The disclosure relates to the field of communication device technologies, and more particularly, to a rotating shaft mechanism for folding an electronic device, a housing assembly, and an electronic device.
In the field of communication device technologies, for many foldable electronic devices, left and right housings of the electronic device are in a shaky state during the process of folding and unfolding, resulting in an unsatisfactory usage experience.
Embodiments of the disclosure are to provide a rotating shaft mechanism for folding an electronic device, a housing assembly for folding an electronic device, and an electronic device to solve.
The disclosure provides a housing assembly for folding an electronic device, the housing assembly includes the aforementioned rotating shaft mechanism.
The disclosure provides an electronic device, the electronic device includes the aforementioned housing assembly.
According to some embodiments of the disclosure, the rotating shaft mechanism for folding the electronic device includes a supporting frame, a rotating member, and a resilient piece configured to apply a damping force to the rotating member. An end of the rotating member is rotatably disposed on the supporting frame, and the resilient piece is disposed on the supporting frame.
According to some embodiments of the disclosure, the housing assembly for folding the electronic device includes a fixed shaft, two rotating shaft mechanisms for folding the electronic device as described above, a first housing, and a second housing. Both of the supporting frames of the two rotating shaft mechanisms are disposed on the fixed shaft and spaced apart from each other. The first housing is fixedly connected to an end of the rotating member of one of the two rotating shaft mechanisms that is far away from the corresponding supporting frame. The second housing is fixedly connected to an end of the rotating member of the other one of the two rotating shaft mechanisms that is far away from the corresponding supporting frame, and the first housing and the second housing are arranged to be stacked when the electronic device is in a folded state.
According to some embodiments of the disclosure, the electronic device includes the above housing assembly for folding the electronic device and a display screen, a portion of the display screen is disposed on the first housing, and another portion of the display screen is disposed on the second housing.
The above and/or additional aspects and advantages of the disclosure will become apparent and more readily appreciated from the following descriptions of the embodiments in conjunction with the drawings.
Hereinafter, the embodiments of the disclosure are described in detail. Examples of the embodiments are shown in the drawings, where the same or similar reference signs represent the same or similar elements or elements having the same or similar functions. The embodiments described hereinafter with reference to the drawings are exemplary, which are only intended to explain the disclosure and should not be construed as a limitation to the disclosure.
Hereinafter, a rotating shaft mechanism 100 for folding an electronic device, a housing assembly 1000 for folding an electronic device, and an electronic device according to some embodiments of the disclosure are described with reference to the drawings. The housing assembly 1000 may include the rotating shaft mechanism 100. The rotating shaft mechanism 100 may enable the electronic device with an unfolding function and a folding function, for example, the electronic device may be unfolded during use to facilitate the use of the electronic device, and the electronic device may be folded after use to facilitate the storage of the electronic device.
As illustrated in
Specifically, an end of the rotating member 130 is rotatably disposed on the supporting frame 170, the resilient piece 150 is disposed on the supporting frame 170. During the rotation of the rotating member 130, the resilient piece 150 may apply the damping force to the rotating member 130, the damping force may hinder the rotation of the rotating member 130, thereby enabling a stabilized rotation process of the rotating member 130.
The electronic device may include a fixed shaft 110, a first housing 120, and a second housing 140. Both of the first housing 120 and the second housing 140 are rotatably disposed on the fixed shaft 110. When the electronic device is in a folded state, the first housing 120 and the second housing 140 are stacked, that is, an angle (also referred to as a second angle) between the first housing 120 and the second housing 140 may be 0°. and when the first housing 120 and the second housing 140 are in an unfolded state, an angle (also referred to as a first angle) between the first housing 120 and the second housing 140 may be 180°. When the rotating shaft mechanism 100 is applied to an electronic device, the electronic device may be provided with two rotating shaft mechanisms 100. Specifically, the first housing 120 may be fixedly connected to an end of the rotating member 130 of one rotating shaft mechanism 100 that is far away from the corresponding supporting frame 170, the second housing 140 may be fixedly connected to an end of the rotating member 130 of the other rotating shaft mechanism 100 that is far away from the corresponding supporting frame 170, and the supporting frame 170 may be fixed on the fixed shaft 110.
Specifically, when the first housing 120 is manually rotated in a direction towards the second housing 140, the first housing 120 may drive the rotating member 130 to rotate relative to the fixed shaft 110, thereby folding the first housing 120 towards the second housing 140. At this time, the first housing 120 and the second housing 140 are arranged to be stacked. When the first housing 120 is manually rotated in a direction far away from the second housing 140, the first housing 120 may drive the rotating member 130 to rotate relative to the fixed shaft 110, thereby unfolding the first housing 120 and the second housing 140. At this time, the first housing 120 and the second housing 140 are located in the same plane, and the first housing 120 is rotated to a position where the angle between the first housing 120 and the second housing 140 is 180°. During the rotation of the rotating member 130, the resilient piece 150 may apply the damping force to the rotating member 130 to hinder the rotation of the rotating member 130, so that the rotation process of the rotating member 130 may be more stable, thereby enabling the first housing 120 to move towards or far away from the second housing 140 smoothly. In this way, the user comfort can be enhanced.
In the related art, the left and right housings of many foldable electronic devices are in the shaky state during the process of folding and unfolding the electronic device, resulting in an unsatisfactory usage experience. The rotating shaft mechanism 100 according to the disclosure is provided with the resilient piece 150, the resilient piece 150 is configured to apply the damping force to the rotating member 130, so that the rotation process of the rotating member 130 may be more stable. By applying the rotating shaft mechanism 100 to the electronic device, the electronic device is enabled to move smoothly during an unfolding process or a folding process, and thus the user comfort can be enhanced.
As illustrated in
As illustrated in
As illustrated in
As illustrated in
As illustrated in
In this way, when the electronic device is required to be folded or unfolded, the rotating member 130 rotates relative to the supporting frame 170, the first gear 131 is engaged with the second gear 161, so that the second gear 161 is enabled to rotate relative to the supporting frame 170 to drive the rotation of the first locking wheel 162. Since the resilient piece 150 busts against an outer peripheral wall of the first locking wheel 162, there is friction between the resilient piece 150 and the first locking wheel 162, so that the first locking wheel 162 is subjected to a damping force which hinders the rotation of the first locking wheel 162, and the damping force is transmitted, by the first gear 131, to the first rotating member 130 through the second gear 161 and the first gear 131. As such, the first rotating member 130 can be stable in the rotation process.
Referring to
Referring to
It can be understood that, as illustrated in
Similarly, as illustrated in
As illustrated in
Optionally, there are multiple limiting grooves 1623 spaced apart from one another along the circumferential direction of the locking wheel 162. As such, the rotating shaft mechanism 100 may be limited to be located at various preset positions between the unfolded state and the folded state, so as to meet the user's usage requirements. In other words, the angle between the first housing 120 and the second housing 140 may be limited to various preset degrees.
As illustrated in
Specifically, a reference diameter of the second gear 131 may be denoted as d1, a reference diameter of the second gear 161 may be denoted as d2, and the d1 and the d2 meets the expression: d1>d2. A rotation speed of the first gear 131 may be denoted as n1, a rotation speed of the second gear 161 may be denoted as n2, and since the first gear 131 is engaged with the second gear 161, it is available to get n1<n2 according to the equation n1/n2=d2/d1. As such, the second gear 161 may magnify the angle of movement of the rotating member 130, so that a large area of the outer peripheral wall of the locking wheel 162 is enabled to slide relative to the resilient piece 150, and thus the locking wheel 162 has enough space to dispose the locking groove 1623 and the damping part 1624.
Furthermore, the d1 and the d2 further meet the expression: d1/d2=2. In this way, the second gear 161 may magnify the angle of movement of the rotating member 130 by 2 times. For example, when the rotating member 130 rotates by 90°, the second gear 161 may rotate by 180°, so that half of the outer peripheral wall surface of the locking wheel 162 is enabled to slide relative to the resilient piece 150. As such, the locking wheel 162 has enough space to dispose the locking groove 1623 and the damping part 1624.
As illustrated in
Specifically, the two rotating shaft mechanism 100 may be spaced apart from each other along an axial direction of the fixed shaft 110, or may be alternatively spaced apart from each other along a direction perpendicular to the axial direction of the fixed shaft 110. The disclosure is not limited to these examples.
Specifically, the supporting frame 170 may reliably support the rotating member 130, the transmission member 160 and the resilient piece 150. After the rotating member 130, the transmission member 160 and the resilient piece 150 are mounted on the bracket 170, the above components are mounted on the fixed shaft 110 as a whole, which can facilitate the mounting of the rotating member 130, the transmission member 160 and the resilient piece 150. Optionally, the two rotating shaft mechanism 100 may share one supporting frame 170, that is, the rotating members 130, the transmission members 160, and the resilient pieces 150 of the two rotating shaft mechanism 100 are all mounted on the one supporting frame 170.
Specifically, when the first housing 120 is manually rotated in a direction towards the second housing 140, the first housing 120 may drive the rotating member 130 to rotate relative to the fixed shaft 110, thereby folding the first housing 120 towards the second housing 140. At this time, the first housing 120 and the second housing 140 are arranged to be stacked. When the first housing 120 is manually rotated in a direction far away from the second housing 140, the first housing 120 may drive the rotating member 130 to rotate relative to the fixed shaft 110, thereby unfolding the first housing 120 and the second housing 140. At this time, the first housing 120 and the second housing 140 are located in the same plane, and the first housing 120 is rotated to a position where the angle between the first housing 120 and the second housing 140 is 180°. During the rotation of the rotating member 130, the resilient piece 150 may apply the damping force to the rotating member 130 to hinder the rotation of the rotating member 130, so that the rotation process of the rotating member 130 may be more stable, thereby enabling the first housing 120 to move towards or far away from the second housing 140 smoothly. In this way, the user comfort can be enhanced.
Regarding the housing assembly 1000 according to the disclosure, by providing the resilient piece 150, the resilient piece 150 is configured to apply the damping force to the rotating member 130, so that the rotating member 130 can rotate smoothly. In this way, by the application of the rotating shaft mechanism 100 to the housing assembly 1000, the electronic device is enabled to move steadily during an unfolding process or a folding process, and thus the user comfort can be enhanced.
Furthermore, as illustrated in
When the electronic device is required to be folded or unfolded, the rotating member 130 is manually rotated in a direction towards or far away from the second housing 140, the first housing 120 may drive the rotating member 130 to rotate relative to the fixed shaft 110, the second gear 161 is enabled, through the engagement between the first gear 131 and the second gear 161, to rotate relative to the supporting frame 170, so as to drive the rotation of the first locking wheel 162. Since the resilient piece 150 abuts against an outer peripheral wall of the first locking wheel 162, there is friction between the resilient piece 150 and the first locking wheel 162, so that the first locking wheel 162 is subjected to a damping force which hinders the rotation of the first locking wheel 162, and the damping force is transmitted, by the first gear 131, to the first rotating member 130 through the second gear 161 and the first gear 131. As such, the first rotating member 130 can be stable in the rotation process.
Furthermore, referring to
Similarly, the matching between the second locking groove 1622 and the protrusion 151 may lock the locking wheel 162. When an external force applied to the locking wheel 162 is not enough to make the second locking groove 1621 pass over the protrusion 151, the locking wheel 162 is in the non-rotating state, and thus the second gear 161, the first gear 131 and the rotating member 130 are in the non-rotating states. At this time, the electronic device may maintain in the folded state stably, which facilitates the user to storage the electronic device. When the user wants to unfold the electronic device, the user may apply an external force far away from the second housing 140 to the first housing 120. The external force is transmitted to the locking wheel 162 through the first gear 131 and the second gear 161, thereby enabling the second locking groove 1622 to pass over the protrusion 151. As such, the first housing 120 is enabled to rotate, and when the first housing 120 rotates to a position where the angle between the first housing 120 and the second housing 140 is 180°, the first locking groove 1621 is matched with the protrusion 151.
As illustrated in
As illustrated in
Regarding the electronic device according to the disclosure, by providing the resilient piece 150, the resilient piece 150 is configured to apply the damping force to the rotating member 130, so that the rotating member 130 can rotate smoothly. In this way, by applying the rotating shaft mechanism 100 in the electronic device, the electronic device is enabled to move steadily during an unfolding process or a folding process, and thus the operating feel of the user can be enhanced.
For example, the electronic device may be any one of various mobile or portable computer system devices which are able to realize wireless communication. Specifically, Specifically, the electronic device may be a mobile phone or a smart phone (e.g., a phone based on iPhone™ or Android™), a portable game device (e.g., Nintendo DS™, PlayStation Portable™, Gameboy Advance™, iPhone™), a laptop computer, a personal digital assistant (PDA), a portable internet terminal device, a music player and a storage device or other handset device (e.g., a watch, an in-ear earphone, a pendant, a headphone, etc.). The electronic device may also be other wearable devices (e.g., electronic glasses, electronic clothes, electronic bracelets, electronic necklaces, electronic tattoos, electronic devices, smart watches and head-mounted devices (HMD)).
The electronic device may be any one of a plurality of electronic devices including, but not limited to, a cellular phone, a smart phone, other wireless communication devices, a personal digital assistant, an audio player, other media player, a music recorder, a video recorder, a camera, other media recorder, radio, a medical equipment, a vehicle transportation equipment, a calculator, a programmable remote controller, a pager, a laptop computer, a desktop computer, a printer, a netbook computer, a personal digital assistant (PDA), a portable multimedia player (PMP), a motion picture expert group (MPEG-1 or MPEG-2) audio player 3 (MP3), a portable medical equipment, a digital camera or any combination thereof.
In some cases, the electronic device may perform various functions (e.g., playing music, showing video, storing pictures and transmitting/receiving telephone calls). If desired, the electronic device may be a cell phone, a media player, other handset devices, a wrist watch device, a pendant device, an earpiece device or other compact portable devices.
In the description of the specification, the description with reference to the terms “one embodiment”, “some embodiments”, “illustrative embodiment”, “example”, “specific example”, or “some examples”, and the like, means that a specific feature, structure, material, or characteristic described in connection with the embodiment or example is included in at least one embodiment or example of the disclosure. Thus, the illustrative descriptions of the terms throughout this specification are not necessarily referring to the same embodiment or example of the disclosure. Furthermore, the specific features, structures, materials, or characteristics may be combined in any suitable manner in one or more embodiments or examples.
Although embodiments of disclosure have been illustrated and described above, it may be understood by those skilled in the art that, changes, modifications, replacements, and alternatives can be made to these embodiments without departing from the principle and purpose of the present application, and the scope of the present application is limited by the claims and equivalents thereof.
Number | Date | Country | Kind |
---|---|---|---|
202010448130.7 | May 2020 | CN | national |
This application is a continuation of International Application No. PCT/CN2021/085654, filed Apr. 6, 2021, which claims priority to Chinese Patent Application No. 202010448130.7, filed May 25, 2020, the entire disclosures of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
6191937 | Bang | Feb 2001 | B1 |
6694570 | Chen | Feb 2004 | B2 |
6862779 | Lu | Mar 2005 | B1 |
6886221 | Minami | May 2005 | B2 |
7114218 | Lin | Oct 2006 | B1 |
7430786 | Jian | Oct 2008 | B1 |
7555119 | Yang | Jun 2009 | B2 |
7644473 | Chen | Jan 2010 | B2 |
7765644 | Ueyama | Aug 2010 | B2 |
7907415 | Ueyama | Mar 2011 | B2 |
8074322 | Wang | Dec 2011 | B2 |
8104144 | Wang | Jan 2012 | B2 |
8151415 | Wang | Apr 2012 | B2 |
8205301 | Wang | Jun 2012 | B2 |
8266834 | Chen | Sep 2012 | B2 |
8296905 | Zhang | Oct 2012 | B2 |
8302260 | Chen | Nov 2012 | B2 |
8474101 | Wang | Jul 2013 | B2 |
8782853 | Ge | Jul 2014 | B2 |
9001526 | Sip | Apr 2015 | B2 |
9547341 | Aono | Jan 2017 | B2 |
9612626 | Onda | Apr 2017 | B2 |
9740240 | Matsumoto | Aug 2017 | B1 |
9976326 | Huang | May 2018 | B2 |
10152094 | Holung | Dec 2018 | B1 |
10876337 | Lin | Dec 2020 | B2 |
11726530 | Kang | Aug 2023 | B2 |
11797058 | Lin | Oct 2023 | B2 |
20050241108 | Yang | Nov 2005 | A1 |
20090189048 | Gan | Jul 2009 | A1 |
20100226089 | Wang | Sep 2010 | A1 |
20220377920 | Zheng | Nov 2022 | A1 |
Number | Date | Country |
---|---|---|
202926863 | May 2013 | CN |
105468091 | Apr 2016 | CN |
105979032 | Sep 2016 | CN |
207051771 | Feb 2018 | CN |
108965500 | Dec 2018 | CN |
109270987 | Jan 2019 | CN |
210218394 | Mar 2020 | CN |
111147630 | May 2020 | CN |
111147637 | May 2020 | CN |
2013104461 | May 2013 | JP |
Entry |
---|
EPO, Extended European Search Report for EP Application No. 21812953.4, Nov. 8, 2023. |
WIPO, International Search Report and Written Opinion for PCT/CN2021/085654, Jun. 24, 2021. |
CNIPA, First Office Action for CN Application No. 202010448130.7, Mar. 28, 2022. |
CNIPA, Notification to Grant Patent Right for Invention for CN Application No. 202010448130.7, Aug. 3, 2022. |
Number | Date | Country | |
---|---|---|---|
20230077824 A1 | Mar 2023 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/CN2021/085654 | Apr 2021 | WO |
Child | 18057034 | US |