This disclosure generally relates to shades and reflectors for luminaires that employ active light sources.
Luminaires exist in a broad range of designs suitable for various uses. Some luminaires illuminate interior spaces, while others illuminate exterior spaces. Some luminaires are used to provide information, for example, forming part of or all of a display panel. Active lighting sources take a variety of forms, for example incandescent lamps, high-intensity discharge (HID) lamps (e.g., mercury vapor lamps, high-pressure sodium lamps, metal halide lamps), and solid-state light sources for instance light emitting diodes (LEDs).
Luminaires have a number of defining characteristics, including intensity (e.g., lumens), focus or dispersion, and temperature of the emitted light. For light sources that emit light by thermal radiation (e.g., incandescent filament), the color temperature (CT) of the light source is the temperature of an ideal black-body radiator that radiates light of comparable hue to that of the light source. Light sources that emit light by processes other than thermal radiation (e.g., solid state light sources) do not follow the form of a black-body spectrum. These light sources are assigned various correlated color temperatures (CCT) to indicate, to human color perception, the color temperature that most closely matches the light emitted.
Achieving desired lighting typically requires selecting suitable light sources, lenses, reflectors and/or housings based at least in part on the defining characteristics, the environment in which the luminaire will be used, and the desired level of performance.
LEDs are becoming increasingly popular due to their high energy efficiency, robustness, and long life performance. Typically, practical LEDs are capable of emitting light in a relatively narrow band. Since white light is often desirable, solid-state lighting systems typically employ “white” LEDs. These “white” LEDs may be manufactured by placing a phosphor layer either directly on a blue emitting LED die or onto a lens or window through which an LED will emit light. The phosphor layer is typically designed to convert radiation in the 440 nanometer to 480 nanometer wavelength range (mostly blue light) into a wider spectrum consisting of longer visible wavelengths that, when added to residual blue light, will appear as a pleasing white light. A variety of white LEDs are commercially available from a variety of manufacturers. Commercially available white LEDs range from “cool” white with a CCT of approximately 6000 Kelvin (K) to “warm” white with a CCT of approximately 3000 K.
In addition to the performance parameters described above, lighting of homes, offices and other areas often has aesthetic concerns that are as important as the amount of illumination produced by the lighting system. Unlike an ideal black body radiator or natural daylight, solid-state lighting systems do not produce light that has a smooth and continuous spectral power distribution, despite the appearance of “white” light.
It is known that phosphor-coated white LEDs permit some blue light to escape conversion by the phosphor. The blue light differs from natural light and also may appear harsh or otherwise unpleasing. In addition, other aesthetic concerns often favor an emission spectrum that has more red and green wavelengths than would come from a true black body radiator. This type of light enhances the colors and color contrasts of furnishings and décor.
Although red and green light can be added to white LEDs to provide a more pleasing spectrum, this method may result in significant added cost for the extra LEDs and drive electronics, while the blue wavelength spike in the output spectrum remains.
Absorption filtered lamps, such as the General Electric's REVEAL® light bulbs, typically incorporate a filter element, such as neodymium, into the glass bulb to filter out the dull yellow light produced by the incandescent filament, thereby enhancing the appearance of the more vibrant light such as red. The addition of such a filter, however, causes a significant loss of light output, leading to a very low efficiency. For example, a REVEAL® 60W bulb has a Lumens/Watt rating of only 11. Although an LED lamp may have a rating of 65 L/W to 100 L/W, it can be expected that adding absorption filters would similarly reduce the efficiency as well as the light output, because the undesirable light is filtered and dissipated as heat. The heat added to the system from the absorptive filter may also contribute to lowering the life expectancy of the LED.
Adjusting the phosphor formulation of white LED lamps is also inadequate in providing the desired pleasing light in an LED, due to the wideband nature of the phosphor's emission spectrum. In other words, a narrow band of wavelengths typically cannot be removed from the white LED output spectrum by adjusting the phosphor formulation.
Lighting systems are designed to have specific illumination patterns, for example, outdoor luminaires may have National Electrical Manufacturers Association (NEMA) Type 1, 2, 3, 4 or 5 illumination patterns. Indoor applications may require unique illumination patterns to properly light complex interior spaces, for example retail stores. Other non-standardized light patterns are desirable in some installations, to provide higher light levels in certain locations and lower light levels in other locations. For example, a NEMA Type 5 outdoor luminaire is designed to provide light in a square or circular pattern on the ground, whereas a NEMA Type 3 pattern has an oblong light distribution more suitable for roadway lighting.
In some installations, none of the standard illumination patterns is acceptable. For example, a NEMA Type 5 luminaire mounted near a residence may properly illuminate a yard, driveway and/or street, but may also project an objectionable amount of light into the windows of the residence.
A shade to control an illumination pattern of a luminaire may be summarized as including a sheet of material which is at least one of optically transparent or optically translucent, the sheet having inner and outer arcuate edges concentric about a central axis, the inner and outer arcuate edges extending between first and second ends of the sheet, the sheet bendable by a user to overlap portions of the sheet adjacent the first and second ends to form the sheet into the shape of a truncated cone with at least a portion of the inner edge fitting around a neck portion of the luminaire disposed at least one of above or below at least one light source of the luminaire, and a filter portion of the sheet of material is formed of or coated with an optical filter material which transmits light incident on the filter portion having a wavelength in a first set of wavelengths and one of reflects or absorbs light incident on the filter portion having a wavelength in a second set of wavelengths; and a fastener which selectively maintains the sheet in the shape of the truncated cone around the neck portion of the luminaire. The second set of wavelengths may include wavelengths below 480 nanometers. The filter portion may include a dielectric coating disposed on at least one surface of the sheet. The filter portion may include a layer of coating disposed on at least one surface of the sheet. The filter portion may include one or more layers of at least one of a dichroic coating or a dielectric mirror material. The shade may be selectively installable in a first configuration and a second configuration, in the first configuration the truncated cone shape of the sheet may open toward the at least one light source of the luminaire, and in the second configuration the truncated cone shape of the sheet may open away from the at least one light source of the luminaire. The fastener may include at least one of: a rivet fastener, a tab and slot fastener, an adhesive, or a hook and loop fastener. The fastener may include a first fastener fixedly coupled to the sheet proximate the first end thereof and a second fastener fixedly coupled to the sheet proximate the second end thereof, the first fastener selectively engageable with the second fastener. The shade may be selectively rotatable about the central axis subsequent to installation around the neck portion of the luminaire.
The shade may further include a secondary shade attachment portion disposed proximate at least a portion of the outer arcuate edge of the sheet, the secondary shade attachment portion selectively attaches a secondary shade to the shade.
A shade to control an illumination pattern of a luminaire may be summarized as including a sheet of material which is at least one of optically transparent or optically translucent, the sheet having inner and outer arcuate edges concentric about a central axis, the inner and outer arcuate edges extending between first and second ends of the sheet, the sheet bendable by a user to overlap portions of the sheet adjacent the first and second ends to form the sheet into the shape of a truncated cone with at least a portion of the inner edge fitting around a neck portion of the luminaire disposed at least one of above or below at least one light source of the luminaire, and the sheet of material comprises a wavelength shifter portion which receives light from the at least one light source of the luminaire on a first surface of the sheet and in response emits light at a shifted wavelength on a second surface of the sheet, the second surface opposite the first surface; and a fastener which selectively maintains the sheet in the shape of the truncated cone around the neck portion of the luminaire. The wavelength shifter portion may emit light at wavelengths above 480 nanometers. The wavelength shifter portion may include the sheet loaded with phosphor. The wavelength shifter portion may include the sheet loaded with a europium doped strontium-barium silicate phosphor. The wavelength shifter portion may include a layer of coating disposed on at least one surface of the sheet of material. The wavelength shifter portion may include a coating of quantum dots disposed on at least one surface of the sheet of material. The shade may be selectively installable in a first configuration and a second configuration, in the first configuration the truncated cone shape of the sheet may open toward the at least one light source of the luminaire, and in the second configuration the truncated cone shape of the sheet may open away from the at least one light source of the luminaire. The fastener may include at least one of: a rivet fastener, a tab and slot fastener, an adhesive, or a hook and loop fastener. The fastener may include a first fastener fixedly coupled to the sheet proximate the first end thereof and a second fastener fixedly coupled to the sheet proximate the second end thereof, the first fastener selectively engageable with the second fastener. The shade may be selectively rotatable about the central axis subsequent to installation around the neck portion of the luminaire.
The shade may further include a secondary shade attachment portion disposed proximate at least a portion of the outer arcuate edge of the sheet, the secondary shade attachment portion selectively attaches a secondary shade to the shade.
A shade assembly to control an illumination pattern of a luminaire may be summarized as including a primary shade comprising a sheet of material having inner and outer arcuate edges concentric about a central axis, the inner and outer arcuate edges extending between first and second ends of the sheet, the sheet bendable by a user to overlap portions of the sheet adjacent the first and second ends to form the sheet into the shape of a truncated cone with at least a portion of the inner edge fitting around a neck portion of the luminaire disposed at least one of above or below at least one light source of the luminaire, the sheet of material comprises at least one reflective surface; a fastener which selectively maintains the sheet in the shape of the truncated cone around the neck portion of the luminaire; and a secondary shade that is selectively attachable to the primary shade. The sheet of material of the primary shade may include a sheet of microcellular formed polyethylene terephthalate (MCPET). The secondary shade may include a sheet of material which, when attached to the shade, extends from at least a portion of the outer arcuate edge of the primary shade toward the at least one light source of the luminaire. The secondary shade may extend from at least 25 percent of the outer arcuate edge of the primary shade. The secondary shade may extend from at least 50 percent of the outer arcuate edge of the primary shade. The secondary shade may be at least one of optically transparent or optically translucent. The secondary shade may be formed of or coated with an optical filter material which transmits light incident on the secondary shade having a wavelength in a first set of wavelengths and one of reflects or absorbs light incident on the secondary shade having a wavelength in a second set of wavelengths. The secondary shade may be formed of or coated with an optical filter material which one of reflects or absorbs light incident on the secondary shade having a wavelength below 480 nanometers. At least one surface of the secondary shade may include a dielectric coating disposed thereon.
The secondary shade may include a wavelength shifter portion which receives light from the at least one light source of the luminaire on a first surface of the secondary shade and in response emits light at a shifted wavelength on a second surface of the secondary shade, the second surface of the secondary shade opposite the first surface of the secondary shade. The wavelength shifter portion of the secondary shade may emit light at wavelengths above 480 nanometers. The wavelength shifter portion of the secondary shade may include the sheet loaded with phosphor. The wavelength shifter portion of the secondary shade may include the secondary shade loaded with a europium doped strontium-barium silicate phosphor. The wavelength shifter portion of the secondary shade may include a coating of quantum dots disposed on at least one surface of the secondary shade. At least one surface of the secondary shade may include a reflective surface. The secondary shade may include a sheet of microcellular formed polyethylene terephthalate (MCPET).
A shade to control an illumination pattern of a luminaire, the luminaire comprising a neck portion may be summarized as including a truncated cone-shaped unitary piece of material formed from an elastomeric resin, the material having a first end and a second end opposite the first end, the first end having a first opening which has first diameter and the second end having a second opening which has a second diameter, the second diameter larger than the first diameter, the first diameter smaller than a relatively larger portion of the luminaire disposed between an end of the luminaire and the neck portion, and the material elastically deformable to stretch the first opening of the first end over the relatively larger portion of the luminaire to position the first end adjacent the neck portion of the luminaire. The material may be formed from molded liquid silicone rubber. The material may be at least one of optically transparent or optically translucent. A filter portion of the material may be coated with an optical filter material which transmits light incident on the filter portion having a wavelength in a first set of wavelengths and one of reflects or absorbs light incident on the filter portion having a wavelength in a second set of wavelengths. The second set of wavelengths may include wavelengths below 480 nanometers. The filter portion may include a dielectric coating disposed on at least one surface of the material. The filter portion may include a layer of coating disposed on at least one surface of the material. The filter portion may include one or more layers of at least one of a dichroic coating or a dielectric mirror material.
The material may include a wavelength shifter portion which receives light from at least one light source of the luminaire on a first surface of the material and in response emits light at a shifted wavelength on a second surface of the material, the second surface opposite the first surface. The wavelength shifter portion may emit light at wavelengths above 480 nanometers. The wavelength shifter portion may include the material loaded with phosphor. At least one surface of the material may include a reflective surface. The shade may be selectively rotatable about a central axis subsequent to installation around the neck portion of the luminaire.
In the drawings, identical reference numbers identify similar elements or acts. The sizes and relative positions of elements in the drawings are not necessarily drawn to scale. For example, the shapes of various elements and angles are not necessarily drawn to scale, and some of these elements may be arbitrarily enlarged and positioned to improve drawing legibility. Further, the particular shapes of the elements as drawn, are not necessarily intended to convey any information regarding the actual shape of the particular elements, and may have been solely selected for ease of recognition in the drawings.
In the following description, certain specific details are set forth in order to provide a thorough understanding of various disclosed implementations. However, one skilled in the relevant art will recognize that implementations may be practiced without one or more of these specific details, or with other methods, components, materials, etc. In other instances, well-known structures associated with computer systems, server computers, and/or communications networks have not been shown or described in detail to avoid unnecessarily obscuring descriptions of the implementations.
Unless the context requires otherwise, throughout the specification and claims that follow, the word “comprising” is synonymous with “including,” and is inclusive or open-ended (i.e., does not exclude additional, unrecited elements or method acts).
Reference throughout this specification to “one implementation” or “an implementation” means that a particular feature, structure or characteristic described in connection with the implementation is included in at least one implementation. Thus, the appearances of the phrases “in one implementation” or “in an implementation” in various places throughout this specification are not necessarily all referring to the same implementation. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more implementations.
As used in this specification and the appended claims, the singular forms “a,” “an,” and “the” include plural referents unless the context clearly dictates otherwise. It should also be noted that the term “or” is generally employed in its sense including “and/or” unless the context clearly dictates otherwise.
The headings and Abstract of the Disclosure provided herein are for convenience only and do not interpret the scope or meaning of the implementations.
Described herein are apparatus and method for minimizing or eliminating undesirable light while enhancing desirable light of solid state lighting sources without causing significant losses in energy and light output. In particular, one or more implementations of the present disclosure provide systems to control the light distribution and color temperature of solid state luminaires to avoid light trespass or complaints of high color temperature light being present in certain areas, such as pedestrian or residential areas. Solid state light emitters, such as LEDs, may contain wavelengths of light which are suitable for roadways but are undesirable for other areas (e.g., residences, sidewalks). For example, a luminaire that emits light in wide angles may be suitable for illuminating a side of the luminaire which faces a street or roadway, referred to herein as “street side” or “SS,” but may not be desirable for a side of the luminaire which faces a residence, referred to herein as a “house side” or “HS” of the luminaire.
At least one implementation of the present disclosure provides an adjustable reflector, shade, filter or wavelength shifter, referred to generally herein as a “shade,” which modifies the light projected onto one area, or wavelength shifts or converts shorter wavelengths of light to longer, more desirable, wavelengths in one or more directions from the luminaire source. At least one implementation of the present disclosure provides an adjustable shade which is selectively attachable to a solid-state retrofit luminaire, such as the solid-state luminaire shown in
One or more of the implementations of the shades discussed herein are particularly well-suited for use with luminaires which may be replacements for conventional gas discharge lamps. The luminaires may have a form factor that is sized and shaped to fit within a cylindrical envelope similar to such conventional gas discharge lamps. The luminaires may also have a same or similar light center length and may generate light with an intensity and/or a distribution that is substantially similar to that of conventional gas discharge lamps. Accordingly, the luminaires may serve as drop-in replacements for conventional gas discharge lamps with little to no appreciable difference in lighting characteristics.
As an example, implementations described herein provide shades for solid-state luminaires having a plurality of solid-state light emitters (e.g., LEDs) arranged to produce light at a location substantially consistent with the burn center or light center length of conventional gas discharge lamps. Optical reflectors, lenses and the physical configuration of the solid-state luminaires described herein may direct light in a manner that is nearly identical or very similar to the conventional gas discharge lamps that the luminaires replace, so that the luminaires provide a light distribution expected from the replaced lamps.
The lens 30 may be placed around a plurality of solid-state light emitters 42 (e.g., LEDs) to protect them from moisture or other physical damage, and to diffuse light generated by the light emitters 42 so that the light has a pleasing appearance and is similar in appearance to light emanating from a gas discharge lamp. The lens 30 may comprise refractive or diffractive properties which may be used to produce a desired light pattern.
The base housing portion 22 and the head housing portions 24 may be shell structures that include one or more internal cavities for receiving other components of the lighting device 10. The base housing portion 22 and the head housing portions 24 may by cup-like structures. When assembled, the base housing portion 22, the head housing portions 24 and the lens 30 may form a vessel to carry functional components of the lighting device 10. The housing 20 may further include a threaded base 21 to physically and electrically couple the luminaire 10 to a lighting fixture. In other instances, the threaded base 21 may physically couple the lighting device 10 to a lighting fixture and a separate or distinct interconnect device may be provided to electrically couple the luminaire 10 to a power source (e.g., AC mains power). The interconnect device may be, for example, a wiring harness having a plurality of discrete wires (i.e., a pig tail) or a plurality of electrical connectors, such as, for example, twist-lock pin connectors such as GU series connectors. The housing portions may be made from a white or other highly reflective material.
The plurality of solid-state light emitters 42 (e.g., LEDs) may be carried by a circuit board 40 and arranged to generate light to pass through the lens 30 during operation. The solid-state light emitters 42 may each have a respective principal axis of emission, which typically extends perpendicularly from an outer surface of the solid-state light emitters 42. The solid-state light emitters 42 may be arrayed about a central or longitudinal axis, with their respective principal axes of emission extending radially outward from the central or longitudinal axis, for example in a 360 degree pattern.
The shade 50 includes a sheet 52 of material which has an inner arcuate edge 54 and an outer arcuate edge 56 concentric about a central axis 58. The inner arcuate edge 54 and the outer arcuate edge 56 each extend between a first end 60 and a second end 62 of the sheet 52. As an example, the sheet 52 may be laser or die cut from a suitable flat material, as discussed further below.
As shown in
To maintain the shade 50 in the shape of a truncated cone attached to the luminaire 10, the shade includes a fastener 68 which includes a first fastener 70 fixedly coupled to the sheet 52 proximate the first end 60 thereof and a second fastener 72 fixedly coupled to the sheet proximate the second end 62 thereof. During installation, a user may selectively engage the first fastener 70 with the second fastener 72 to selectively maintain the sheet 52 in the shape of the truncated cone around the first neck portion 27 of the luminaire 10. The fastener 68 may include a blind rivet fastener, a tab and slot fastener, an adhesive, a hook and loop fastener, or other suitable fastener. In other implementations the first and second ends 60 and 62 of the sheet 52 may be permanently fastened together using a suitable process (e.g., thermal welding, ultrasonic welding, adhesive bonding). The sheet 52 of the shade 50 may also include secondary shade attachment portions or fasteners 75 (e.g., slots, tabs, hook and loop, adhesive, snaps) which may be used to selectively attach a secondary shade to the shade 50, as discussed further below with reference to
In some implementations, the shade 50 may be fabricated from a highly reflective material (e.g., 99 percent diffusing reflectivity), such as microcellular formed polyethylene terephthalate (MCPET). In some implementations, at least one surface of the shade may be formed of or coated with a highly reflective material.
It should be appreciated that other installation configurations for the shade 50 (or other shades discussed herein) may be used. For example, the shade 50 may be disposed in any of the configurations shown in
In some implementations, at least a portion of the shade 50 may be formed from a material which is substantially transparent (e.g., translucent, transparent) and is formed of or coated with an optical filter material which absorbs undesirable wavelengths of light (e.g., 440-480 nm wavelengths, 400-490 nm wavelengths). The remaining light therefore has a lower and more desirable color temperature.
In some implementations, at least a portion of the shade 50 may be formed from a material which is substantially transparent and is coated with an optical filter material which reflects undesirable wavelengths of light (e.g., 440-480 nm wavelengths, 400-490 nm wavelengths). As another example, at least a portion of the shade 50 may be coated with a dichroic coating or dielectric material, such as a dichroic film on a high-temperature Mylar sheet.
In at least one implementation, at least a portion of the shade 50 may be substantially transparent and may incorporate a phosphor (e.g., a europium doped strontium-barium silicate phosphor, such as P/N O5446 available from Intematix Corporation) which operates as a wavelength shifter or converter to convert shorter wavelengths (e.g., 440-480 nm wavelengths, 400-490 nm wavelengths) into longer, more desirable wavelengths. In at least one implementation, at least a portion of the shade 50 may be substantially transparent and coated with quantum dots which convert the shorter wavelengths (e.g., 440-480 nm wavelengths) into longer, more desirable wavelengths. The coating of quantum dots may be a coating available from Quantum Materials Corporation, San Marcos, Tex., for example. The longer wavelength light may be projected onto the residential area (house side) in addition to some part of the original higher color temperature light, thereby lowering the color temperature of the light on the house side (HS) while retaining higher color temperature light on the street side (SS).
Returning to
When the shade 50 of
The secondary shade 170 may be formed of or coated with any of the materials discussed above so that the secondary shade provides desired reflective, absorptive, filtering and/or wavelength shifting properties for a particular application. For example, the secondary shade 170 may be formed of or coated with a highly reflective material (e.g., MCPET) which causes light emitted from the LEDs 42 (
The secondary shade 170 may be sized and dimensioned extend around various portions of the shade 150, depending on the particular application. For example, the secondary shade may be sized and dimensioned to span an arc which comprises 25 percent (e.g., 90 degrees), 27 percent (e.g., 100 degrees), 50 percent (e.g., 180 degrees), etc., of the shade 150, dependent on the particular area where the light is intended to be modified (e.g., reflected, filtered).
Various implementations of the secondary shade 170 may be sized and dimensioned to selectively of fixedly couple to any of the shades discussed herein when the shades are installed in various configurations. Generally, the secondary shade 170 extends from a primary shade to which the secondary shade is attached in a direction which is toward the lens 30 of the luminaire 10, as shown in
As one of skill in the art will recognize, the optical elements discussed herein (e.g., reflectors, absorbers, filters, wavelength shifters) may not have precise cut off values. Thus, the terms “substantially” and “approximately” are used herein to denote the inherent impreciseness of such optical elements. Generally, any optical element that is at least 80% effective within 25% of the denominated value will suffice, although in some implementations even lower efficiencies and wider ranges may be suitable.
Suitable semiconductor materials (i.e., phosphors) may include: gallium arsenide (GaAs), aluminum gallium arsenide (AlGaAs), gallium arsenide phosphide (GaAsP), gallium arsenide indium phosphide (GaAsInP), gallium (III) phosphide (GaP), aluminum gallium indium phosphide (AlGaInP), indium gallium nitride (InGaN)/gallium (III) nitride (GaN), aluminum gallium phosphide (AlGaP), zinc selenide (ZnSe), and/or a europium doped strontium-barium silicate phosphor. The selection of particular materials may be governed by the desired wavelength of the output.
The foregoing detailed description has set forth various implementations of the devices and/or processes via the use of block diagrams, schematics, and examples. Insofar as such block diagrams, schematics, and examples contain one or more functions and/or operations, it will be understood by those skilled in the art that each function and/or operation within such block diagrams, flowcharts, or examples can be implemented, individually and/or collectively, by a wide range of materials.
The various implementations described above can be combined to provide further implementations. To the extent that they are not inconsistent with the specific teachings and definitions herein, all of the U.S. patents, U.S. patent application publications, U.S. patent applications, foreign patents, foreign patent applications and non-patent publications referred to in this specification and/or listed in the Application Data Sheet, including but not limited to U.S. Provisional Patent Application No. 61/052,924, filed May 13, 2008; U.S. Pat. No. 8,926,138, issued Jan. 6, 2015; PCT Publication No. WO2009/140141, published Nov. 19, 2009; U.S. Provisional Patent Application No. 61/051,619, filed May 8, 2008; U.S. Pat. No. 8,118,456, issued Feb. 21, 2012; PCT Publication No. WO2009/137696, published Nov. 12, 2009; U.S. Provisional Patent Application No. 61/088,651, filed Aug. 13, 2008; U.S. Pat. No. 8,334,640, issued Dec. 18, 2012; U.S. Provisional Patent Application No. 61/115,438, filed Nov. 17, 2008; U.S. Provisional Patent Application No. 61/154,619, filed Feb. 23, 2009; U.S. Patent Publication No. 2010/0123403, published May 20, 2010; U.S. Patent Publication No. 2016/0021713, published Jan. 21, 2016; PCT Publication No. WO2010/057115, published May 20, 2010; U.S. Provisional Patent Application No. 61/174,913, filed May 1, 2009; U.S. Pat. No. 8,926,139, issued Jan. 6, 2015; PCT Publication No. WO2010/127138, published Nov. 4, 2010; U.S. Provisional Patent Application No. 61/180,017, filed May 20, 2009; U.S. Pat. No. 8,872,964, issued Oct. 28, 2014; U.S. Patent Publication No. 2015/0015716, published Jan. 15, 2015; PCT Publication No. WO2010/135575, published Nov. 25, 2010; U.S. Provisional Patent Application No. 61/229,435, filed Jul. 29, 2009; U.S. Patent Publication No. 2011/0026264, published Feb. 3, 2011; U.S. Provisional Patent Application No. 61/295,519, filed Jan. 15, 2010; U.S. Provisional Patent Application No. 61/406,490, filed Oct. 25, 2010; U.S. Pat. No. 8,378,563, issued Feb. 19, 2013; PCT Publication No. WO2011/088363, published Jul. 21, 2011; U.S. Provisional Patent Application No. 61/333,983, filed May 12, 2010; U.S. Pat. No. 8,541,950, issued Sep. 24, 2013; PCT Publication No. WO2010/135577, published Nov. 25, 2010; U.S. Provisional Patent Application No. 61/346,263, filed May 19, 2010; U.S. Pat. No. 8,508,137, issued Aug. 13, 2013; U.S. Pat. No. 8,810,138, issued Aug. 19, 2014; U.S. Pat. No. 8,987,992, issued Mar. 24, 2015; PCT Publication No. WO2010/135582, published Nov. 25, 2010; U.S. Provisional Patent Application No. 61/357,421, filed Jun. 22, 2010; U.S. Pat. No. 9,241,401, granted Jan. 19, 2016; PCT Publication No. WO2011/163334, published Dec. 29, 2011; U.S. Pat. No. 8,901,825, issued Dec. 2, 2014; U.S. Patent Publication No. 2015/0084520, published Mar. 26, 2015; PCT Publication No. WO2012/142115, published Oct. 18, 2012; U.S. Pat. No. 8,610,358, issued Dec. 17, 2013; U.S. Provisional Patent Application No. 61/527,029, filed Aug. 24, 2011; U.S. Pat. No. 8,629,621, issued Jan. 14, 2014; PCT Publication No. WO2013/028834, published Feb. 28, 2013; U.S. Provisional Patent Application No. 61/534,722, filed Sep. 14, 2011; U.S. Pat. No. 9,312,451, issued Apr. 12, 2016; PCT Publication No. WO2013/040333, published Mar. 21, 2013; U.S. Provisional Patent Application No. 61/567,308, filed Dec. 6, 2011; U.S. Pat. No. 9,360,198, issued Jun. 7, 2016; U.S. Provisional Patent Application No. 61/561,616, filed Nov. 18, 2011; U.S. Patent Publication No. 2013/0141010, published Jun. 6, 2013; PCT Publication No. WO2013/074900, published May 23, 2013; U.S. Provisional Patent Application No. 61/641,781, filed May 2, 2012; U.S. Patent Publication No. 2013/0293112, published Nov. 7, 2013; U.S. Patent Publication No. 2013/0229518, published Sep. 5, 2013; U.S. Provisional Patent Application No. 61/640,963, filed May 1, 2012; U.S. Patent Publication No. 2013/0313982, published Nov. 28, 2013; U.S. Patent Publication No. 2014/0028198, published Jan. 30, 2014; U.S. Patent Publication No. 2016/0037605, published Feb. 4, 2016; PCT Publication No. WO2014/018773, published Jan. 30, 2014; U.S. Provisional Patent Application No. 61/723,675, filed Nov. 7, 2012; U.S. Pat. No. 9,301,365, issued Mar. 29, 2016; U.S. Provisional Patent Application No. 61/692,619, filed Aug. 23, 2012; U.S. Patent Publication No. 2014/0055990, published Feb. 27, 2014; U.S. Provisional Patent Application No. 61/694,159, filed Aug. 28, 2012; U.S. Pat. No. 8,878,440, issued Nov. 4, 2014; U.S. Patent Publication No. 2014/0062341, published Mar. 6, 2014; U.S. Patent Publication No. 2015/0077019, published Mar. 19, 2015; PCT Publication No. WO2014/039683, published Mar. 13, 2014; U.S. Provisional Patent Application No. 61/728,150, filed Nov. 19, 2012; U.S. Patent Publication No. 2014/0139116, published May 22, 2014; U.S. Pat. No. 9,433,062, issued Aug. 30, 2016; PCT Publication No. WO2014/078854, published May 22, 2014; U.S. Provisional Patent Application No. 61/764,395, filed Feb. 13, 2013; U.S. Pat. No. 9,288,873, issued Mar. 15, 2016; U.S. Provisional Patent Application No. 61/849,841, filed Jul. 24, 2013; U.S. Patent Publication No. 2015/0028693, published Jan. 29, 2015; PCT Publication No. WO2015/013437, published Jan. 29, 2015; U.S. Provisional Patent Application No. 61/878,425, filed Sep. 16, 2013; U.S. Patent Publication No. 2015/0078005, published Mar. 19, 2015; PCT Publication No. WO2015/039120, published Mar. 19, 2015; U.S. Provisional Patent Application No. 61/933,733, filed Jan. 30, 2014; U.S. Pat. No. 9,185,777, issued Nov. 10, 2015; PCT Publication No. WO2015/116812, published Aug. 6, 2015; U.S. Provisional Patent Application No. 61/905,699, filed Nov. 18, 2013; U.S. Pat. No. 9,414,449, issued Aug. 9, 2016; U.S. Provisional Patent Application No. 62/068,517, filed Oct. 24, 2014; U.S. Provisional Patent Application No 62/183,505, filed Jun. 23, 2015; U.S. Pat. No. 9,445,485, issued Sep. 13, 2016; PCT Publication No. WO2016/064542, published Apr. 28, 2016; U.S. Provisional Patent Application No. 62/082,463, filed Nov. 20, 2014; U.S. Publication No. 2016/0150369, published May 26, 2016; PCT Publication No. WO2016/081071, published May 26, 2016; U.S. Provisional Patent Application No. 62/057,419, filed Sep. 30, 2014; U.S. Publication No. 2016/0095186, published Mar. 31, 2016; PCT Publication No. WO2016/054085, published Apr. 7, 2016; U.S. Provisional Patent Application No. 62/114,826, filed Feb. 11, 2015; U.S. Non-provisional patent application Ser. No. 14/939,856, filed Nov. 12, 2015; U.S. Provisional Patent Application No. 62/137,666, filed Mar. 24, 2015; U.S. Non-provisional patent application Ser. No. 14/994,569, filed Jan. 13, 2016; U.S. Non-provisional patent application Ser. No. 14/844,944, filed Sep. 3, 2015; U.S. Provisional Patent Application No. 62/208,403, filed Aug. 21, 2015; U.S. Non-provisional patent application Ser. No. 15/238,129, filed Aug. 16, 2016; U.S. Provisional Patent Application No. 62/264,694, filed Dec. 8, 2015; U.S. Non-provisional Patent Application No. 15/369,559, filed Dec. 5, 2016; U.S. Provisional Patent Application No. 62/397,709, filed Sep. 21, 2016; U.S. Provisional Patent Application No. 62/397,713, filed Sep. 21, 2016; U.S. Provisional Patent Application No. 62/327,939, filed Apr. 26, 2016; U.S. Non-provisional patent application Ser. No. 15/496,985, filed Apr. 25, 2017; U.S. Provisional Patent Application No. 62/379,037, filed Aug. 24, 2016; U.S. Provisional Patent Application No. 62/458,970, filed Feb. 14, 2017; U.S. Provisional Patent Application No. 62/480,833, filed Apr. 3, 2017; and U.S. Provisional Patent Application No. 62/507,730, filed May 17, 2017 are incorporated herein by reference, in their entirety.
Aspects of the implementations can be modified, if necessary, to employ systems, circuits and concepts of the various patents, applications and publications to provide yet further implementations.
These and other changes can be made to the implementations in light of the above-detailed description. In general, in the following claims, the terms used should not be construed to limit the claims to the specific implementations disclosed in the specification and the claims, but should be construed to include all possible implementations along with the full scope of equivalents to which such claims are entitled. Accordingly, the claims are not limited by the disclosure.
Number | Name | Date | Kind |
---|---|---|---|
413469 | Woodward | Oct 1889 | A |
1868776 | Tate | Jul 1932 | A |
3308290 | Brown | Mar 1967 | A |
4001576 | Goddard | Jan 1977 | A |
5051879 | Bunger | Sep 1991 | A |
5858488 | Cohon | Jan 1999 | A |
6206551 | Stubblefield, Jr. | Mar 2001 | B1 |
6729747 | Wirayani | May 2004 | B1 |
6746274 | Verfuerth | Jun 2004 | B1 |
7250715 | Mueller et al. | Jul 2007 | B2 |
7638743 | Bartol et al. | Dec 2009 | B2 |
8118456 | Reed et al. | Feb 2012 | B2 |
8169135 | Zhai et al. | May 2012 | B2 |
8334640 | Reed et al. | Dec 2012 | B2 |
8344665 | Verfuerth et al. | Jan 2013 | B2 |
8378563 | Reed et al. | Feb 2013 | B2 |
8406937 | Verfuerth et al. | Mar 2013 | B2 |
8445826 | Verfuerth | May 2013 | B2 |
8450670 | Verfuerth et al. | May 2013 | B2 |
8476565 | Verfuerth | Jul 2013 | B2 |
8508137 | Reed | Aug 2013 | B2 |
8541950 | Reed | Sep 2013 | B2 |
8545029 | Ma et al. | Oct 2013 | B2 |
8586902 | Verfuerth | Nov 2013 | B2 |
8604701 | Verfuerth et al. | Dec 2013 | B2 |
8610358 | Reed | Dec 2013 | B2 |
8629621 | Reed | Jan 2014 | B2 |
8637877 | Negley | Jan 2014 | B2 |
8666559 | Verfuerth et al. | Mar 2014 | B2 |
8779340 | Verfuerth et al. | Jul 2014 | B2 |
8810138 | Reed | Aug 2014 | B2 |
8866582 | Verfuerth et al. | Oct 2014 | B2 |
8872964 | Reed et al. | Oct 2014 | B2 |
8878440 | Reed | Nov 2014 | B2 |
8884203 | Verfuerth et al. | Nov 2014 | B2 |
8896215 | Reed et al. | Nov 2014 | B2 |
8901825 | Reed | Dec 2014 | B2 |
8922124 | Reed et al. | Dec 2014 | B2 |
8926138 | Reed et al. | Jan 2015 | B2 |
8926139 | Reed et al. | Jan 2015 | B2 |
8987992 | Reed | Mar 2015 | B2 |
9185777 | Reed | Nov 2015 | B2 |
9204523 | Reed et al. | Dec 2015 | B2 |
9210751 | Reed | Dec 2015 | B2 |
9210759 | Reed | Dec 2015 | B2 |
9288873 | Reed | Mar 2016 | B2 |
9312451 | Reed et al. | Apr 2016 | B2 |
9414449 | Reed | Aug 2016 | B2 |
9466443 | Reed | Oct 2016 | B2 |
9693433 | Reed et al. | Jun 2017 | B2 |
9713228 | Reed | Jul 2017 | B2 |
20030016523 | Pickens | Jan 2003 | A1 |
20060002116 | Lin | Jan 2006 | A1 |
20060145172 | Su et al. | Jul 2006 | A1 |
20070285000 | Lim et al. | Dec 2007 | A1 |
20080284316 | Kurihara et al. | Nov 2008 | A1 |
20090101930 | Li | Apr 2009 | A1 |
20100123403 | Reed | May 2010 | A1 |
20100149483 | Chiavetta, III | Jun 2010 | A1 |
20100259924 | Dong | Oct 2010 | A1 |
20110026264 | Reed et al. | Feb 2011 | A1 |
20110310605 | Renn et al. | Dec 2011 | A1 |
20120038490 | Verfuerth | Feb 2012 | A1 |
20120209755 | Verfuerth et al. | Aug 2012 | A1 |
20120224363 | Van De Ven | Sep 2012 | A1 |
20130033183 | Verfuerth et al. | Feb 2013 | A1 |
20130131882 | Verfuerth et al. | May 2013 | A1 |
20130163243 | Reed | Jun 2013 | A1 |
20140028198 | Reed et al. | Jan 2014 | A1 |
20140055990 | Reed | Feb 2014 | A1 |
20140078308 | Verfuerth | Mar 2014 | A1 |
20140097759 | Verfuerth et al. | Apr 2014 | A1 |
20140159585 | Reed | Jun 2014 | A1 |
20140180491 | Verfuerth et al. | Jun 2014 | A1 |
20150015716 | Reed et al. | Jan 2015 | A1 |
20150078005 | Renn et al. | Mar 2015 | A1 |
20170089531 | Prince | Mar 2017 | A1 |
20170164439 | Reed | Jun 2017 | A1 |
Number | Date | Country |
---|---|---|
103162187 | Jun 2013 | CN |
2 068 193 | Jun 2009 | EP |
11-45519 | Feb 1999 | JP |
2004-193580 | Jul 2004 | JP |
2004-193581 | Jul 2004 | JP |
2008-010518 | Jan 2008 | JP |
2009-071254 | Apr 2009 | JP |
2009-105379 | May 2009 | JP |
2009-251511 | Oct 2009 | JP |
2010-250259 | Nov 2010 | JP |
2011-501362 | Jan 2011 | JP |
2011-528490 | Nov 2011 | JP |
2004068182 | Aug 2004 | WO |
2009052093 | Apr 2009 | WO |
2009107052 | Sep 2009 | WO |
2009137696 | Nov 2009 | WO |
2009140141 | Nov 2009 | WO |
2010057115 | May 2010 | WO |
2010127138 | Nov 2010 | WO |
2010133719 | Nov 2010 | WO |
2010135575 | Nov 2010 | WO |
2010135577 | Nov 2010 | WO |
2010135582 | Nov 2010 | WO |
2011088363 | Jul 2011 | WO |
2011163334 | Dec 2011 | WO |
2012142115 | Oct 2012 | WO |
2013028834 | Feb 2013 | WO |
2013040333 | Mar 2013 | WO |
2014018773 | Jan 2014 | WO |
2014039683 | Mar 2014 | WO |
2014078854 | May 2014 | WO |
2015013437 | Jan 2015 | WO |
2015039120 | Mar 2015 | WO |
2015116812 | Aug 2015 | WO |
2016054085 | Apr 2016 | WO |
2016064542 | Apr 2016 | WO |
2016081071 | May 2016 | WO |
Entry |
---|
Communication pursuant to Article 94(3) EPC, dated Feb. 5, 2016, for corresponding European Application No. 11 733 467.2-1755, 7 pages. |
Communication pursuant to Article 94(3) EPC, dated Jun. 3, 2015, for corresponding European Application No. 11 733 467.2-1755, 12 pages. |
Extended European Search Report, dated Feb. 17, 2015, for corresponding European Application No. 12832462.1, 8 pages. |
Extended European Search Report, dated Sep. 11, 2014, for corresponding European Application No. 11733467.2, 5 pages. |
International Search Report, dated Jan. 2, 2013, for PCT/US2012/055379, 3 pages. |
International Search Report, dated Sep. 30, 2011, for PCT/US2011/021359, 3 pages. |
Japanese Office Action, dated Apr. 7, 2015, for corresponding Japanese Application No. 2012-549127, with English Translation, 7 pages. |
Japanese Office Action, dated Sep. 9, 2014, for corresponding Japanese Application No. 2012-549127, with English translation, 7 pages. |
Reed et al., “Adjustable Output Solid-State Lamp With Security Features,” U.S. Appl. No. 61/561,616, filed Nov. 18, 2011, 33 pages. |
Reed et al., “Apparatus, Method to Change Light Source Color Temperature With Reduced Optical Filtering Losses,” Notice of Allowance, dated Oct. 15, 2012, for U.S. Appl. No. 13/007,080, 9 pages. |
Reed et al., “Apparatus, Method to Change Light Source Color Temperature with Reduced Optical Filtering Losses,”U.S. Appl. No. 61/295,519, filed Jan. 15, 2010, 35 pages. |
Reed et al., “Apparatus, Method to Change Light Source Color Temperature With Reduced Optical Filtering Losses,”U.S. Appl. No. 61/406,490, filed Oct. 25, 2010, 46 pages. |
Reed et al., “Apparatus, Method to Enhance Color Contrast in Phosphor-Based Solid State Lights,” U.S. Appl. No. 13/619,085, Amendment filed Aug. 20, 2015, 14 pages. |
Reed et al., “Apparatus, Method to Enhance Color Contrast in Phosphor-Based Solid State Lights,” U.S. Appl. No. 13/619,085, Notice of Allowance dated Dec. 2, 2015, 9 pages. |
Reed et al., “Apparatus, Method to Enhance Color Contrast in Phosphor-Based Solid State Lights,” U.S. Appl. No. 13/619,085, Office Action dated May 20, 2015, 13 pages. |
Reed et al., “Apparatus, Method to Enhance Color Contrast in Phosphor-Based Solid State Lights,” U.S. Appl. No. 61/534,722, filed Sep. 14, 2011, 53 pages. |
Reed et al., “Long-Range Motion Detection for Illumination Control,”U.S. Appl. No. 61/180,017, filed May 20, 2009, 32 pages. |
Reed et al., “Low-Profile Pathway Illumination System,” U.S. Appl. No. 61/051,619, filed May 8, 2008, 25 pages. |
Reed et al., “Remotely Adjustable Solid-State Lamp,”U.S. Appl. No. 61/641,781, filed May 2, 2012, 65 pages. |
Reed, “Adjustable Output Solid-State Lighting Device,”U.S. Appl. No. 61/567,308, filed Dec. 6, 2011, 49 pages. |
Reed, “Aluminaire With Transmissive Filter and Adjustable Illumination Pattern,” U.S. Appl. No. 62/264,694, filed Dec. 8, 2015, 78 pages. |
Reed, “Ambient Light Control in Solid State Lamps and Luminaires,”U.S. Appl. No. 61/933,733, filed Jan. 30, 2014, 8 pages. |
Reed, “Apparatus and Method of Energy Efficient Illumination,” U.S. Appl. No. 61/346,263, filed May 19, 2010, 67 pages. |
Reed, “Apparatus and Method of Energy Efficient Illumination,”U.S. Appl. No. 61/333,983, filed May 12, 2010, 57 pages. |
Reed, “Apparatus, Retrofit Kit, and Method of Energy Efficient Illumination Using Adjustment Schedules,” U.S. Appl. No. 62/208,403, filed Aug. 21, 2015, 100 pages. |
Reed, “Asset Management System for Outdoor Luminaires,” U.S. Appl. No. 62/082,463, filed Nov. 20, 2014, 56 pages. |
Reed, “Detection and Correction of Faulty Photo Controls in Outdoor Luminaires,” U.S. Appl. No. 62/068,517, filed Oct. 24, 2014, 47 pages. |
Reed, “Detection and Correction of Faulty Photo Controls in Outdoor Luminaires,” U.S. Appl. No. 62/183,505, filed Jun. 23, 2015, 71 pages. |
Reed, “Electronic Control to Regulate Power for Solid-State Lighting and Methods Thereof,” U.S. Appl. No. 61/115,438, filed Nov. 17, 2008, 51 pages. |
Reed, “Electronic Control to Regulate Power for Solid-State Lighting and Methods Thereof,” U.S. Appl. No. 61/154,619, filed Feb. 23, 2009, 62 pages. |
Reed, “High Efficiency Power Controller for Luminaire,”U.S. Appl. No. 61/905,699, filed Nov. 18, 2013, 5 pages. |
Reed, “Low Power Photocontrol for Luminaire,”U.S. Appl. No. 62/137,666, filed Mar. 24, 2015, 36 pages. |
Reed, “Luminaire With Atmospheric Electrical Activity Detection and Visual Alert Capabilities,”U.S. Appl. No. 61/649,159, filed Aug. 28, 2012, 52 pages. |
Reed, “Luminaire With Switch-Mode Converter Power Monitoring,”U.S. Appl. No. 61/723,675, filed Nov. 7, 2012, 73 pages. |
Reed, “Photocontrol for Luminaire Consumes Very Low Power,”U.S. Appl. No. 61/849,841, filed Jul. 24, 2013, 41 pages. |
Reed, “Resonant Network for Reduction of Flicker Perception in Solid State Lighting Systems,” U.S. Appl. No. 61/527,029, filed Aug. 24, 2011, 41 pages. |
Reed, “Solid State Hospitality Lamp,” U.S. Appl. No. 61/692,619, filed Aug. 23, 2012, 32 pages. |
Reed, “Solid State Lighting, Drive Circuit and Method of Driving Same,” U.S. Appl. No. 61/640,963, filed May 1, 2012, 24 pages. |
Reed, “Systems, Methods, and Apparatuses for Using a High Current Switching Device As a Logic Level Sensor,” U.S. Appl. No. 61/764,395, filed Feb. 13, 2013, 48 pages. |
Reed, “Luminaire With Adjustable Illumination Pattern,” U.S. Appl. No. 62/114,826, filed Feb. 11, 2015, 68 pages. |
Renn et al., “Solid-State Lighting Devices and Systems,” U.S. Appl. No. 61/878,425, filed Sep. 16, 2013, 32 pages. |
Written Opinion, dated Jan. 2, 2013, for PCT/US2012/055379, 5 pages. |
Written Opinion, dated Sep. 30, 2011, for PCT/US2011/021359, 4 pages. |
Notice of Allowance, dated Jan. 8, 2018, for U.S. Appl. No. 15/369,559, Reed, “Luminaire With Transmissive Filter and Adjustable Illumination Pattern,” 19 pages. |
Communication pursuant to Article 94(3) EPC, dated Feb. 19, 2018, for European Application No. 11 733 467.2-1013, 7 pages. |
Number | Date | Country | |
---|---|---|---|
20180058658 A1 | Mar 2018 | US |
Number | Date | Country | |
---|---|---|---|
62379037 | Aug 2016 | US |