This application claims priority to Japanese Patent Application No. 2011-182781 filed on Aug. 24, 2011 the disclosure of which, including the specification, drawings and abstract, is incorporated herein by reference in its entirety.
1. Field of the Invention
The invention relates to a shaft coupling structure and a steering system that has the shaft coupling structure.
2. Discussion of Background
In a steering system for a vehicle, steering force applied to a steering wheel is transmitted to a rack shaft via a rack-and-pinion mechanism. A steering shaft is formed of a column shaft, an upper universal joint, an intermediate shaft, a lower universal joint, and a pinion shaft. The column shaft is connected to the steering wheel that is a steering member.
Japanese Patent Application Publication No. 2010-084893 (JP 2010-084893 A) describes a structure in which a lower universal joint and a pinion shaft are connected to each other by fitting an upper end portion of the pinion shaft to a lower joint yoke of the lower universal joint.
In a steering system described in JP 2010-084893 A, the upper end portion of the pinion shaft is positioned with respect to the lower joint yoke of the lower universal joint in the circumferential direction of the shaft. The lower joint yoke of the lower universal joint has a connection hole, an inner wall that defines the connection hole and that has serrations, and a positioning slit. The pinion shaft has serrations and a protrusion at its upper end portion. The protrusion is inserted into the slit of the lower universal joint.
The lower joint yoke of the lower universal joint has a through-hole through which a bolt is passed in a direction perpendicular to the shaft. In addition, the protrusion of the upper end portion of the pinion shaft has a cutout recess at a position that coincides with the position of the through-hole when the protrusion is fitted in the slit of the lower joint yoke of the lower universal joint. In a state where the upper end portion of the pinion shaft is fitted to the lower joint yoke of the lower universal joint, the bolt is inserted in the through-hole and is fixedly screwed.
In addition, as shown in
A dust cover 125 is arranged between the input shaft 113 and an upper end opening of the valve housing 116. The dust cover 125 prevents entry of dust into the valve housing 116. A guide tip 126 is attached at an upper end of the input shaft 113. The guide tip 126 serves as a positioning member for positioning the input shaft 113 with respect to a slit of a lower joint yoke of a lower universal joint. The guide tip 126 includes a guide portion 127 and a ring portion 128. The guide portion 127 is inserted into the slit. The ring portion 128 is fitted onto serrations 123 formed on an outer periphery of the upper end of the input shaft 113. A lower face of the ring portion 128 contacts the upper face of the dust cover 125. In this way, the guide tip 126 is positioned in an axial direction.
In order to facilitate mounting of the steering system in a vehicle, it is desired that the steering system should be more compact, and, particularly, the axial length of the pinion shaft 111 (input shaft 113) should be reduced. Note that not only the steering system 101 that includes the rotary valve 112 but also a steering system in which a pinion shaft 111 accommodated in a rack housing 120 is directly fitted to a lower joint yoke of a lower universal joint has a similar problem.
In addition, not only a steering system but also a coupling structure in which a shaft member that is accommodated in a housing with its one end protruding from the housing is positioned with respect to a joint yoke of a universal joint in a circumferential direction and fitted to the joint yoke has a similar problem. Therefore, there is a demand for a coupling structure that allows reduction of the axial length a shaft member.
The invention provides a coupling structure that allows reduction of the axial length of a shaft member, and a steering system that has the coupling structure.
According to a feature of an example of the invention, there is provided a guide cover that has a cover portion and a guide portion, which are formed integrally with each other, and that is fitted around a shaft member so as to be rotatable together with the shaft member. Therefore, it is possible to reduce the axial length as compared with the related art. In addition, because the number of members is reduced, it is possible to improve the efficiency of assembly.
According to another feature of an example of the invention, when the shaft member is fitted to a tubular member, an open end portion of the tubular member contacts a step formed on an upper face of the guide cover to thereby make it possible to position the tubular member with respect to the shaft member. Therefore, it is possible to easily fit the shaft member and the tubular member to each other.
According to a further feature of an example of the invention, because the guide cover is press-fitted to the shaft member, it is possible to prevent separation of the guide cover and the shaft member from each other, and it is possible to increase sealing performance.
The foregoing and further objects, features and advantages of the invention will become apparent from the following description of example embodiment with reference to the accompanying drawings, wherein like numerals are used to represent like elements and wherein:
Hereinafter, embodiments of the invention will be described with reference to the accompanying drawings.
As shown in
As shown in
A seal member 22 is provided inside the upper end side portion of the valve housing 16. The seal member 22 prevents entry of water into the valve housing 16. In addition, a guide cover 30 is attached to an upper end opening portion of the valve housing 16. The guide cover 30 prevents entry of dust into the valve housing 16, and positions the input shaft 13 with respect to the lower universal joint 3 in the circumferential direction.
As shown in
As shown in
The guide portion 31 protrudes outward in the radial direction of the input shaft 13, extends in the axial direction of the input shaft 13, and contacts the outer periphery of the input shaft 13. The guide portion 31 has a cutout recess 33. The bolt 9 is passed through the cutout recess 33. In addition, the cover portion 32 has a stepped portion 34 at its upper face. The lower face of the lower joint yoke 5 contacts the stepped portion 34 when the lower joint yoke 5 is connected to the input shaft 13. It is possible to position the lower joint yoke 5 in the axial direction with respect to the input shaft 13 by bringing the lower face of the lower joint yoke 5 into contact with the stepped portion 34.
Next, assembly of the thus configured steering system 1 will be described. As shown in
In addition, the lower end of the lower joint yoke 5 contacts the upper face of the stepped portion 34 of the guide cover 30 to thereby position the input shaft 13 in the axial direction with respect to the lower joint yoke 5. Then, the bolt 9 is passed through the tapped hole 8 and the cutout recess 33 of the guide portion 31 and fixedly screwed. In this way, the input shaft 13 and the lower joint yoke 5, and, consequently, the input shaft 13 and the lower universal joint 3, are connected to each other so as to be rotatable together with each other.
In the present embodiment, the guide cover 30 has the cover portion 32 that functions as a cover that covers the upper end opening portion of the valve housing 16 and the guide portion 31 that is inserted into the slit 7 of the lower joint yoke 5 is attached to the upper end of the input shaft 13. The cover portion 32 and the guide portion 31 are formed integrally with each other. In addition, the inner wall of the cover portion 32, which defines the center hole, has the serrations 35 that are engaged with the serrations 23 of the input shaft 13. With this configuration, the cover portion 32 is attached to the input shaft 13 so as to be rotatable together with the input shaft 13. Therefore, the function of the ring portion that is fitted to the shaft in the related art is imparted to the cover portion 32 and then the ring portion is omitted. Therefore, it is possible to reduce the axial length of the input shaft 13.
According to the above-described embodiment, the following advantageous effects are obtained.
(1) There is provided the guide cover 30 that has the cover portion 32 and the guide portion 31 formed integrally with each other and that is attached to the input shaft 13 so as to be rotatable together with the input shaft 13. Therefore, in comparison with the structure that includes two members, that is, the guide tip 126, formed of the guide portion 127 and the ring portion 128, and the dust cover 125 as in the case of the related art shown in
(2) When the input shaft 13 is fitted to the lower joint yoke 5, the base end of the lower joint yoke 5 contacts the stepped portion 34 formed on the upper face of the guide cover 30. This makes it possible to position the lower joint yoke 5 in the axial direction with respect to the input shaft 13. As a result, it is possible to easily fit the input shaft 13 and the lower joint yoke 5 to each other.
(3) Because the guide cover 30 is press-fitted to the input shaft 13, it is possible to prevent separation of the input shaft 13 and the guide cover 30 from each other, and it is possible to increase sealing performance.
Note that the above-described embodiment may be modified into the following alternatively embodiments.
In the above-described embodiment, the configuration in which the guide cover 30 is press-fitted to the input shaft 13 may be omitted.
In the above-described embodiment, if positioning is allowed to be performed separately, the stepped portion 34 may be omitted.
In the above-described embodiment, the coupling structure for coupling the lower universal joint 3 to the input shaft 13 is illustrated. However, in the case of a steering shaft in which the pinion shaft 11 is connected to the lower universal joint 3, the invention may be applied to a coupling structure for coupling the lower universal joint 3 to the pinion shaft 11.
In addition, the invention may be applied to a coupling structure for coupling an upper universal joint to an intermediate shaft.
In the above-described embodiment, the invention is applied to the coupling structure for the steering system 1. However, the invention is not limited to the steering system 1. The invention may be applied to a system that has a coupling structure for coupling a shaft to a universal joint.
Number | Date | Country | Kind |
---|---|---|---|
2011-182781 | Aug 2011 | JP | national |