The present invention relates generally to the field of power tools. More specifically, the present invention relates to hand-held power tools that include a mechanism for locking a shaft of the power tool to allow attachment of accessories to the shaft.
Hand-held power tools generally include a housing and a motor contained within the housing. The motor is configured to move a tool bit or other cutting accessory at high speeds to form cuts in a workpiece (e.g., a piece of wood, drywall, tile, etc.). For example, a hand-held rotary cutting tool such as that disclosed in U.S. Pat. Nos. 5,813,805 and 6,443,675 to Kopras et al. (the disclosures of which are incorporated by reference herein in their entirety) is configured to rotate a helical or spiral cutting tool bit that includes a sharp cutting edge wrapped in a helix around the longitudinal axis of the bit. According to this example, the tool is configured to allow the formation of cuts in a workpiece by moving the tool in a direction perpendicular to the axis of rotation of the bit (i.e., the tool is arranged normal to the workpiece surface and moved parallel to the surface of the workpiece to allow the edges of the bit to remove material from the workpiece).
To secure an accessory such as a tool bit or other cutting tool accessory to a shaft of the power tool, it is advantageous to provide a mechanism which restrains or prevents rotation of a tool shaft. Such a mechanism should be relatively simple and efficient to operate, and should continue to be useful throughout the life of the tool. For example, it may be desirable to provide a mechanism that allows a user of the power tool with one hand to stop rotation of the tool shaft while inserting a cutting accessory or the like with another hand. Known mechanisms for restricting or stopping the rotation of a power tool shaft do not realize certain advantageous features as will be described below with respect to the present invention.
It would be advantageous to provide an improved system for attaching tool bits and other accessories to a power tool. It would also be advantageous to provide a power tool having a shaft lock system that is reliable and resistant to wear with continued usage. It would be desirable to provide a power tool having any one or more of these or other advantageous features as may be apparent to those reviewing this disclosure.
An exemplary embodiment of the invention relates to a power tool that a tool shaft and a mechanism for restricting movement of the tool shaft. The mechanism includes a pin configured to engage the tool shaft to restrict movement of the tool shaft and a member provided adjacent the tool shaft and fastened to a housing of the power tool. The member includes an aperture through which the pin extends when the pin engages the tool shaft.
Another exemplary embodiment of the invention relates to a power tool that includes a rotatable shaft having an opening provided therein and a device for preventing rotation of the shaft during attachment of an accessory to the shaft. The device includes a rod configured for selective insertion into the opening to prevent rotation of the shaft and a plate having an aperture provided therein through which the pin extends during insertion of the rod into the opening. The plate is fastened to the power tool and is configured to transmit a load from the rod when a user attaches an accessory to the shaft.
Another exemplary embodiment of the invention relates to a power tool having a mechanism for preventing free rotation of a tool shaft during attachment of an accessory to the tool shaft. The power tool includes a tool shaft having an aperture extending at least partially through the tool shaft in a direction transverse to a central longitudinal axis of the tool shaft. The power tool also includes a pin configured for selective movement between a first position in which a portion of the pin is in the aperture and a second position in which the portion of the pin is not in the aperture. The power tool further includes a metal member provided adjacent the tool shaft and having an aperture through which the pin extends in the first position, the metal member secured to the power tool with at least one fastener. The tool shaft is prevented from freely rotating when the pin is in the first position and is not prevented from freely rotating when the pin is in the second position.
A hand-held power tool 100 in the form of a rotary cutting tool is shown generally in
The tool 100 includes a housing or casing 110 to which a handle 120 is attached. The housing 110 is made of an electrically insulating material such as hard plastic according to an exemplary embodiment. The housing 110 is generally cylindrical in shape, and may be formed as two or more molded pieces which are joined together to form the housing 110 in a conventional manner, such as using fasteners, an adhesive, welding, or a combination thereof.
A motor (not visible in
The motor is turned on and off by a power on/off switch 140. According to an exemplary embodiment, the switch 140 is pulled away from the housing 110 to activate the motor. The motor may be configured to operate at a single speed (e.g., a speed between approximately 15,000 and 30,000 rpm) or a number of speeds (e.g., speeds of 15,000 rpm, 20,000 rpm, and 30,000 rpm). In a case where the motor is capable of operating at multiple speeds, the switch may include multiple positions corresponding to the desired motor speed.
To set the depth of cut to be made by the tool 100, an adjustable depth guide assembly 160 may be provided. The depth guide 160 is attached to the housing 110 adjacent the location where the motor shaft emerges from the housing 110.
As shown in
The depth of cut of the power tool 100 may be set by moving an extending portion 166 of the depth guide 160 in a direction along the longitudinal axis of the tool bit 154. A locking mechanism may then be used to lock the extending portion 166 in a fixed position relative to the bracket 162 to securely fix the depth guide 160 in place. The locking mechanism may be implemented as a cam lever, as a threaded nut or a screw, or as any other suitable type of device or mechanism.
The motor of the tool 100 drives a motor shaft to which a device or mechanism 150 is coupled for securing a cutting accessory (e.g., a helical cutting tool bit or other accessory) to the motor shaft. As shown in
To secure the tool bit 154 to the motor shaft, a shank of the bit is inserted into a central aperture of the collet, after which the collet nut 152 is tightened. A shaft lock button or cap 156 is provided as part of a shaft lock mechanism (described in greater detail below with reference to
A member or element 220 in the form of a retaining plate is provided within the housing 110 according to an exemplary embodiment. The member 220 includes a hole or aperture 222 configured for receiving therethrough the pin 210 when the pin 210 is depressed and engages the aperture 172 in the shaft 170. According to an exemplary embodiment, the member 220 may be made or formed of a metal such as steel, zinc, aluminum, or bronze. According to other exemplary embodiments, the member 220 may be made or formed of a polymer, carbon fiber, composite material, or any other suitable material. The member has a thickness of approximately 1.5 millimeters and the aperture 222 has a size and shape complementary to that of the pin 210. According to other exemplary embodiments, the thickness of the member may vary to suit the load it needs to carry or transmit in a particular application.
According to an exemplary embodiment, the member 220 guides the pin 210 to aid in the alignment of the pin 210 with the aperture 172 in the shaft 170. The member 220 acts to transmit the load applied from the pin 210 to relatively strong regions of the housing 110 of the tool 100 when the shaft lock mechanism 200 is used to install or remove an accessory such as a tool bit. By using a metal material (or any other suitable material with similar properties) to form the member 220, the member 220 can better transmit the loads and has a higher yield strength than polymeric or other materials which might otherwise be used. Further, the close proximity of the member 220 to the shaft 170 acts to reduce forces applied to both the member 220 and the pin 210 when the shaft lock mechanism 200 is utilized, thus reducing the occurrence of failures or deformations of components of the tool 100. For example, according to an exemplary embodiment, the distance between the rotational axis of the shaft 170 and the center of the member 220 is approximately 10.5 millimeters (e.g., 10.62 millimeters according to a particular exemplary embodiment).
According to an exemplary embodiment, the housing 110 of the tool 100 is molded or formed in two clam shell halves. As shown in
According to an exemplary embodiment, the member 220 includes an aperture or hole 224 for fastening or securing the member 220 to the housing 110. As shown in
In operation, the member 220 is positioned within the clam shell 112 between a number of ribs (shown in
An end 226 of the member 220 may be tapered or chamfered to aid in assembly of the shaft lock mechanism 200. The tapered end 226 may be provided below a feature 121 (
As shown in
As shown in
While
Apertures or holes 324 and 326 may be provided in the feet 336 and 338 for securing the member 320 within a tool housing. Similar to the member 220, the member 320 includes an aperture or hole 322 through which the pin 210 of the shaft lock mechanism 200 may extend to engage the aperture 172 provided in the shaft 170. An optional aperture or hole 328 may also be provided in the flat or planar portion 330 for receiving therein a feature 329 in the housing 110 (e.g., a boss) to aid in positioning the member 320 within the housing 110.
As shown in
The apertures 324 and 326 provided in the feet 336 and 338, respectively, are configured for alignment with the features 114 and 116 provided in the clam shell 112. According to an exemplary embodiment, the apertures 324, 326, and 338 provided in the member 320 have a generally oblong or oval shape to allow flexibility in positioning the member 320 within the housing 110.
As shown in
One advantageous feature of providing a member 320 such as that shown in
According to an exemplary embodiment, the member 320 is intended to be configured such that lateral forces are transmitted through the flat or planar portion 330 into the legs 332, 334 and into ribs extending from the features 114, 116 provided in the housing 110. In this manner, lateral forces may be transmitted into a relatively strong structural area of the housing 110.
It is important to note that the construction and arrangement of the power tool and shaft lock mechanism as shown in the various exemplary embodiments is illustrative only. Although only a few embodiments of the present inventions have been described in detail in this disclosure, those skilled in the art who review this disclosure will readily appreciate that many modifications are possible (e.g., variations in sizes, dimensions, structures, shapes and proportions of the various elements, values of parameters, mounting arrangements, use of materials, colors, orientations, etc.) without materially departing from the novel teachings and advantages of the subject matter recited in the claims. For example, elements shown as integrally formed may be constructed of multiple parts or elements, the position of elements may be reversed or otherwise varied, and the nature or number of discrete elements or positions may be altered or varied. Accordingly, all such modifications are intended to be included within the scope of the present invention as defined in the appended claims. The order or sequence of any process or method steps may be varied or re-sequenced according to alternative embodiments. Other substitutions, modifications, changes and omissions may be made in the design, operating conditions and arrangement of the exemplary embodiments without departing from the scope of the present inventions as expressed in the appended claims.