Shadow mask type color cathode ray tube having a shadow mask with curls thereof reduced

Information

  • Patent Grant
  • 6259194
  • Patent Number
    6,259,194
  • Date Filed
    Friday, June 25, 1999
    25 years ago
  • Date Issued
    Tuesday, July 10, 2001
    23 years ago
Abstract
A color cathode ray tube includes an evacuated envelope having a panel portion, a neck portion, and a funnel portion for connecting the panel portion and the neck portion, a generally rectangular shadow mask having a curved apertured portion having a multiplicity of electron-transmissive apertures, a curved imperforate portion surrounding and integral with the apertured portion and a peripheral skirt portion, a generally rectangular support frame for suspending the shadow mask by spot welding the peripheral skirt portion thereto, within said panel portion, a phosphor screen formed on an inner surface of the panel portion, an electron gun housed in the neck portion, and a deflection yoke. The shadow mask is provided with a descending step portion extending along an outer edge of the imperforate portion, the peripheral skirt portion is formed by being bent back from an outer edge of the descending step portion, and the peripheral skirt portion is provided with a plurality of beads extending in a direction of a height of the peripheral skirt portion and protruding inward in each side of the peripheral skirt portion.
Description




BACKGROUND OF THE INVENTION




The present invention relates to a shadow mask type color cathode ray tube, and more particularly to a shadow mask type color cathode ray tube provided with a shadow mask free from occurrence of deformation and reduction in mechanical strength of its apertured portion when the skirt portion of the shadow mask is fitted in its support frame, by reducing curls occurring in the skirt portion of the press-formed shadow mask.




Generally, a color cathode ray tube has a phosphor screen formed on an inner surface of a faceplate of a panel portion of an evacuated envelope, a shadow mask closely spaced from the phosphor screen and suspended within the panel portion, an in-line type electron gun housed in a neck portion of the evacuated envelope, a deflection yoke mounted around a funnel portion of the evacuated envelope.




In operation, three electron beams projected from the in-line type electron gun are deflected in desired directions, pass through one of a large number of electron beam apertures in the shadow mask and impinge upon phosphor picture elements of the corresponding colors of the phosphor screen, respectively, to produce a desired color image on the phosphor screen.




The shadow mask used in the prior art color cathode ray tube has a generally rectangular apertured portion having a large number of electron beam apertures, a generally rectangular window-frame-like imperforate portion surrounding and integral with the apertured portion and a skirt portion bent back from a periphery of the imperforate portion, and the apertured portion, the imperforate portion and the skirt portion are integrally press-formed. The skirt portion is fitted into a support frame and is spot welded at its fitted portions to the support frame to form a shadow mask assembly. The support frame is fixed to the inner sidewall of the panel portion such that the shadow mask opposes the phosphor screen.





FIGS. 4A

to


4


C illustrate the structure of an example of a prior art shadow mask for a color cathode ray tube,

FIG. 4A

being a plan view,

FIG. 4B

being a perspective view of weld points and their vicinities in the skirt portion and

FIG. 4C

being across-sectional view of a portion of the shadow mask ranging from the imperforate portion to the skirt portion. In

FIGS. 4A

to


4


C, reference numeral


41


denotes the shadow mask,


42


is the apertured portion,


43


is the imperforate portion,


44


is the skirt portion and X marks indicate weld points.




The shadow mask


41


has a large number of electron beam apertures (not labeled), a generally rectangular and curved apertured portion


42


, a generally rectangular window-frame-like imperforate portion


43


surrounding and integral with the apertured portion


42


and having a curvature in cross section similar to that of the apertured portion


42


, and a skirt portion


44


bent back from a periphery of the imperforate portion


43


, and the apertured portion. Usually the apertured portion


42


, the imperforate portion


43


and the skirt portion


44


are integrally formed by press-forming a thin sheet metal mask blank having the apertured portion.




The mask blank having an apertured portion is very thin and relatively weak in mechanical strength, and therefore the shape of the press-formed shadow mask


41


is not necessarily satisfactory. Especially, since the skirt portion


44


is formed by being bent back at approximately right angles from the periphery of the imperforate portion


43


, the skirt portion


44


of the shadow mask


41


curls outwardly by a maximum distance S from a straight line passing through a bend line between the imperforate portion


43


and the skirt portion


44


and parallel to the longitudinal axis of the cathode ray tube, in a region centering about the center of each side of the generally rectangular shadow mask


41


, as shown in FIG.


4


C.




The press-formed shadow mask


41


is fixed by fitting its skirt portion


44


into the support frame (not shown) and then spot welding the skirt portion


44


to the support frame at several points. The weld points of the skirt portion


44


and the support frame are distributed two approximately at the center of each long side, two approximately at the center of each short side, and one at each corner of the shadow mask


41


, for example, as indicated by X marks in FIG.


4


B.




As explained above, in the case of the prior art shadow mask


41


, occurrence of curls in the skirt portion


44


could not be avoided when the mask blank is press-formed into a unitary mask structure. If the maximum size S of curls is excessive, problems in that it becomes difficult to fit the skirt portion


44


into the support frame and also difficult to subsequently spot weld the fitted parts of the skirt portion


44


to the support frame, resulting in the degradation of workability in fixing the shadow mask


41


to the support frame.




Also in the case of the prior art shadow mask


41


, if the skirt portion


44


having curls of the excessive maximum size S is forced to fit into the support frame, stress caused to the skirt portion


44


is transmitted to the apertured portion


42


via the imperforate portion


43


, and consequently the curvature of the apertured portion


42


is sometimes deformed and color selecting property of the shadow mask


41


is deteriorated, and also the mechanical strength of the shadow mask


41


is reduced.




SUMMARY OF THE INVENTION




The present invention was made against such technical background, and it is one of the objects of the present invention to provide a color cathode ray tube provided a shadow mask capable of improving workability in the operation of fitting the skirt portion of the shadow mask into the support frame and capable of preventing deformation of the curvature of the apertured portion of the shadow mask by reducing the size of curls occurring in the skirt portion.




To accomplish the above object, a color cathode ray tube of an embodiment in accordance with the present invention comprises an evacuated envelope comprising a panel portion, a neck portion, and a funnel portion for connecting the panel portion and the neck portion, a generally rectangular shadow mask having a curved apertured portion having a multiplicity of electron-transmissive apertures, a curved imperforate portion surrounding and integral with the apertured portion and a peripheral skirt portion, a generally rectangular support frame for suspending the shadow mask by spot welding the peripheral skirt portion thereto, within the panel portion, a phosphor screen formed on an inner surface of the panel portion, an electron gun housed in the neck portion, and a deflection yoke mounted around a vicinity of a transitional region between the funnel portion and the neck portion for scanning electron beams from the electron gun on the phosphor screen, wherein the shadow mask is provided with a descending step portion extending along an entire outer edge of the imperforate portion, the peripheral skirt portion is formed by being bent back from an entire outer edge of the descending step portion, and the peripheral skirt portion is provided with a plurality of beads extending in a direction of a height of the peripheral skirt portion and protruding inward in each side of the peripheral skirt portion.




To accomplish the above object, a color cathode ray tube of another embodiment in accordance with the present invention comprises an evacuated envelope comprising a panel portion, a neck portion, and a funnel portion for connecting the panel portion and the neck portion, a generally rectangular shadow mask having a curved apertured portion having a multiplicity of electron-transmissive apertures, a curved imperforate portion surrounding and integral with the apertured portion and a peripheral skirt portion, a generally rectangular support frame for suspending the shadow mask by spot welding the peripheral skirt portion thereto, within the panel portion, a phosphor screen formed on an inner surface of the panel portion, an electron gun housed in the neck portion, and a deflection yoke mounted around a vicinity of a transitional region between the funnel portion and the neck portion for scanning electron beams from the electron gun on the phosphor screen, wherein the shadow mask is provided with a descending step portion extending along an entire outer edge of the imperforate portion, the peripheral skirt portion is formed by being bent back from an entire outer edge of the descending step portion, the peripheral skirt portion is provided with a plurality of beads extending in a direction of a height of the peripheral skirt portion and protruding inward in each side of the peripheral skirt portion, and one of following three conditions (a)-(c) is satisfied in regions outside each of central portions extending a distance SHL and a distance SVL in long and short sides of the peripheral skirt portion, respectively, (a) a height H of the descending step portion is in a range of 30% to 50% of H0, (b) a width W of the descending step portion is in a range of 65% to 80% of W0, and (c) a height H and a width W of the descending step portion are in a range of 30% to 50% of H0 and in a range of 65% to 80% of W0, respectively, SHL and SVL being 0.85 times lengths of the long and short sides of the peripheral skirt portion, respectively, H0 and W0 being a height H and a width W of the descending step portion at centerlines of the long and short sides of the peripheral skirt portion, respectively.




To accomplish the above object, a color cathode ray tube of still another embodiment in accordance with the present invention comprises an evacuated envelope comprising a panel portion, a neck portion, and a funnel portion for connecting the panel portion and the neck portion, a generally rectangular shadow mask having a curved apertured portion having a multiplicity of electron-transmissive apertures, a curved imperforate portion surrounding and integral with the apertured portion and a peripheral skirt portion, a generally rectangular support frame for suspending the shadow mask by spot welding the peripheral skirt portion thereto, within the panel portion, a phosphor screen formed on an inner surface of the panel portion, an electron gun housed in said neck portion, and a deflection yoke mounted around a vicinity of a transitional region between the funnel portion and the neck portion for scanning electron beams from the electron gun on the phosphor screen, wherein the shadow mask is provided with a descending step portion extending along an outer edge of the curved imperforate portion, the peripheral skirt portion is formed by being bent back from an outer edge of the descending step portion, the peripheral skirt portion is provided with a plurality of beads extending in a direction of a height of the peripheral skirt portion and protruding inward in each side of the peripheral skirt portion, and at least one of a height H and a width W of the descending step portion decreases progressively with distance from centerlines of long and short sides of the peripheral skirt portion in regions outside each of central portions extending a distance SHL and a distance SVL in long and short sides of the peripheral skirt portion, respectively, SHL and SVL being 0.9 times lengths of the long and short sides of the peripheral skirt portion, respectively.




In the present invention, since there is formed a plurality of beads extending in a direction of the height of the skirt portion and protruding inward in each of four sides of the skirt portion, in the operation of press-forming a mask blank into a unitary shadow mask structure, the maximum size of curls occurring in the skirt portion is reduced. Since there is also formed the descending step portion extending along the outer edge of the imperforate portion, even if great stress is caused to the skirt portion after the skirt portion has been fitted into the support frame and the great stress is transmitted to the imperforate portion from the skirt portion, the descending step portion relieves or blocks this great stress such that the great stress is not transmitted to the apertured portion and the curvature of the apertured portion is prevented from being deformed.











BRIEF DESCRIPTION OF THE DRAWINGS




In the accompanying drawings, in which like reference numerals designate similar components throughout the figures, and in which:





FIG. 1

is a schematic cross-sectional view of an embodiment of a shadow mask type color cathode ray tube in accordance with the present invention;





FIGS. 2A

,


2


B and


2


C are illustrations for showing an embodiment of a shadow mask used for the color cathode ray tube shown in

FIG. 1

,

FIG. 2A

being a plan view thereof,

FIG. 2B

being a side view of a long side thereof, and

FIG. 2C

being an enlarged fragmentary plan view of a lower right-hand corner of the shadow mask of

FIG. 2A

;





FIGS. 2D and 2E

are enlarged fragmentary plan views of alternative beads used in the present invention;





FIG. 3A

is a perspective view of a corner and its vicinity of the embodiment shown in

FIG. 2A

;





FIG. 3B

is an enlarged fragmentary cross-sectional view taken along line IIIB—IIIB of

FIG. 2A

;





FIGS. 4A

,


4


B and


4


C are illustrations of a prior art shadow mask used for a color cathode ray tube,

FIG. 4A

being a plan view thereof,

FIG. 4B

being an enlarged fragmentary side view thereof and

FIG. 4C

being an enlarged fragmentary cross-sectional view thereof;





FIG. 5

is a perspective view of a corner and its vicinity of another embodiment of the present invention; and





FIG. 6

is a perspective view of a corner and its vicinity of still another embodiment of the present invention.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS




In an embodiment of a shadow mask type color cathode ray tube according to the present invention, a shadow mask is provided with a descending step portion extending along an entire outer edge of a curved imperforate portion surrounding a curved apertured portion having a multiplicity of electron-transmissive apertures, a peripheral skirt portion is formed by being bent back from an entire outer edge of the descending step portion, and the peripheral skirt portion is provided with a plurality of beads extending in a direction of a height of the peripheral skirt portion and protruding inward in each side of the peripheral skirt portion.




In another embodiment of a shadow mask type color cathode ray tube according to the present invention, a shadow mask is provided with a descending step portion extending along an entire outer edge of a curved imperforate portion surrounding a curved apertured portion having a multiplicity of electron-transmissive apertures, a peripheral skirt portion is formed by being bent back from an entire outer edge of the descending step portion, and the peripheral skirt portion is provided with a plurality of beads extending in a direction of a height of the peripheral skirt portion and protruding inward in each side of the peripheral skirt portion, one of following three conditions (a)-(c) is satisfied in regions outside each of central portions extending a distance SHL and a distance SVL in long and short sides of said peripheral skirt portion, respectively, (a) a height H of the descending step portion is in a range of 30% to 50% of H0, (b) a width w of the descending step portion is in a range of 65% to 80% of W0, and (c) a height H and a width W of the descending step portion are in a range of 30% to 50% of H0 and in a range of 65% to 80% of W0, respectively, SHL and SVL being 0.85 times the lengths of the long and short sides of the peripheral skirt portion, respectively, the H0 and the W0 being a height H and a width W of the descending step portion at the centerlines of the long and short sides of the peripheral skirt portion, respectively.




In still another embodiment of a shadow mask type color cathode ray tube according to the present invention, a shadow mask is provided with a descending step portion extending along an outer edge of a curved imperforate portion surrounding a curved apertured portion having a multiplicity of electron-transmissive apertures, a peripheral skirt portion is formed by being bent back from an outer edge of the descending step portion, and the peripheral skirt portion is provided with a plurality of beads extending in a direction of a height of the peripheral skirt portion and protruding inward in each side of the peripheral skirt portion, and at least one of a height H and a width W of the descending step portion decreases progressively with distance from the centerlines of the long and short sides of the peripheral skirt portion in regions outside each of central portions extending a distance SHL and a distance SVL in long and short sides of said peripheral skirt portion, respectively, the SHL and SVL being 0.9 times the lengths of the long and short sides of the peripheral skirt portion, respectively.




In a specific example of the first embodiment of the present invention, the height and the width of the descending step portion is about 1.5 mm and about 2.0 mm, respectively, and the maximum depth and the maximum width of the beads are about 1.0 mm and about 5.0 mm in an arcuate, triangular or rectangular cross-section. The beads are arranged symmetrically with respect to the centerline of each side of the skirt portion and are approximately evenly spaced on each side of the centerline.




In the above first embodiment of the present invention, in the operation of press-forming a mask blank having an apertured portion into a unitary shadow mask structure, since there is formed a plurality of beads extending in a direction of the height of the skirt portion and protruding inward in a substantially arcuate, substantially triangular or substantially rectangular cross-sectional configuration in each side of the skirt portion, the beads weaken the force of the skirt portion press-formed by bending to revert to its original form such that the maximum size of curls occurring in the skirt portion is reduced, and since there is also formed the descending step portion extending along the entire outer edge of the imperforate portion, even if great stress is caused to the skirt portion after the skirt portion has been fitted into the support frame and the stress is transmitted to the imperforate portion from the skirt portion, the descending step portion relieves or blocks this great stress such that the great stress is not transmitted to the apertured portion and the curvature of the apertured portion is prevented from being deformed. In this embodiment, the color selecting property of the shadow mask is not degraded and the mechanical strength of the shadow mask is improved.




The embodiments of the present invention will be described hereinafter with reference to the drawings.

FIG. 1

is a schematic cross-sectional view of an embodiment of a shadow mask type color cathode ray tube in accordance with the present invention.




In

FIG. 1

, reference numeral


1


designates a panel portion, IF is a faceplate,


2


is a neck portion,


3


is a funnel portion,


4


is a phosphor screen,


5


is a shadow mask,


6


is a support frame,


7


is an internal magnetic shield,


8


is a deflection yoke,


9


is an in-line type electron gun,


10


is a color purity adjustment magnet,


11


is a four-pole magnet for static beam convergence adjustment,


12


is a six-pole magnet for static beam convergence adjustment,


13


is an electron beam,


14


is an apertured portion of the shadow mask


5


,


15


is an imperforate portion of the shadow mask


5


and


16


is a skirt portion of the shadow mask


5


.




An evacuated envelope (glass bulb) of the color cathode ray tube comprises the panel portion


1


having the generally rectangular faceplate IF, the elongated cylindrical neck portion


2


housing the in-line type electron gun


9


therein, and the funnel portion


3


joining the panel portion


1


and the neck portion


2


. The phosphor film


4


is formed on the inner surface of the faceplate IF of the panel portion


1


. The shadow mask


5


comprises the apertured portion


14


, the imperforate portion


15


and the skirt portion


16


, and is fixed to the support frame


6


by fitting its skirt portion


16


into the support frame


6


and spot welding the skirt portion to the support frame


6


which in turn is incorporated within the panel portion such that the apertured portion


14


of the shadow mask


5


opposes the phosphor screen


4


. The internal magnetic shield


7


is disposed nearer to the panel portion


1


within the funnel portion


3


, and the deflection yoke


8


is disposed nearer to the neck portion


2


and mounted around the funnel portion


3


.




Externally of the neck portion


2


are juxtaposed the color purity adjustment magnet


10


, the four-pole magnetic for static beam convergence adjustment


11


, and the six-pole magnet


12


for static beam convergence adjustment. Three electron beams


13


(only one shown in

FIG. 1

) projected from the in-line type electron gun


9


are deflected in a desired direction by the deflection yoke


8


, impinge upon the phosphor picture elements of the corresponding colors of the phosphor screen


4


through a large number of electron-transmissive apertures in the apertured portion


14


of the shadow mask


5


and reproduce the desired image on the phosphor screen


4


.




The operation of the color cathode ray tube according to the present embodiment, that is, the image displaying operation is the same as that of the conventional color cathode ray tube of this kind, and such image displaying operation has been well known. Therefore, the description of the image displaying operation of the color cathode ray tube according to the present embodiment will be omitted.





FIGS. 2A

,


2


B,


3


A and


3


B are illustrations for showing an embodiment of a shadow mask


5


used for the color cathode ray tube shown in

FIG. 1

,

FIG. 2A

being a plan view thereof,

FIG. 2B

being a side view of a long side thereof,

FIG. 3A

being a perspective view of a corner and its vicinity thereof, and

FIG. 3B

being an enlarged fragmentary cross-sectional view taken along line IIIB—IIIB of FIG.


2


A.




In

FIGS. 2A

,


2


B,


3


A and


3


B, reference numerals


17




1


,


17




2


,


17




3


,


17




4


,


17




5


,


17




6


,


17




7


,


17




8


,


17




9


,


17




10


,


17




11


,


17




12


,


17




13


,


17




14


,


17




15


and


17




16


denote beads formed in long sides of the shadow mask


5


, and reference numerals


18




1


,


18




2




18




3


,


18




4


,


18




5


,


18




6


,


18




7


,


18




8


,


18




9


,


18




10


,


18




11


and


18




12


denote beads formed in short sides of the shadow


5


, reference numeral


19


denotes slits, reference numeral


20


denotes a descending step portion and the same reference numerals as utilized in

FIG. 1

designate corresponding portions in

FIGS. 2A

,


2


B,


3


A and


3


B.




The beads


17




1


to


17




16


formed in the two long sides of the skirt portion


16


extend along the entire height of the skirt portion


16


and protrude inward in an arcuate cross-sectional configuration. The four beads


17




1


to


17




4


are formed on one side (at the left in

FIGS. 2A and 2B

) of the center line LV in one long side of the shadow mask, the four beads


17




5


to


17




8


are formed on the other side (at the right in

FIGS. 2A and 2B

) of the center line LV in the one long side of the shadow mask. The four beads


17




9


to


17




12


are formed on the one side (at the left in

FIGS. 2A and 2B

) of the center line LV in the other long side of the shadow mask, the four beads


17




13


to


17




16


are formed on the other side (at the right in

FIGS. 2A and 2B

) of the center line LV in the other long side of the shadow mask.




The beads


18




1


to


18




12


formed in the two short sides of the skirt portion


16


extend along the entire height of the skirt portion


16


and protrude inward in an arcuate cross-sectional configuration. The three beads


18




1


to


18




3


are formed on one side (at the top in

FIG. 2A

) of the center line LH in one short side of the shadow mask, the three beads


18




4


to


18




6


are formed on the other side (at the bottom in

FIGS. 2A

) of the center line LH in the one short side of the shadow mask. The three beads


18




7


to


18




9


are formed on the one side (at the top in

FIG. 2A

) of the center line LH in the other short side of the shadow mask, the three beads


18




10


to


18




12


are formed on the other side (at the bottom in

FIG. 2A

) of the center line LH in the other short side of the shadow mask.




For the purpose of reducing the size of curls, the slits


19


are formed to extend a predetermine distance from the bottom end of the skirt portion


16


in a direction of the height of the skirt portion


16


and one slit is disposed on each side of the centerline LV of each long side of the shadow mask and one slit is disposed on each side of the centerline LH of each short side of the shadow mask.




The descending step portion


20


extends along the entire outer edge of the imperforate portion


15


of the shadow mask


5


, that is, along its entire edge of the imperforate portion


15


on the skirt portion


16


side thereof such that a peripheral portion of the imperforate portion


15


is recessed by one step abruptly from the otherwise approximately gradually sloped surface. The skirt portion


16


is formed by being bent back from an outer edge of the descending step portion


20


.




As a specific example for an apertured area


14


of about 365 mm in width and about 275 mm in height of the shadow mask for use in a color cathode ray tube having a panel portion


1


of a 19-inch outside diagonal, the size and location of the beads


17




1


to


17




16


formed in the long sides and the beads


18




1


to


18




12


formed in the short sides of the skirt portion


16


, the size and location of the slits


19


formed in the long and short sides and the dimensions of the descending step portion


20


formed in the imperforate portion


15


are as follows.




The maximum depth BD and the maximum width BW of the beads


17




1


to


17




16


in the long sides and of the beads


18




1


to


18




12


in the short sides shown in

FIG. 2C

are about 1.0 mm and about 5.0 mm, respectively, and the width and the length of the slits


19


are about 3 mm and about 3 mm, respectively. The step height H and the width W of the descending step portion


20


are about 1.5 mm and about 2.0 mm, respectively. The mask blank for the shadow mask


5


is made of an Invar (trademark, iron-nickel alloy) sheet of 0.13 mm in thickness. The skirt height HSK in

FIG. 3A

is 17 mm.




It is preferable that a height and a width of the descending step portion are in a range of 1 mm to 2 mm and in a range of 1 mm to 3 mm, respectively, a cross-section of the beads is 4 mm to 12 mm in width and 0.2 mm to 1.5 mm in depth.




It is preferable that a plurality of beads are distributed over each of central portions extending a distance BHL and a distance BVL in long and short sides of the skirt portion, respectively, BHL and BVL satisfying the following inequalities:






0.5


HL≦BHL≦


0.85


HL,










0.5


VL≦BVL≦


0.85


VL,








and HL and VL being the longitudinal lengths of the long and short sides of the skirt portion, respectively (see FIG.


2


A).




Each of the two slit


19


in each of the two long sides is spaced about 25 mm from the centerline LV of the long sides on each side of the centerline LV, and each of the two slit


19


in each of the two short sides is spaced about 25 mm from the centerline LH of the short sides on each side of the centerline LH.




The beads


17




1


to


17




16


formed in the two long sides are arranged such that eight of the beads are disposed symmetrically with respect to the centerline LV of the long sides in each long side, four beads being disposed on each side of the centerline LV and being spaced about 35 mm from adjacent beads on each side of the centerline LV.




The beads


18




1


to


18




12


formed in the two short sides are arranged such that six of the beads are disposed symmetrically with respect to the centerline LH of the short sides on each short side, three beads being disposed on each side of the centerline LH and being spaced about 25 mm from adjacent beads on each side of the centerline LH.




The slits


19


disposed adjacent to the centerline LV in the long sides are spaced about 20 mm from respective adjacent ones of the beads


17




4


,


17




5


,


17




12


,


17




13


in the long sides, and the slits


19


disposed adjacent to the centerline LH in the short sides are spaced about 20 mm from respective adjacent ones of the beads


18




3


,


18




4


,


18




9


,


18




10


in the short sides.




The beads


17




1


to


17




16


in the long sides, the beads


18




1


and


18




12


in the short sides, of the skirt portion


16


and the descending step portion


20


in the imperforate portion


15


are formed simultaneously with the skirt portion


16


in the operation of press-forming a thin mask blank into the shadow mask


5


, and therefore no additional process step is needed for formation of the beads


17




1


to


17




16


in the long sides, the beads


18




1


and


18




12


in the short sides and the descending step portion


20


in the imperforate portion


15


.




The shadow mask


5


of the above structure is provided with the beads


17




1


to


17




16


in the long sides, the beads


18




1


and


18




12


in the short sides, of the skirt portion


16


and consequently the shadow mask


5


can limit the maximum size of curls occurring in the skirt portion


16


of the press-formed shadow mask


5


to a specified value smaller than a shadow mask without any beads in the long and short sides of its skirt portion.




The shadow mask


5


having reduced the maximum size S of curls in the skirt portion


16


enables the operation of fitting its skirt portion


16


into the support frame


6


easily to obtain a shadow mask assembly, and enables the operation of spot welding the skirt portion


16


to the support frame


6


at portions of the skirt portion


16


inserted within the support frame


6


, that is, the workability in fitting the skirt portion


16


into the support frame


6


is improved.




Since the shadow mask


5


of the above structure is provided with the descending step portion


20


in the imperforate portion


15


, and even if relatively great stress is accidentally caused to the skirt portion


16


after the skirt portion


16


has been fitted into the support frame


6


and the stress is transmitted to the imperforate portion


15


from the skirt portion


16


, the descending step portion


20


blocks transmission of this stress from the imperforate portion


15


to the apertured portion


14


.




A prior art technique of reinforcing the skirt portion by using vertically-extending beads only had a problem that rigidity is increased locally in the immediate vicinity of the beads and consequently local cave-in occurs in the press-formed apertured portion. Without the reinforcing beads, the increase of the size of curls occurring in the skirt portion is inevitable, resulting in deformation of the curvature of the assembled shadow mask greater than that incurred by the beads. Combination of vertically-extending beads and the descending step portion surrounding the apertured portion reduces or eliminates the curls of the skirt portion, and also eliminates deformation of the press-formed apertured portion by absorbing the stress transferring from the skirt portion toward the apertured portion with the descending step portion.




Therefore the curvature of the apertured portion


14


is prevented from being deformed by the stress, the mechanical strength of the shadow mask


5


is not degraded and the color selecting property of the shadow mask


5


is not deteriorated.




There is a possibility that excessive stretching of the material in the apertured portion occurs in the corners of a shadow mask in the operation of forming a mask blank into the shadow mask such that two adjacent electron-transmissive apertures in the apertured portion are elongated to be joined together, and this possibility is enhanced by the reinforcing beads. The following two embodiments intend to weaken the strength of the corners and to eliminate the excessive stretching of the material in the apertured portion in the corners of the shadow mask.





FIG. 5

is a perspective view of an embodiment having an improved structure of the descending step portion


20


.




In

FIG. 5

, when the height and the width of the descending step portion


20


at centerlines LV, LH of the long and short sides are H0 and W0, respectively, the height H and the width W of the descending step portion


20


are in a range of 30% to 50% of H0 and in a range of 65% to 80% of W0 in regions outside each of central portions extending a distance SHL and a distance SVL in long and short sides of the peripheral skirt portion, respectively, the SHL and SVL being 0.85 times the lengths HL, VL of the long and short sides of the peripheral skirt portion, respectively (see FIG.


2


A).




It is preferable that H0 and W0 are in a range of 1 mm to 2 mm and in a range of 1 mm to 3 mm, respectively.




In this embodiment the shadow mask is identical in structure with the embodiment described in connection with

FIGS. 2A

to


2


C,


3


A and


3


B, except for the structure of the descending step portion


20


.




In the above embodiment, both the height H and the width W of the descending step portion


20


are reduced to a range of 30% to 50% of H0 and to a range of 65% to 80% of W0, respectively, in the regions outside each of central portions extending the distance SHL and the distance SVL in the long and short sides of the peripheral skirt portion, respectively. But, depending upon the size of the shadow mask, both the height H and the width W of the descending step portion


20


need not be reduced to a range of 30% to 50% of H0 and to a range of 65% to 80% of W0 in the regions outside each of central portions extending the distance SHL and the distance SVL, and only one of the height H and the width W of the descending step portion


20


may be reduced to the above-mentioned ranges in regions outside each of the central portions.





FIG. 6

is a perspective view of another embodiment having an improved structure of the descending step portion


20


.




In

FIG. 6

, the height H and the width W of the descending step portion


20


decrease progressively with distance from the centerlines LV, LH of the long and short sides of the peripheral skirt portion in regions outside each of central portions extending a distance SHL and a distance SVL in long and short sides of the peripheral skirt portion, respectively, the SHL and SVL being 0.9 times the lengths HL, VL, of the long and short sides of the peripheral skirt portion, respectively (see FIG.


2


A).




In this embodiment, the height H and the width W of the descending step portion


20


decrease to approximately zero at four corners of the peripheral skirt portion, but it is not essential that the height H and the width W of the descending step portion


20


decrease to approximately zero at the four corners of the peripheral skirt portion, but it is sufficient that the height H and the width W of the descending step portion


20


decrease enough to eliminate the excessive stretching of the material in the apertured portion in the corners of the shadow mask.




It is preferable that the height H0 and the width W0 of the descending step portion


20


at centerlines LV, LH of the long and short sides are in a range of 1 mm to 2 mm and in a range of 1 mm to 3 mm, respectively.




In this embodiment the shadow mask is identical in structure with the embodiment described in connection with

FIGS. 2A

to


2


C,


3


A and


3


B, except for the structure of the descending step portion


20


.




In the above embodiment, both the height H and the width W of the descending step portion


20


decrease progressively with distance from the centerlines LV, LH of the long and short sides of the peripheral skirt portion in the regions outside each of central portions extending the distance SHL and the distance SVL in the long and short sides of the peripheral skirt portion, respectively. But, depending upon the size of the shadow mask, both the height H and the width W of the descending step portion


20


need not decrease progressively with distance from the centerlines LV, LH of the long and short sides of the peripheral skirt portion in the regions outside each of central portions extending the distance SHL and the distance SVL in the long and short sides of the peripheral skirt portion, respectively, and only one of the height H and the width W of the descending step portion


20


may decrease progressively with distance from the centerlines LV, LH of the long and short sides of the peripheral skirt portion in the regions outside each of central portions extending the distance SHL and the distance SVL in the long and short sides of the peripheral skirt, respectively.




In the above embodiments, the shadow mask


5


is explained by using an example of a color cathode ray tube having the panel portion


1


of a 19-inch outside diagonal, but the shadow mask


5


of the present invention is not limited to the use in the color cathode ray tube having the panel portion


1


of a 19-inch outside diagonal, and can be used in color cathode ray tubes having the panel portion


1


of outside diagonals other than 19 inches.




In the above embodiments, the shadow mask


5


is used in a color cathode ray tube having the panel portion


1


of a 19-inch outside diagonal, and the specific dimensions of the beads, the specific number of the beads, the specific spacings between two adjacent beads in the long and short sides of the skirt portion


16


and the specific dimensions of the descending step portion


20


are explained, but the dimensions of the beads, the number of the beads, the spacings between two adjacent beads in the long and short sides of the skirt portion and the dimensions of the descending step portion in the present invention are not limited to the above-indicated specific values, but they can be selected properly for each application, even when the present invention is applied to a 19-inch diagonal color cathode ray tube, but they can be selected properly for each application. When the present invention is applied to a color cathode ray tube of a diagonal other than 19 inches, naturally the dimensions of the beads, the number of the beads, the spacings between two adjacent beads in the long and short sides of the skirt portion and the dimensions of the descending step portion in the present invention can be selected properly for each type of color cathode ray tubes.




In the above embodiments, the beads


17




1


to


17




16


formed in the long sides of the skirt portion


16


and the beads


18




1


to


18




12


formed in the short sides of the skirt portion


16


protrude inward in an arcuate cross-sectional configuration as shown in

FIG. 2C

, but the cross-sectional configuration of the beads formed in the long and short sides of the skirt portion in accordance with the present invention is not limited to an arcuate one, it can be a triangular or rectangular one as shown in

FIGS. 2D and 2E

to obtain the advantages such as explained above.




In the present invention, since there is formed a plurality of beads extending in a direction of the height of the skirt portion and protruding inward in an arcuate, triangular or rectangular cross-sectional configuration in each of four sides of the skirt portion, in the operation of press-forming a mask blank into a unitary shadow mask structure, the beads weaken the force of the bent skirt portion to revert to its original form such that the maximum size of curls occurring in the skirt portion is reduced.




In the present invention, since there is also formed the descending step portion extending along the entire outer edge of the imperforate portion, even if great stress is caused to the skirt portion after the skirt portion has been fitted into the support frame and the great stress is transmitted to the imperforate portion from the skirt portion, the descending step portion relieves or blocks this great stress such that the great stress is not transmitted to the apertured portion and the curvature of the apertured portion is prevented from being deformed.




In the present invention, since the curvature of the apertured portion is not deformed, the color selecting property of the shadow mask is not degraded and the mechanical strength of the shadow mask is improved.



Claims
  • 1. A color cathode ray tube comprisingan evacuated envelope comprising a panel portion, a neck portion, and a funnel portion for connecting said panel portion and said neck portion, a generally rectangular shadow mask having a curved apertured portion having a multiplicity of electron-transmissive apertures, a curved imperforate portion surrounding and integral with said apertured portion and a peripheral skirt portion, a generally rectangular support frame for suspending said shadow mask by spot welding said peripheral skirt portion thereto, within said panel portion, a phosphor screen formed on an inner surface of said panel portion, an electron gun housed in said neck portion, and a deflection yoke mounted around a vicinity of a transitional region between said funnel portion and said neck portion for scanning electron beams from said electron gun on said phosphor screen, wherein said shadow mask is provided with a descending step portion extending along an entire outer edge of said imperforate portion, said peripheral skirt portion is formed by being bent back from an entire outer edge of said descending step portion, and said peripheral skirt portion is provided with a plurality of beads extending in a direction of a height of said peripheral skirt portion and protruding inward in each side of said peripheral skirt portion.
  • 2. A color cathode ray tube comprisingan evacuated envelope comprising a panel portion, a neck portion, and a funnel portion for connecting said panel portion and said neck portion, a generally rectangular shadow mask having a curved apertured portion having a multiplicity of electron-transmissive apertures, a curved imperforate portion surrounding and integral with said apertured portion and a peripheral skirt portion, a generally rectangular support frame for suspending said shadow mask by spot welding said peripheral skirt portion thereto, within said panel portion, a phosphor screen formed on an inner surface of said panel portion, an electron gun housed in said neck portion, and a deflection yoke mounted around a vicinity of a transitional region between said funnel portion and said neck portion for scanning electron beams from said electron gun on said phosphor screen, wherein said shadow mask is provided with a descending step portion extending along an entire outer edge of said imperforate portion, said peripheral skirt portion is formed by being bent back from an entire outer edge of said descending step portion, said peripheral skirt portion is provided with a plurality of beads extending in a direction of a height of said peripheral skirt portion and protruding inward in each side of said peripheral skirt portion, and one of following three conditions (a)-(c) is satisfied in regions outside each of central portions extending a distance SHL and a distance SVL in long and short sides of said peripheral skirt portion, respectively, (a) a height H of said descending step portion is in a range of 30% to 50% of H0, (b) a width W of said descending step portion is in a range of 65% to 80% of W0, and (c) a height H and a width W of said descending step portion are in a range of 30% to 50% of H0 and in a range of 65% to 80% of W0, respectively, said SHL and SVL being 0.85 times lengths of said long and short sides of said peripheral skirt portion, respectively, said H0 and said W0 being a height H and a width W of said descending step portion at centerlines of said long and short sides of said peripheral skirt portion, respectively.
  • 3. A color cathode ray tube comprisingan evacuated envelope comprising a panel portion, a neck portion, and a funnel portion for connecting said panel portion and said neck portion, a generally rectangular shadow mask having a curved apertured portion having a multiplicity of electron-transmissive apertures, a curved imperforate portion surrounding and integral with said apertured portion and a peripheral skirt portion, a generally rectangular support frame for suspending said shadow mask by spot welding said peripheral skirt portion thereto, within said panel portion, a phosphor screen formed on an inner surface of said panel portion, an electron gun housed in said neck portion, and a deflection yoke mounted around a vicinity of a transitional region between said funnel portion and said neck portion for scanning electron beams from said electron gun on said phosphor screen, wherein said shadow mask is provided with a descending step portion extending along an outer edge of said curved imperforate portion, said peripheral skirt portion is formed by being bent back from an outer edge of said descending step portion, said peripheral skirt portion is provided with a plurality of beads extending in a direction of a height of said peripheral skirt portion and protruding inward in each side of said peripheral skirt portion, and at least one of a height H and a width W of said descending step portion decreases progressively with distance from centerlines of long and short sides of said peripheral skirt portion in regions outside each of central portions extending a distance SHL and a distance SVL in long and short sides of said peripheral skirt portion, respectively, said SHL and SVL being 0.9 times lengths of said long and short sides of said peripheral skirt portion, respectively.
  • 4. A color cathode ray tube according to claim 1, wherein a height and a width of said descending step portion are in a range of 1 mm to 2 mm and in a range of 1 mm to 3 mm, respectively.
  • 5. A color cathode ray tube according to claim 1, wherein a cross section of said plurality of beads is 4 mm to 12 mm in width and 0.2 mm to 1.5 mm in depth.
  • 6. A color cathode ray tube according to claim 1, wherein said plurality of beads are arranged symmetrically with respect to centerlines of long and short sides of said peripheral skirt portion, respectively, and are approximately evenly spaced on each side of said centerlines.
  • 7. A color cathode ray tube according to claim 1, wherein said plurality of beads protrude in one of arcuate, triangular and rectangular cross sections.
  • 8. A color cathode ray tube according to claim 2, wherein said H0 and said W0 are in a range of 1 mm to 2 mm and in a range of 1 mm to 3 mm, respectively.
  • 9. A color cathode ray tube according to claim 2, wherein a cross section of said plurality of beads is 4 mm to 12 mm in width and 0.2 mm to 1.5 mm in depth.
  • 10. A color cathode ray tube according to claim 2, wherein said plurality of beads are arranged symmetrically with respect to said centerlines of said long and short sides of said peripheral skirt portion, respectively, and are approximately evenly spaced on each side of said centerlines.
  • 11. A color cathode ray tube according to claim 2, wherein said plurality of beads protrude in one of arcuate, triangular and rectangular cross-sections.
  • 12. A color cathode ray tube according to claim 3, wherein a height H and a width W of said descending step portion at said centerlines of said long and short sides of said peripheral skirt portion, respectively, are in a range of 1 mm to 2 mm and in a range of 1 mm to 3 mm, respectively.
  • 13. A color cathode ray tube according to claim 3, wherein a cross section of said plurality of beads is 4 mm to 12 mm in width and 0.2 mm to 1.5 mm in depth.
  • 14. A color cathode ray tube according to claim 3, wherein said plurality of beads are arranged symmetrically with respect to said centerlines of said long and short sides of said peripheral skirt portion, respectively, and are approximately evenly spaced on each side of said centerlines.
  • 15. A color cathode ray tube according to claim 3, wherein said plurality of beads protrude in one of arcuate, triangular and rectangular cross sections.
  • 16. A color cathode ray tube according to claim 3, wherein said height H of said descending step portion decreases to approximately zero at four corners of said peripheral skirt portion.
  • 17. A color cathode ray tube according to claim 3, wherein said width W of said descending step portion decreases to approximately zero at four corners of said peripheral skirt portion.
  • 18. A color cathode ray tube according to claim 3, wherein said height H and said width W of said descending step portion decrease to approximately zero at four corners of said peripheral skirt portion.
  • 19. A color cathode ray tube according to claim 1, wherein said plurality of beads are distributed over each of central portions extending a distance BHL and a distance BVL in long and short sides of said skirt portion, respectively,said BHL and BVL satisfying following inequalities: 0.5HL≦BHL≦0.85HL, 0.5VL≦BVL≦0.85VL, and said HL and VL being longitudinal lengths of said long and short sides of said skirt portion, respectively.
  • 20. A color cathode ray tube according to claim 2, wherein said plurality of beads are distributed over each of central portions extending a distance BHL and a distance BVL in said long and short sides of said skirt portion, respectively,said BHL and BVL satisfying following inequalities: 0.5HL≦BHL≦0.85HL, 0.5VL≦BVL≦0.85VL., and said HL and VL being longitudinal lengths of said long and short sides of said skirt portion, respectively.
  • 21. A color cathode ray tube according to claim 3, wherein said plurality of beads are distributed over each of central portions extending a distance BHL and a distance BVL in said long and short sides of said skirt portion, respectively,said BHL and BVL satisfying following inequalities: 0.5HL≦BHL≦0.85HL, 0.5VL≦BVL≦0.85VL, and said HL and VL being longitudinal lengths of said long and short sides of said skirt portion, respectively.
  • 22. A color cathode ray tube according to claim 1, wherein a pair of slits are disposed one on each side of a centerline of each of long and short sides of said skirt portion.
  • 23. A color cathode ray tube according to claim 2, wherein a pair of slits are disposed one on each side of a centerline of each of said long and short sides of said skirt portion.
  • 24. A color cathode ray tube according to claim 3, wherein a pair of slits are disposed one on each side of a centerline of each of said long and short sides of said skirt portion.
Priority Claims (1)
Number Date Country Kind
10-180945 Jun 1998 JP
US Referenced Citations (4)
Number Name Date Kind
3585431 Long Jun 1971
3855493 Snook et al. Dec 1974
4146816 Morrell Mar 1979
4437036 Ragland, Jr. Mar 1984
Foreign Referenced Citations (11)
Number Date Country
26 02 240 A1 Jul 1977 DE
0 881 658 A1 Dec 1998 EP
0 895 271 A1 Feb 1999 EP
2 134 436 Apr 1972 FR
2 238 423 May 1991 GB
60-40941 Mar 1985 JP
3-76352 Jul 1991 JP
4-95334 Mar 1992 JP
6-044919 Feb 1994 JP
6-349415 Dec 1994 JP
8-96726 Apr 1996 JP