Shadow mask frame assembly for flat CRT with slot groups

Information

  • Patent Grant
  • 6812629
  • Patent Number
    6,812,629
  • Date Filed
    Monday, December 11, 2000
    23 years ago
  • Date Issued
    Tuesday, November 2, 2004
    19 years ago
Abstract
A shadow mask frame assembly of a flat cathode ray tube (CRT) includes a shadow mask including a plurality of strips formed at a main body in a vertical direction by being separated a predetermined distance by slits and a plurality of bridges forming slots by connecting neighboring strips and sectioning the slits, in which the slots include a first slot group including slots having a wide interval between the bridges and a second slot group including slots having a narrow interval between the bridges, first and second support members secured at a long side portion of the shadow mask, and a frame including first and second elastic members, either end portion of each of which is secured to each of the first and second support members, for applying a tension force to the shadow mask.
Description




CLAIM OF PRIORITY




This application makes reference to, incorporates the same herein, and claims all benefits accruing under 35 U.S.C. §119 from an application entitled


Shadow Mask Frame Assembly for the Flat CRT


earlier filed in the Korean Industrial Property Office on 10 Dec. 1999, and there duly assigned Ser. No. 99-56747 by that Office.




BACKGROUND OF THE INVENTION




1. Field of the Invention




The present invention relates to a flat CRT (cathode ray tube), and more particularly, to a shadow mask of a flat CRT.




2. Description of the Background Art




A color CRT includes a shadow mask frame assembly which is installed in a panel where a fluorescent film is formed and a funnel coupled to the panel forming a seal. The funnel includes a neck portion in which an electron gun is inserted and a cone portion around which a deflection yoke is installed. In the color CRT having the above structure, an electron beam emitted from the electron gun passes through an electron beam passing hole of a shadow mask and lands on a fluorescent substance of a surface of a screen of the panel, forming an image.




A surface of a screen of a typical color CRT is designed to have a predetermined curvature considering the trace of the electron beam emitted from the electron gun. The shadow mask is designed to have a curvature corresponding to that of the surface of the screen. However, the curved shadow mask bulges toward the panel by being heated by the electron beam emitted from the electron gun, which is referred to as a doming phenomenon. The doming phenomenon prevents the electron beam from accurately landing on a fluorescent surface.




A flat CRT has recently been developed to provide a flat screen. Since the panel of the flat CRT is flat, the shadow mask installed in the CRT should be flat. In order to realize flatness, a tension force is applied to the shadow mask of the flat CRT.




A shadow mask frame assembly includes a frame having two support members installed parallel to each other and two elastic members, either end portion of each of which is secured at each of the support members, and a flat shadow mask having an edge portion that is welded to the support members. In the shadow mask, a plurality of strips are connected by a plurality of bridges.




In the shadow mask frame assembly, since the flat shadow mask is supported in the state of receiving a great tension force provided by the elastic members through the support members, the flat shadow mask receives a Poisson contraction. During the operation of a CRT, thermions emitted from the electron gun partially pass through slots of the shadow mask while the remaining thermions collide against the strips and the bridges to heat and expand the shadow mask. The amount of deformation due to the thermal expansion increases from the center of the shadow mask to the periphery of the shadow mask due to the bridges.




Accordingly, the shadow mask is deformed due to a combination of the Poisson contraction and thermal expansion. Furthermore, as the bridges uniformly formed at the front surface of the shadow mask interferes with deformation of the strips, an unbalanced tension force is generated at each portion of the shadow mask and the amount of deformation at each portion is different. In particular, deformation occurs greater at the central portion between both ends in a horizontal direction. Such deformation of the shadow mask prevents the thermions emitted from the electron gun from accurately landing on the fluorescent film. Therefore, the color purity of a displayed image is lowered.




Exemplars of the art are U.S. Pat. No. 5,355,049 issued to Sung for ASSEMBLY OF SHADOW MASK FRAME WITH INNER SHIELD FOR COLOR CATHODE RAY TUBE, U.S. Pat. No. 5,898,259 issued to Reyal for SHADOW MASK FRAME OF A CATHODE RAY TUBE, ITS PROCESS OF MANUFACTURE, AND SUSPENSION ELEMENT OF A SHADOW MASK FRAME, U.S. Pat. No. 4,678,963 issued to Fonda for SHADOW MASK FOR A COLORED IMAGE TUBE AND IMAGE TUBE COMPRISING THE SAME, U.S. Pat. No. 5,877,586 issued to Aibara for SLOT-TYPE SHADOW MASK, U.S. Pat. No. 5,030,880 issued to An for SHADOW MASK FOR COLOR CATHODE RAY TUBE, U.S. Pat. No. 3,652,895 issued to Tsuneta et al. for SHADOW-MASK HAVING GRADUATED RECTANGULAR APERTURES, U.S. Pat. No. 5,856,725 issued to Ueda for SHADOW MASK WITH EDGE SLOTS CONFIGURATION, U.S. Pat. No. 4,168,450 issued to Yamauchi et al. for SLOT TYPE SHADOW MASK, U.S. Pat. No. 4,300,069 issued to Nolan for COLOR PICTURE TUBE HAVING IMPROVED SLIT TYPE SHADOW MASK AND METHOD OF MAKING SAME, U.S. Pat. No. 4,973,283 issued to Alder et al. for METHOD OF MANUFACTURING A TIED SLIT MASK CRT, U.S. Pat. No. 4,942,332 issued to Alder et al. for TIED SLIT MASK FOR CATHODE RAY TUBES, U.S. Pat. No. 5,523,647 issued to Kawamura et al. for COLOR CATHODE RAY TUBE HAVING IMPROVED SLOT TYPE SHADOW MASK, U.S. Pat. No. 6,057,640 issued to Aibara for SHADOW MASK FOR COLOR CATHODE RAY TUBE WITH SLOTS SIZED TO IMPROVE MECHANICAL STRENGTH AND BRIGHTNESS, U.S. Pat. No. 6,140,754 issued to Ko for STRUCTURE OF SHADOW MASK FOR FLAT CATHODE RAY TUBE, U.S. Pat. No. 4,794,299 issued to Chiodi et al. for FLAT TENSION MASK COLOR CRT FRONT ASSEMBLY WITH IMPROVED MASK FOR DEGROUPING ERROR COMPENSATION, and U.S. Pat. No. 4,915,658 issued to Lopata et al. for REFERENCE AND SUPPORT SYSTEM FOR FLAT CRT TENSION MASK. I have found that the background art does not show a shadow mask of a cathode ray tube that reduces Poisson contraction and is stable to external impacts.




SUMMARY OF THE INVENTION




It is therefore, an object of the present invention to provide a shadow mask of a flat cathode ray tube in which Poisson contraction thereof is reduced and is stable to external impacts.




It is another object to have a cathode ray tube that is stable and maintains a high picture clarity.




It is yet another object to have a cathode ray tube that reduces Poisson contraction within a shadow mask by forming a particular pattern within the shadow mask.




It is still yet another object to have a frame of a shadow mask of a display device that adds stability of the display device.




Accordingly, to achieve the above objects, there is provided a shadow mask frame assembly of a flat CRT having a shadow mask including a plurality of strips formed at a main body in a vertical direction by being separated a predetermined distance by slits and a plurality of bridges forming slots by connecting neighboring strips and sectioning the slits, in which the slots include a first slot group including slots having a wide interval between the bridges and a second slot group including slots having a narrow interval between the bridges, first and second support members secured at a long side portion of the shadow mask, and a frame including first and second elastic members, either end portion of each of which is secured to each of the first and second support members, for applying a tension force to the shadow mask.




It is preferred in the present invention that at least two second slot groups are formed at upper and lower portions of the shadow mask in a vertical direction while the first slot group is formed between the two second slot groups in the vertical direction. The first slot group is formed at the central portion of the main body in the vertical direction. The number of the slots forming the first slot group in the vertical direction is one. The number of the slots forming the second slot group in the vertical direction is at least three. The length of each of the slots forming the second slot group is substantially the same. The length of each of the second slot groups in the vertical direction and the length of the first slot group in the vertical direction are substantially the same. The length of the second slot group in the vertical direction is substantially the same as the length of the first slot group in the vertical direction.




To achieve another aspect of the above object, there is provided a shadow mask frame assembly of a flat CRT having a shadow mask including a plurality of strips formed at a main body in a vertical direction by being separated a predetermined distance by slits and a plurality of bridges forming slots by connecting neighboring strips and sectioning the slits, in which a portion where the bridges are formed and a portion where the bridges are not formed are alternately disposed in a horizontal direction, first and second support members secured at a long side portion of the shadow mask, and elastic members, either end portion of each of which is secured to each of the first and second support members, for applying a tension force to the shadow mask.




Also, it is preferred in the present invention that the intervals between the bridges in the vertical direction are substantially the same.











BRIEF DESCRIPTION OF THE DRAWINGS




A more complete appreciation of this invention, and many of the attendant advantages thereof, will be readily apparent as the same becomes better understood by reference to the following detailed description when considered in conjunction with the accompanying drawings in which like reference symbols indicate the same or similar components, wherein:





FIG. 1

is a perspective view showing a shadow mask frame assembly of a conventional flat CRT;





FIGS. 2A through 2C

are a plan view and partially enlarged views for explaining Poisson contraction generated by a tension force at a shadow mask frame assembly for a CRT;





FIGS. 3 through 5

are plan views showing shadow mask assemblies according to different preferred embodiments of the present invention; and





FIG. 6

is an exploded perspective view showing a shadow mask frame assembly according to the present invention of FIG.


3


.











DETAILED DESCRIPTION OF THE INVENTION





FIG. 1

shows a shadow mask frame assembly for a typical flat cathode ray tube. As shown in the drawing, a shadow mask frame assembly includes a frame


10


having two support members


11


and


12


installed parallel to each other, two elastic members


13


and


14


secured to both the support members


11


and


12


, and a flat shadow mask


30


having an edge portion welded to the support members


11


and


12


. One end portion


13




a


of elastic member


13


is connected to the support member


11


while the other end portion


13




a


is connected to the support member


12


. Elastic member


14


similarly has one end portion


14




a


connected to support member


12


while the other end portion is connected to support member


11


. In the shadow mask


30


, a plurality of strips


31


are connected by a plurality of bridges


33


.




In the shadow mask frame assembly, since the flat shadow mask


30


is supported in the state of receiving a great tension force provided by the elastic members


13


and


14


through the support members


11


and


12


, the flat shadow mask


30


receives Poisson contraction. During the operation of a CRT (not shown), thermions emitted from the electron gun (not shown) partially pass through slots


32


of the shadow mask


30


while the remaining thermions collide against the strips


31


and the bridges


33


to heat and expand the shadow mask


30


. The amount of deformation due to the thermal expansion increases from the center of the shadow mask


30


to the periphery of the shadow mask


30


due to the bridges


33


.




Accordingly, the shadow mask


30


is deformed due to a combination of the Poisson contraction and thermal expansion. Furthermore, as the bridges


33


uniformly formed at the front surface of the shadow mask


30


interferes with deformation of the strips


31


, unbalanced tension force is generated at each portion of the shadow mask


30


and the amount of deformation at each portion is different. In particular, deformation occurs greater at the central portion between both ends in a horizontal direction. Such deformation of the shadow mask prevents the thermions emitted from the electron gun from accurately landing on the fluorescent film. Therefore, color purity of a displayed image is lowered.





FIG. 2A

shows a shadow mask


50


where bridges are not formed, in which Poisson contraction is generated in the state in which a predetermined tension force T is applied. Referring to

FIG. 2A

, when a predetermined tension force T is applied to the shadow mask


50


, a lateral force F by the Poisson contraction is considered. Here, it is assumed that a strip


51


deforms very little, the deformation forms a parabola, the inclination at a point where the strip


51


begins to deform is α, a direction in which the tension force T acts is a y direction, a direction in which the lateral force F acts is an x direction, the height of an overall effective screen of the shadow mask


50


is H, and the maximum deformation at the central portion in the x direction is D. β


1


, β


2


and β


3


signify arbitrary constants. Hereinafter, it is assumed that a direction in which the tension force T acts is a vertical direction. A lateral force F acts in a direction perpendicular to the direction in which the tension force T acts. The lateral force F acts in a horizontal direction.




When the deformation is very little, α≈F/(2T). When the deformation is parabolic, y


2





1


·x. Thus, H


2


/4=β


1


·D. Since α signifies inclination when y=H/2, tanα=dD/dH=H/β


1


by different Thus, the stiffness of the strip


51


is F/D=F/(H


2





2


)=(β


2


HT)/(H


2


)=(β


2


T)/H. Here, it can be the stiffness increases as H decreases and increases as a value T increases so that deformation at the central position between both end portions in a horizontal direction becomes the greatest. However, in the case of the shadow mask


50


in which the strips


51


are not connected by bridges, when an external impact such as collision of thermions is applied, the strips


51


vibrate. To prevent the vibration, a wire crossing the strips


51


can be installed. However, since the shadow mask


50


needs to have a predetermined curvature in a long side's direction (x direction), realization of complete flatness is not possible. Thus, it is preferable that bridges connecting the neighboring strips


51


are adopted.





FIGS. 2B and 2C

show a shadow mask where bridges


33


for connecting the strips


31


as shown in

FIG. 2A

are further formed. When the shadow mask


30


further having the bridges


33


is attached to a frame while receiving a predetermined tension force, Poisson contraction is generated which can be seen in an enlarged portion A of FIG.


2


B and FIG.


2


C. Here, it is assumed that the pitch of each of the bridges


33


is p, the thickness of the shadow mask


30


is t and the width of each of the strips


31


is w, the elastic modulus is E, and the effective height of the overall screen of the shadow mask is H.




As shown in the drawings, since the stiffness due to elastic deformation is symmetrical, only ½ pitch is considered. One side which is connected by the bridge


33


can be considered as a matter of a secured cantilever. Here, in the cantilever having p/2 length which is considered as a cantilever, stiffness is (8tw


3


E)/p


3


. Since there are H/(p/2) units of a portion as long as p/2 in the height H of the overall effective screen, the overall stiffness is ((8tw


3


E)/p


3


)×(2H/p)=(16tw


3


EH)/p


4


. Therefore, the stiffness is inversely proportional to p


4


so that, as p increases or the number of the bridges


33


is reduced, stiffness decreases. Here, reference numeral


32


denotes a slot formed by the bridges


33


connecting the strips


31


.




As described with reference to

FIGS. 2A through 2C

, each of the bridges


33


is an elastic member serving as a spring and connects and confines neighboring strips


31


. Thus, when the shadow mask


30


is secured to a frame while receiving a predetermined tension force, deformation is generated most greatly at the central position of the shadow mask


30


. Also, since stiffness is reduced as the pitch p increases or the number of the bridges


33


decreases, Poisson contraction is reduced using these facts. That is, the arrangement of the bridges are adjusted to compensate for a change in stiffness of the strips due to a change in pitch p of the bridges and a change in tension force due to connection of the bridges and the strips.





FIGS. 3 through 5

show shadow mask frame assemblies of CRTs according to different preferred embodiments of the present invention. These drawings are plan views showing arrangements of bridges formed at the shadow mask according to each of the preferred embodiments. Here, the same reference numerals denote the same structural elements.




Referring to

FIG. 3

, a shadow mask


130


includes a main body


131


. The main body


131


includes a plurality of strips


132


formed by being separated from one another by slits in a vertical direction (Y direction) and a plurality of bridges


138


connecting neighboring strips


132


. Here, the slits form the slots


133


by being separated by the bridges


138


.




The slots


133


are formed as passing holes through which an electron beam emitted from an electron gun (not shown) passes. The neighboring slots


133


are separated by a predetermined distance. The slots are formed corresponding to a fluorescent pattern of red, green and blue of a fluorescent film.




The slots are formed by groups. That is, there is a first slot group GI formed of slots


133




a


in which the distance between the bridges


138


is wide in the Y direction and second slot groups G


2


each of which is formed of slots


133




b


in which the distance between the bridges


138


is narrower than that of the first slot group G


1


.




The second slot groups G


2


can be formed at the upper and lower portions of the screen in the vertical direction. The first slot group G


1


can be formed between the second slot groups G


2


in the vertical direction.




As shown in the drawings, the first slot group G


1


is formed at the central portion of the main body


131


in the vertical direction while each of the second slot groups G


2


is formed at either upper or lower portion of the first slot group G


1


in the vertical direction. The number of the slots


133




a


forming the first slot group G


1


in the vertical direction is one while the number of the slots


133




b


forming each of the second slot groups G


2


is one or more, preferably at least three. The length of the slot


133




b


forming each of the second slot groups G


2


in the vertical direction is formed uniformly. Here, as a method of adjusting the distance between the bridges


138


, the length of each of the slots


133




b


of the second slot groups G


2


in the vertical direction and the length L


1


of the slots


133




a


of the first slot group G


1


in the vertical direction are substantially formed to be identical, or the sum L


2


of the lengths of the slots


133




b


of the second slot groups G


2


is substantially the same as the length L


1


of the slots


133




a


of the first slot group G


1


.




The bridges


138


of each of the strips


132


are formed at identical intervals from a point separated a predetermined length L′ from the center line M—M. The pitch of or interval between the bridges


138


is formed to be longer at the central portion so that the length of the slots


133


is great. At the periphery such as the upper and lower portions, the interval between the bridges


138


are formed to be relatively narrower so that the length of the slots


133


is small. In such arrangement of the bridges


138


, since the pitch of or interval between the bridges


138


at the periphery of the upper and lower portions is formed to be relatively narrower, stiffness of the strips


132


increases. Also, since large number of the bridges


138


are formed at the periphery, interference between the strips


132


and the bridges


138


is generated and thus less tension force is generated at the central portion.




Thus, the central portion can be applied by a relatively less tension force than that in the periphery so that the shadow mask can be attached to a frame with less tension force. Also, since the interference by the bridge


138


decreases at the central portion, Poisson contraction is reduced. Here, the predetermined length L′ is determined by the relationship to the amount of the tension force applied to the shadow mask


130


and to the size of a panel (not shown) of the CRT.




Referring to

FIG. 4A

, which is basically the same as

FIG. 3

, a plurality of second slot groups G


2


and a plurality of first slot groups G


1


are alternately formed in the vertical direction.




Referring to

FIG. 4B

, it can be seen that the first slot group G


1


of shadow mask


235


is formed at the middle portion in the horizontal direction while the second slot group G


2


is formed at the peripheries at both sides in the horizontal direction.




Referring to

FIG. 5

, both a portion where the bridges


138


are formed and a portion where the bridges


138


are not formed are alternately formed in the vertical direction. That is, a plurality of bridges


138


are formed at only one slot among two neighboring slits in the horizontal direction to form the slots


133


whereas no bridges are formed at the other slit


333


. Here, the interval of the bridges


138


in the vertical direction may be formed to be substantially the same.




The number of the bridges


138


formed at the shadow masks


130


,


230


,


235


, and


330


as shown in

FIGS. 3 through 5

can be adjusted considering the length of each of the slots


133


and an interval maintaining state between the strips


132


. Also, the width of each of the bridges


138


is formed such that a latent image cannot be displayed when an electron beam emitted from an electron gun (not shown) passes through the adjacent slots


133


sectioned by the bridges


138


and lands on a fluorescent film (not shown). The position of the bridges


138


is determined considering a material property, such as material of the shadow mask used for a flat CRT, and a tension force. The strips


132


and the slots


133


can be formed by an etching processing the main body


131


of the shadow mask.




The shadow masks


130


,


230


,


235


, and


330


according to the present invention assembled to the frame makes a shadow frame assembly of a CRT. As the frame, anything which can be used in the field to which the present invention pertains may be used without limit.




In

FIG. 6

, the shadow mask


130


shown in

FIG. 3

is illustrated. However, the shadow masks


230


,


235


, and


330


shown in

FIGS. 4A

,


4


B, and


5


can be assembled to the frame and descriptions thereof will be omitted. As shown in the drawings, the shadow mask frame assembly includes a frame


140


supporting the shadow mask


130


to receive a predetermined tension force.




The frame


140


includes first and second support members


141


and


142


separated a predetermined distance and first and second elastic members


143


and


144


respectively having both end portions supported at either side end of each of the first and second support members


141


and


142


. Here, the first and second support members


141


and


142


include secured portions


141




a


and


142




a


and reinforcement portions


141




b


and


142




b


so that a section of each of the first and second support members


141


and


142


has an L shape. The first and second elastic members


143


and


144


include support members


143




b


and


144




b


, coupled to the support members


141


and


142


by welding, and extended portions


143




a


and


144




a


bent and respectively extending from the end portions


143




b


and


144




b.






In the process of assembling the shadow mask frame assembly by securing the shadow mask


130


to the frame


140


, the first and second support members


141


and


142


coupled to the first and second elastic members


143


and


144


are pressed in directions close to each other and the first and second elastic members


143


and


144


supporting the first and second support members


141


and


142


are elastically deformed. Under these circumstances, the long side portion of the shadow mask


130


is welded to the secured portions


141




a


and


142




a


of the first and second support members


141


and


142


. Next, the pressure applied to the first and second support members


141


and


142


is removed in the state in which the elastic members


143


and


144


, the support members


141


and


142


and the shadow mask


130


are assembled, so that a tension force is applied to the shadow mask


130


due to an elastic force by the elastic members


143


and


144


.




As described above, the shadow mask frame assembly of a CRT according to the present invention has the following effects. When there is an external impact, since the strips are connected by the bridges, generation of vibrations of the strips can be restricted so that the strips can be effectively secured. Also, when the shadow mask is heated and deformed by collision of an electron beam, by appropriately designing pitch of the bridges, a phenomenon that the tension force applied to the strips is partially removed can be prevented. Further, since the bridges are arranged to reduce the interference between the bridges and strips, Poisson contraction is reduced and twist deformation of the strips is reduced. Thus, lowering of color purity due to the deformation of the shadow mask during the operation of a flat CRT is prevented.




It is noted that the present invention is not limited to the preferred embodiment described above, and it is apparent that variations and modifications by those skilled in the art can be effected within the spirit and scope of the present invention defined in the appended claims.



Claims
  • 1. A shadow mask frame assembly of a flat cathode ray tube, comprising:a shadow mask including a plurality of strips formed at a main body ina vertical direction by being separated by a predetermined distance by slits and a plurality of bridges forming the slots by connecting neighboring strip and sectioning the slits, the slots including a plurality of first slot groups and second slot groups with the slots, the first slot groups having a wider interval between the bridges than the second slot groups, with at least two columns including at least both said first and second slot groups in each column, the slots partially passing through thermions emitted from an electron gun of said flat cathode ray tube while the remaining thermions colliding against the strips and the bridges; and a frame supporting said shadow mask, said frame comprising: a first support member and a second support member secured at a long side portion of said shadow mask; and a first elastic member and a second elastic member, said first elastic member and said second elastic member each having two end portions, one of said two end portions coupled to said first support member and the other one of the two end portions coupled to said second support member, said first and second elastic members applying a tension force to said shadow mask.
  • 2. The assembly as claimed in claim 1, with the first slot groups alternating with the second slot groups.
  • 3. A shadow mask frame assembly of a flat cathode ray tube, comprising:a shadow mask including a plurality of sirips formed at a main body in a vertical direction by being separated by a predetermined distance by slits and a plurality of bridges forming slots by connecting neighboring strips and sectioning the slits, the slots including a first slot group and a second slot group with the slots, the first slot group having a wider interval between the bridges than the second slot group, the slots partially passing through thermions emitted from an electron gun of said flat cathode ray tube while the remaining thermions colliding against the strips and the bridges; and a frame supporting said shadow mask, said frame comprising: a first support member and a second support member secured at a long side portion of said shadow mask; and a first elastic member and a second elastic member, said first elastic member and said second elastic member each having two end portions, one of said two end portions coupled to said first support member and the other one of the two end portions coupled to said second support member, said first and second elastic members applying a tension force to said shadow mask, with at least one second slot group forming at said upper and lower portions of said shadow mask in a vertical direction while the first slot group is being formed between the two second slot groups in the vertical direction.
  • 4. The assembly as claimed in claim3, with the number of the slots forming the first slot group in the vertical direction being one.
  • 5. The assembly as claimed in claim 4, with the number of the slots forming the second slot group in the vertical direction being at least three.
  • 6. The assembly as claimed in claim 5, with the length of each of the slots forming the second slot group being substantially the same.
  • 7. The assembly as claimed in claim 6, with the length of each of the slots of the second slot groups in the vertical direction and the length of the slots of the first slot group in the vertical direction being substantially the same.
  • 8. The assembly as claimed in claim 6, with the sum of the lengths of the slots of the second slot group in the vertical direction being substantially the same as the length of the slots of the first slot group in the vertical direction.
  • 9. A shadow mask frame assembly of a flat cathode ray tube, comprising:a shadow mask including a plurality of strips formed at a main body in a vertical direction by being separated by a predetennined distance by slits and a plurality of bridges forming slots by connecting neighboring strips and sectioning the slits, the slots including a first slot group and a second slot group with the slots, the first slot group having a wider interval between the bridges than the second slot group, the slots partially passing through thermions emitted from an electron gun of said flat cathode ray tube while the remaining thermions colliding against the strips and the bridges; and a frame supporting said shadow mask, said frame comprising: a first support member and a second support member secured at a long side portion of said shadow mask; and a first elastic member and a second elastic member, said first elastic member and said second elastic member each having two end portions, one of said two end portions coupled to said first support member and the other one of the two end portions coupled to said second support member, said first and second elastic members applying a tension force to said shadow mask, with the first slot group being formed at the central portion of the main body in the vertical direction.
  • 10. The assembly as claimed in claim 9, with the number of the slots forming the first slot group in the vertical direction being one.
  • 11. A shadow mask frame assembly of a flat cathode ray tube, comprising:a shadow mask including a plurality of strips formed at a main body in a vertical direction by being separated by a predetermined distance by slits and a plurality of bridges forming slots by connecting neighboring strips and sectioning the slits, the slots including a first slot group and a second slot group with the slots, the first slot group having a wider interval between the bridges than the second slot group, the slots partially passing through thermions emitted from an electron gun of said flat cathode ray tube while the remaining thermions colliding against the strips and the bridges; and a frame supporting said shadow mask, said frame comprising: a first support member and a second support member secured at a long side portion of said shadow mask; and a first elastic member and a second elastic member, said first elastic member and said second elastic member each having two end portions, one of said two end portions coupled to said first support member and the other one of the two end portions coupled to said second support member, said first and second elastic members applying a tension force to said shadow mask, with a plurality of the second slot groups and the first slot groups being formed in the vertical direction accommodating each of the first and second groups appearing alternately.
  • 12. A shadow mask frame assembly of a flat cathode ray tube, comprising:a shadow mask including a plurality of strips formed at a main body in a vertical direction by being separated by a predetermined distance by slits and a plurality of bridges forming slots by connecting neighboring strips and sectioning the slits, the slots including a first slot group and a second slot group with the slots, the first slot group having a wider interval between the bridges than the second slot group, the slots partially passing through thermions emitted from an electron gun of said flat cathode ray tube while the remaining thermions colliding against the strips and the bridges; and a frame supporting said shadow mask, said frame comprising: a first support member and a second support member secured at a long side portion of said shadow mask; and a first elastic member and a second elastic member, said first elastic member and said second elastic member each having two end portions, one of said two end portions coupled to said first support member and the other one of the two end portions coupled to said second support member, said first and second elastic members applying a tension force to said shadow mask, with the first slot group being formed at the middle portion in the vertical direction and the second slot group being formed at peripheries at both sides of the first slot group.
  • 13. A shadow mask frame assembly of a flat cathode ray tube, comprising:a shadow mask including a plurality of strips formed at a main body in a vertical direction by being separated a predetermined distance by slits and a plurality of bridges forming slots by connecting neighboring strips and sectioning the slits, a portion of said shadow mask including at least one strip where the bridges separated by the slots are formed and a portion of said shadow mask including at least one strip having at least one slot where the bridges are not formed are alternately disposed in a horizontal direction; first and second support members secured at a long side portion of said shadow mask; and elastic members having either end portion secured to each of said first and second support members for applying a tension force to said shadow mask.
  • 14. The assembly in as claimed in claim 13, with the intervals between the bridges in the vertical direction being substantially the same.
  • 15. A shadow mask frame assembly, comprising:a shadow mask, comprising; a plurality of strips forming columns in a vertical direction on a main body of said shadow mask, the strips not passing electron beams emitted from an electron gun of a flat cathode ray tube; a plurality of slits forming columns and separating the columns of said strips, the plurality of slits passing electron beams emitted from said electron gun of said flat cathode ray tube; and a plurality of bridges sectioning the columns of the plurality of slits, said bridges preventing the passing of electron beams from said flat cathode ray tube through said shadow mask, said plurality of bridges forming slots by connecting adjacent strips and sectioning the slits, said slots arranged in columns in the vertical direction, the slots being arranged in a first slot group and a second slot group, the first slot group having slots with a wider interval between bridges than the second slot group, with at least one column having both the first slot group and the second slot group; and a frame supporting said shadow mask.
  • 16. The apparatus of claim 15, with said frame comprising:a first support member and a second support member secured at a long side portion of said shadow mask; and a first elastic member and a second elastic member, said first elastic member and said second elastic member each having two end portions, one of said two end portions coupled to said first support member and the other one of the two end portions coupled to said second support member, said first and second elastic members applying a tension force to said shadow mask.
  • 17. The apparatus of claim 16, with said first and second support members being separated a predetermined distance and said secured portion and said reinforcement portion forming an L shape.
  • 18. The apparatus of claim 15, with the length of the slots of the second slot group being formed uniformly.
  • 19. The apparatus of claim 15, with the width of said bridges being formed to accommodate a latent image not being displayed when the electron beam from the electron gun passes through adjacent slots sectioned by the bridges and lands on a fluorescent film.
  • 20. The apparatus of claim 15, with the bridges positioning on said shadow mask according to the material of said shadow mask and a tension force against said shadow mask.
  • 21. The apparatus of claim 15, with said first and second slot groups being formed with other first and second slot groups and the first and second slot groups being provided alternately along one of the columns.
  • 22. A shadow mask frame assembly, comprising:a shadow mask, comprising: a plurality of strips forming columns in a vertical direction on a main body of said shadow mask, the strips not passing electron beams emitted from an electron gun of a flat cathode ray tube; a plurality of slits forming columns and separating the columns of said strips, the plurality of slits passing electron beams emitted from said electron gun of said flat cathode ray tube; and a plurality of bridges sectioning the columns of the plurality of slits, said bridges preventing the passing of electron beams from said flat cathode ray tube through said shadow mask, said plurality of bridges forming slots by connecting adjacent strips and sectioning the slits, said slots arranged in columns in the vertical direction, the slots being arranged in a first slot group and a second slot group, the first slot group having slots with a wider interval between bridges than the second slot group; and a frame supporting said shadow mask, with the first slot group forming at a central portion of said main body of said shadow mask in the vertical direction.
  • 23. The apparatus of claim 22, with the second slot group formed at the upper or lower portion of the main body of said shadow mask.
  • 24. A shadow mask frame assembly, comprising:a shadow mask, comprising: a plurality of strips forming columns in a vertical direction on a main body of said shadow mask, the strips not passing electron beams emitted from an electron gun of a flat cathode ray tube; a plurality of slits forming columns and separating the columns of said strips, the plurality of slits passing electron beams emitted from said electron gun of said flat cathode ray tube; and a plurality of bridges sectioning the columns of the plurality of slits, said bridges preventing the passing of electron beams from said flat cathode ray tube through said shadow mask, said plurality of bridges forming slots by connecting adjacent strips and sectioning the slits, said slots arranged in columns in the vertical direction, the slots being arranged in a first slot group and a second slot group, the first slot group having slots with a wider interval between bridges than the second slot group; and a frame supporting said shadow mask, with the number of slots forming the first slot group being one while the number of slots forming the second slot group being at least three.
  • 25. A shadow mask frame assembly, comprising:a shadow mask, comprising: a plurality of strips forming columns in a vertical direction on a main body of said shadow mask, the strips not passing electron beams emitted from an electron gun of a flat cathode ray tube; a plurality of slits forming columns and separating the columns of said strips, the plurality of slits passing electron beams emitted from said electron gun of said flat cathode ray tube; and a plurality of bridges sectioning the columns of the plurality of slits, said bridges preventingthe passing of electronbeanis from said flat cathode ray tube through said shadow mask, said plurality of bridges forming slots by connecting adjacent strips and sectioning the slits, said slots arranged in columns in the vertical direction, the slots being arranged in a first slot group and a second slot group, the first slot group having slots with a wider interval between bridges than the second slot group; and a frame supporting said shadow mask, with the length of the first slot group being approximately equal to a length of a slot in the first slot group.
  • 26. A shadow mask frame assembly, comprising:a shadow mask, comprising: a plurality of strips forming columns in a vertical direction on a main body of said shadow mask, the strips not passing electron beams emitted from an electron gun of a flat cathode ray tube; a plurality of slits forming columns and separating the columns of said strips, the plurality of slits passing electron beams emitted from said electron gun of said flat cathode ray tube; and a plurality of bridges sectioning the columns of the plurality of slits, said bridges preventing the passing of electron beams from said flat cathode ray tube through said shadow mask, said plurality of bridges forming slots by connecting adjacent strips and sectioning the slits, said slots arranged in columns in the vertical direction, the slots being arranged in a first slot group and a second slot group, the first slot group having slots with a wider interval between bridges than the second slot group; and a frame supporting said shadow mask, with the slots being symmetrically formed with respect a median line cutting across the middle of the columns of slots, said bridges being formed at approximately identical intervals on either side of the median line.
  • 27. A shadow mask frame assembly, comprising:a shadow mask, comprising: a plurality of strips forming columns in a vertical direction on a main body of said shadow mask, the strips not passing electron beams emitted from an electron gun of a flat cathode ray tube; a plurality of slits forming columns and separating the columns of said strips, the plurality of slits passing electron beams emitted from said electron gun of said flat cathode ray tube; and a plurality of bridges sectioning the columns of the plurality of slits, said bridges preventing the passing of electron beams from said flat cathode ray tube through said shadow mask, said plurality of bridges forming slots by connecting adjacent strips and sectioning the slits, said slots arranged in columns in the vertical direction, the slots being arranged in a first slot group and a second slot group, the first slot group having slots with a wider interval between bridges than the second slot group; and a frame supporting said shadow mask, with the interval length between bridges at the periphery of upper and lower portions of said shadow mask being less than the interval length between the bridges at the center of said shadow mask accommodating a greater rigidity of the strips.
  • 28. A shadow mask frame assembly, comprising:a shadow mask, comprising: a plurality of strips forming columns in a vertical direction on a main body of said shadow mask, the strips not passing electron beams emitted from an electron gun of a flat cathode ray tube; a plurality of slits forming columns and separating the columns of said strips, the plurality of slits passing electron beams emitted from said electron gun of said flat cathode ray tube; and a plurality of bridges sectioning the columns of the plurality of slits, said bridges preventing the passing of electron beams from said flat cathode ray tube through said shadow mask, said plurality of bridges forming slots by connecting adjacent strips and sectioning the slits, said slots arranged in columns in the vertical direction, the slots being arranged in a first slot group and a second slot group, the first slot group having slots with a wider interval between bridges than the second slot group; and a frame supporting said shadow mask, with a length of the first slot group in the middle of the shadow mask being determined according to the amount of the tension force applied to said shadow mask and to the size of a panel of said cathode ray tube.
  • 29. A shadow mask frame assembly, comprising:a shadow mask, comprising: a plurality of strips forming columns in a vertical direction on a main body of said shadow mask, the strips not passing electron beams emitted from an electron gun of a flat cathode ray tube; a plurality of slits forming columns and separating the columns of said strips, the plurality of slits passing electron beams emitted from said electron gun of said flat cathode ray tube; and a plurality of bridges sectioning the columns of the plurality of slits, said bridges preventing the passing of electron beams from said flat cathode ray tube through said shadow mask, said plurality of bridges forming slots by connecting adjacent strips and sectioning the slits, said slots arranged in columns in the vertical direction, the slots being arranged in a first slot group and a second slot group, the first slot group having slots with a wider interval between bridges than the second slot group; and a frame supporting said shadow mask, further comprising a plurality of second slot groups and a plurality of first slot groups alternately formed in a vertical direction.
  • 30. A shadow mask frame assembly, comprising:a shadow masic, comprising: a plurality of strips forming columns in a vertical direction on a main body of said shadow mask, the strips not passing electron beams emitted from an electron gun of a flat cathode ray tube; a plurality of slits forming columns and separating the columns of said strips, the plurality of slits passing electron beams emitted from said electron gun of said flat cathode ray tube; and a plurality of bridges sectioning the columns of the plurality of slits, said bridges preventing the passing of electron beams from said flat cathode ray tube through said shadow mask, said plurality of bridges forming slots by connecting adjacent strips and sectioning the slits, said slots arranged in columns in the vertical direction, the slots being arranged in a first slot group and a second slot group, the first slot group having slots with a wider interval between bridges than the second slot group; and a frame supporting said shadow mask, with the first slot group being formed in the middle portion of the shadow mask in a horizontal direction while the second slot group is formed at the peripheries at both sides of said shadow mask in the horizontal direction.
  • 31. A shadow mask frame assembly, comprising:a shadow mask, comprising: a plurality of strips forming columns in a vertical direction on a main body of said shadow mask, the strips not passing electron beams emitted from an electron gun of a flat cathode ray tube; a plurality of slits fonning columns and separating the columns of said strips, the plurality of slits passing electron beams emitted from said electron gun of said flat cathode ray tube; and a plurality of bridges sectioning at least one of the columns of the plurality of slits, said bridges preventing the passing of electron beams from said flat cathode ray tube through said shadow mask, said plurality of bridges forming slots by connecting adjacent strips and sectioning the slits, said slots arranged in columns in the vertical direction, the slots being arranged in a first slot group and a second slot group, the first slot group having slots with a wider interval between bridges than the second slot group; and a frame supporting said shadow mask, with columns of said slits having bridges alternating with columns of a single slit with no bridges on said shadow mask.
Priority Claims (1)
Number Date Country Kind
1999-56747 Dec 1999 KR
US Referenced Citations (23)
Number Name Date Kind
3652895 Tsuneta et al. Mar 1972 A
4168450 Yamauchi et al. Sep 1979 A
4300069 Nolan Nov 1981 A
4678963 Fonda Jul 1987 A
4794299 Chiodi et al. Dec 1988 A
4915658 Lopata et al. Apr 1990 A
4942332 Adler et al. Jul 1990 A
4973283 Adler et al. Nov 1990 A
5030880 An Jul 1991 A
5355049 Sung Oct 1994 A
5523647 Kawamura et al. Jun 1996 A
5856725 Ueda Jan 1999 A
5877586 Aibara Mar 1999 A
5898259 Reyal Apr 1999 A
6013400 LaPeruta et al. Jan 2000 A
6057640 Aibara May 2000 A
6140754 Ko Oct 2000 A
6335594 Park Jan 2002 B2
6469431 Suzuki et al. Oct 2002 B1
6605890 Tanabe et al. Aug 2003 B1
20010020817 Inoue et al. Sep 2001 A1
20010033130 Ha et al. Oct 2001 A1
20020014822 Shin et al. Feb 2002 A1
Foreign Referenced Citations (5)
Number Date Country
2-186536 Jul 1990 JP
4-277448 Oct 1992 JP
7-230772 Aug 1995 JP
11-16511 Jan 1999 JP
9309359 Sep 1993 KR