriately modified within the scope intended by the present invention. The operational advantages of the present invention are also not limited to the foregoing embodiments. The embodiments disclosed herein should be construed in all respects as illustrative but not limiting. The scope of the present invention is not indicated by the foregoing description but by the scope of the claims. Further, the scope of the present invention is intended to include all the modifications equivalent in the sense and the scope to the scope of the claims.
Number | Date | Country | Kind |
---|---|---|---|
2016-144317 | Jul 2016 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
4467734 | Rohr | Aug 1984 | A |
4546716 | Babson | Oct 1985 | A |
5188047 | Rohr | Feb 1993 | A |
5251557 | Rohr | Oct 1993 | A |
5349913 | Schramayr | Sep 1994 | A |
5383410 | Mukai | Jan 1995 | A |
5406900 | Schramayr | Apr 1995 | A |
5419268 | Fyler | May 1995 | A |
5505149 | Schramayr | Apr 1996 | A |
5642681 | Adamski, Jr. | Jul 1997 | A |
5676078 | Adamski, Jr. | Oct 1997 | A |
5806449 | Schramayr | Sep 1998 | A |
5924376 | Olewicz | Jul 1999 | A |
20180023232 | Hashimoto | Jan 2018 | A1 |
Number | Date | Country |
---|---|---|
2004-236769 | Aug 2004 | JP |
Number | Date | Country | |
---|---|---|---|
20180023232 A1 | Jan 2018 | US |