Shafts with pressure relief in cryotherapeutic catheters and associated devices, systems, and methods

Information

  • Patent Grant
  • 9872718
  • Patent Number
    9,872,718
  • Date Filed
    Monday, December 14, 2015
    9 years ago
  • Date Issued
    Tuesday, January 23, 2018
    6 years ago
Abstract
Cryotherapeutic systems with features that can facilitate pressure relief in the event of exhaust-passage blockage and associated devices, systems, and methods are disclosed herein. A cryotherapeutic system configured in accordance with a particular embodiment can include an elongated shaft having a distal portion and a pressure-relief portion proximal to the distal portion. The cryotherapeutic system can further include a supply lumen, an exhaust passage, and a balloon configured to receive refrigerant from the supply lumen and to exhaust refrigerant to the exhaust passage. The pressure-relief portion can be configured to release refrigerant from the exhaust passage when a pressure of refrigerant in the exhaust passage exceeds a threshold pressure less than a pressure rating of the balloon. The pressure-relief portion, for example, can include a rupture element configured to rupture at about the threshold pressure.
Description
TECHNICAL FIELD

The present technology relates generally to cryotherapeutic devices (e.g., cryotherapeutic catheters including balloons configured to expand within the vasculature of a patient). In particular, several embodiments are directed to shafts with pressure relief in cryotherapeutic catheters and associated devices, systems, and methods.


BACKGROUND

Cryotherapy can be a useful treatment modality in a wide range of catheter-based interventional procedures. For example, cryotherapeutic cooling can be used to modulate nerves or affect other tissue proximate anatomical vessels and other lumens or cavities in the body. This can reduce undesirable neural activity to achieve therapeutic benefits. Catheter-based neuromodulation utilizing cryotherapy can be used, for example, to modulate nerves and thereby reduce pain, local sympathetic activity, systemic sympathetic activity, associated pathologies, and other conditions. Cryotherapy can also be used for ablating tumors, treating stenosis, and other applications. In some cryotherapeutic procedures, it can be useful to deliver cryotherapy via a balloon that can be expanded within an anatomical vessel or lumen. Such balloons can be operatively connected to extracorporeal support components (e.g., refrigerant supplies). As the applicability of cryotherapy for surgical intervention continues to expand, there is a need for innovation in the associated devices, systems, and methods (e.g., with respect to efficacy, efficiency, and/or reliability). Such innovation has the potential to further expand the role of cryotherapy as a tool for improving the health of patients.





BRIEF DESCRIPTION OF THE DRAWINGS

Many aspects of the present disclosure can be better understood with reference to the following drawings. The components in the drawings are not necessarily to scale. Instead, emphasis is placed on illustrating clearly the principles of the present technology. Furthermore, components can be shown as transparent in certain views for clarity of illustration only and not to indicate that the illustrated component is necessarily transparent.



FIG. 1 is a perspective view illustrating a cryotherapeutic system configured in accordance with an embodiment of the present technology.



FIG. 2 is a cross-sectional view of the cryotherapeutic system of FIG. 1.



FIGS. 3-6 are cross-sectional views illustrating cryotherapeutic systems configured in accordance with additional embodiments of the present technology.





DETAILED DESCRIPTION

Specific details of several embodiments of the present technology are described herein with reference to FIGS. 1-6. Generally, unless the context indicates otherwise, the terms “distal” and “proximal” within this description reference a position relative to a refrigerant source, an operator, and/or an entry point into a patient. For ease of reference, throughout this disclosure identical reference numbers are used to identify similar or analogous components or features, but the use of the same reference number does not imply that the parts should be construed to be identical. Indeed, in many examples described herein, the identically numbered parts are distinct in structure and/or function.


In cryotherapeutic procedures, it can be desirable to apply cooling with high selectivity. Reducing cooling of non-targeted structures and tissue can enhance cooling efficiency and reduce complications. Although both high-pressure refrigerants and low-temperature refrigerants are potentially useful for cryotherapy, high-pressure refrigerants can be particularly well suited for delivering intense, targeted cooling to specific locations within the body, particularly in relatively small-diameter catheters. In many cases, the cooling potential of high-pressure refrigerants can be maintained more readily during transport through the catheter than low-temperature refrigerants. For example, a suitable strong-walled conduit can be used to convey a high-pressure refrigerant from an extracorporeal source to a delivery location at a distal end of a catheter with relatively little loss of cooling potential because the cooling action occurs upon expansion of the refrigerant at the distal end of the catheter. In contrast, as a low-temperature refrigerant moves along a catheter, it can be difficult to prevent the low-temperature refrigerant from absorbing heat from surrounding structures and tissue. Thermal insulation can be used to control such heat transfer to some extent, but adequate thermal insulation can be excessively bulky for use in modern, small-diameter catheters.


While advantageous in many respects, the use of high-pressure refrigerants can place certain constraints on catheter construction. For example, tubes configured to carry refrigerant supplies typically are constructed of metal, hard polymers (e.g., polyimides), or other suitable materials, and have wall thicknesses that allow the tubes to have pressure ratings higher than the pressures of the refrigerants they are configured to transport. After a high-pressure refrigerant undergoes expansion and cooling, its pressure can decrease dramatically. Accordingly, the catheter components that contain the refrigerant after expansion are not limited to strong-walled tubes and similar high-strength structures with pressure ratings higher than the pressures of the refrigerant before expansion. Furthermore, some cryotherapeutic procedures use balloons because they can be relatively compact when not inflated, thereby allowing for delivery through narrow anatomical vessels and lumens, and they can expand to generally conform to the size and shape of the treatment location. Balloons also can have relatively thin walls well suited for cryotherapeutic heat transfer. Thin-walled cryotherapy balloons, however, typically have relatively low pressure ratings. For example, cryotherapeutic balloons typically have pressure ratings well below the supply pressures of suitable high-pressure refrigerants.


In some embodiments of the present technology, a high-pressure refrigerant can be transported along at least a portion of the length of a catheter and then expanded to a relatively low-temperature and low-pressure state via the Joule-Thomson effect alone or in combination with evaporative cooling. The catheter can be constructed such that the expansion can occur at or near a balloon. With a sufficient pressure drop, cooling from near ambient temperatures to cryogenic temperatures can be achieved. Suitable refrigerants for pressurization and expansion in cryotherapeutic devices include, for example, N2O, CO2, and hydrofluorocarbons (e.g., Freon® refrigerant, R-410A, etc.), among others. To maintain a pressure drop within a balloon, an exhaust passage can be provided from the balloon to the atmosphere or to a low-pressure containment vessel. Since expanded refrigerant has a lower density than high-pressure refrigerant, the exhaust passage can have a greater free-passage area than a corresponding supply lumen. During normal operation, evacuation of expanded refrigerant via the exhaust passage maintains the pressure in the balloon sufficiently below the high pressures associated with the refrigerant supply.


If the exhaust passage is blocked while the supply of high-pressure refrigerant to the balloon continues, the pressure in the balloon can build up until it equilibrates with the pressure of the supply lumen. Similarly, the pressure in the balloon can approach a lower, but still elevated, pressure if the exhaust passage becomes partially blocked. The exhaust passage can be partially or fully blocked, for example, due to an operator error (e.g., if an extracorporeal line carrying the exhaust passage becomes kinked or compressed or if a backpressure control valve is closed unexpectedly). In these and other such scenarios, it is possible that the pressure within the balloon can exceed the pressure rating of the balloon, which can be related to the pressure at which the balloon is likely to fail. Balloon failures can include, for example, bursting, leakage, excessive expansion (e.g., beyond the elastic tolerances of surrounding anatomical vessels or lumens), or combinations thereof. In some cases, the pressure rating of a balloon can correspond to a burst pressure of the balloon. It is undesirable for balloons to fail during a procedure for a number of reasons.


Cryotherapeutic devices, systems, and methods configured in accordance with embodiments of the present technology can include one or more features useful for reducing the likelihood of balloon failures (e.g., associated with excessive pressure build up within a balloon due to partial or complete blockage of an exhaust passage). For example, some embodiments can include one or more features configured to release pressure automatically when the pressure within the balloon is about to reach, reaches, or exceeds a predetermined threshold relative to the pressure rating of the balloon or another pressure level. These features can prevent or at least mitigate undesirable balloon failure.



FIGS. 1-2 are, respectively, perspective and cross-sectional views illustrating a cryotherapeutic system 100 configured in accordance with an embodiment of the present technology. The cryotherapeutic system 100 can include a guide catheter 102 and a treatment catheter 104. As shown in FIGS. 1-2, the treatment catheter 104 can be configured for insertion into and through the guide catheter 102. In some embodiments, the guide catheter 102 can be 8 French or smaller (e.g., 7 French, 6 French, or smaller). The guide catheter 102 can include a guide passage 125 through which the treatment catheter 104 can be axially advanced and retracted. The cryotherapeutic system 100 can further include a guide wire 113 that can facilitate introducing the guide catheter 102 and/or the treatment catheter 104 to a desired location within the vessel or lumen. For example, during a treatment procedure, the guide wire 113 can be introduced percutaneously or through a natural anatomical orifice of the patient and advanced along a suitable catheterization path. Imaging (e.g., ultrasound, fluoroscopy, or another suitable imaging modality) can be used to aid in navigating the guide wire 113. Once in position, the guide catheter 102 can be advanced over the guide wire 113 and the treatment catheter 104 can subsequently be advanced through the guide passage 125 and over the guide wire 113. In other embodiments, the guide catheter 102 and the guide wire 113 can be introduced simultaneously. In still other embodiments, the guide catheter 102 and the treatment catheter 104 can be configured for use without a guide wire 113.


The treatment catheter 104 can include an elongated shaft 108 and a balloon 110 at a distal portion 112 of the shaft 108. The shaft 108 can be configured to locate the distal portion 112 within a vessel or lumen of a human patient. The treatment catheter 104 can further include a guide lumen 114 and a supply lumen 116 extending along at least a portion of the shaft 108, and the supply lumen 116 can have an orifice 118 within the balloon 110. The balloon 110 can extend from a stepped-down segment 120 of the distal portion 112 to an outer surface of the guide lumen 114. The supply lumen 116 can be configured to supply high-pressure refrigerant to the balloon 110 via the orifice 118. The high-pressure refrigerant can change phase from a liquid to a gas within the balloon 110, which can expand and cool the balloon 110. The treatment catheter 104 can also have an exhaust passage 122 extending proximally from the balloon 110 along at least a portion of the shaft 108 (e.g., around the guide lumen 114 and the supply lumen 116) to the atmosphere or an extracorporeal containment vessel (not shown). During operation, refrigerant flows to the balloon 110 through the supply lumen 116 and out of the balloon 110 via the exhaust passage 122. The exhaust passage 122 can have a greater free-passage area than the supply lumen 116 to accommodate the lower density of expanded refrigerant relative to the high-pressure refrigerant within the supply lumen 116.


As shown in FIGS. 1-2, the treatment catheter 104 can be configured to extend beyond a distal opening 123 of the guide catheter 102. For example, during a treatment procedure, at least a portion of the distal portion 112 of the shaft 108 can extend beyond the distal opening 123 to locate the balloon 110 at a desired treatment location spaced apart from the distal opening 123. When the balloon 110 is outside the guide passage 125 of the guide catheter 102, the balloon 110 can radially expand to a diameter greater than the diameter of the guide passage 125.


The shaft 108 can further include a pressure-relief portion 124 located proximally relative to the distal portion 112. In some embodiments, the distal portion 112 can extend along an entire length of the treatment catheter 104 between the pressure-relief portion 124 and the balloon 110. In other embodiments, the shaft 108 can include an intermediate portion (not shown) between the pressure-relief portion 124 and the distal portion 112. The pressure-relief portion 124 can be configured to release refrigerant from the exhaust passage 122 (e.g., to a space in the guide passage 125 between the treatment catheter 104 and the guide catheter 102) when a pressure of refrigerant in at least a portion of the exhaust passage 122 (e.g., a portion at or near the pressure-relief portion 124), the balloon 110, or both exceeds a threshold pressure. The threshold pressure, for example, can be less than a pressure rating of the balloon 110 (e.g., a pressure rating corresponding to a burst pressure of the balloon 110).


As shown in FIGS. 1-2, the distal portion 112 can include a first segment 108a of the shaft 108 and the pressure-relief portion 124 can include a second segment 108b of the shaft 108. The first and second segments 108a-b can be attached to one another at a lap joint 126 (e.g., via compression, adhesive bonding, thermal welding, or another suitable attachment mechanism). For example, a proximal end 128 of the first segment 108a can be within the second segment 108b at the lap joint 126. In other embodiments, a distal end 130 of the second segment 108b can be within the first segment 108a at the lap joint 126. As shown in FIGS. 1-2, the diameter of the first segment 108a can be less than the diameter of the second segment 108b. Correspondingly, the free-passage area of the first segment 108a can be less than the free-passage area of the second segment 108b. The free-passage area of the first segment 108a can define the free-passage area of the overall exhaust passage 122. Since refrigerant can warm and expand as it travels proximally along the exhaust passage 122, the smaller free-passage area of the first segment 108a relative to the free-passage area of the second segment 108b can have little or no effect on flow through the exhaust passage 122.


The lap joint 126 can provide a particularly strong connection between the first and second segments 108a-b, but other connections can also be used. For example, FIG. 3 is a cross-sectional view illustrating a cryotherapeutic system 300 configured in accordance with an embodiment of the present technology that is similar to the cryotherapeutic system 100 shown in FIGS. 1-2. The cryotherapeutic system 300 can include a treatment catheter 302 having an elongated shaft 304 with a distal first segment 304a connected to a proximal second segment 304b by a butt joint 306 in place of the lap joint 126 shown in FIGS. 1-2. The shaft 304 can include a pressure-relief portion 308 defined by the second segment 304b which has a diameter at least approximately equal to the diameter of the first segment 304a. The first segment 304a can be a component of the distal portion 112. The butt joint 306 can be formed by adhesive bonding, thermal welding, or another suitable attachment mechanism between the first and second segments 304a-b.


With reference to FIGS. 1-3, in some embodiments, the distal portion 112 can have a wall strength (e.g., yield strength or ultimate tensile strength) greater than a wall strength of the pressure-relief portion 124, 308. For example, the first segment 108a, 304a can have a wall strength greater than a wall strength of the second segment 108b, 304b. The wall strength of all or a portion of the pressure-relief portion 124, 308 or the second segment 108b, 304b, for example, can be less than about 80% (e.g., less than about 60% or less than about 40%) of that of the distal portion 112 or the first segment 108a, 304a. Different constructions and/or compositions can cause the different wall strengths. For example, the pressure-relief portion 124, 308 or the second segment 108b, 304b can include walls that are thinner and/or made of weaker materials than walls of the distal portion 112 or the first segment 108a, 304a. In some embodiments, the pressure-relief portion 124, 308 or the second segment 108b, 304b can be made of polyamide and the distal portion 112 or the first segment 108a, 304a can be made of polyimide. In other embodiments, the pressure-relief portion 124, 308 or the second segment 108b, 304b can be made of a polyimide at a first thickness and the distal portion 112 or the first segment 108a, 304a can be made of a polyimide at a second thickness greater than the first thickness. When the pressure-relief portion 124, 308 or the second segment 108b, 304b is braided, the braid pattern or density can be selected to cause a wall strength lower than that of the distal portion 112 or the first segment 108a, 304a. Similarly, when the pressure-relief portion 124, 308 or the second segment 108b, 304b includes multiple layers, the number of layers can be selected to cause a wall strength lower than that of the distal portion 112 or the first segment 108a, 304a. A variety of other suitable materials and configurations are also possible.


The wall strength of the pressure-relief portion 124, 308 or the second segment 108b, 304b can be selected to cause the pressure-relief portion 124, 308 or the second segment 108b, 304b to rupture at about the threshold pressure. Accordingly, the pressure-relief portion 124, 308 or the second segment 108b, 304b can be sacrificial and/or otherwise configured to fail before the balloon 110 fails during a malfunction in which the pressure in the balloon 110 increases unexpectedly. Failure of the pressure-relief portion 124, 308 or the second segment 108b, 304b can allow refrigerant to quickly flow into the space in the guide passage 125 between the shaft 108 and the guide catheter 102. At least a portion of the refrigerant in the space can then move proximally to a proximal opening (not shown) of the guide catheter 102. In some embodiments, the pressure-relief portion 124, 308 or the second segment 108b, 304b can be configured to rupture relatively rapidly. For example, the pressure-relief portion 124, 308 or the second segment 108b, 304b can include a relatively brittle material, such as a material having an elongation at break less than about 50% (e.g., less than about 30% or less than about 20%). In other embodiments, the pressure-relief portion 124, 308 or the second segment 108b, 304b can be configured to rupture more slowly.


In the cryotherapeutic systems 100, 300 shown in FIGS. 1-3, it may be difficult to predict where the pressure-relief portion 124, 308 or the second segment 108b, 304a will sacrificially release the pressure along the exhaust passage 122. As such, it may be desirable to control the release of refrigerant at specific locations along the device. FIG. 4 is a cross-sectional view illustrating one example of a cryotherapeutic system 400 configured in accordance with another embodiment of the present technology that includes a treatment catheter 402 having a shaft 404 with a relatively short pressure-relief portion 406. The shaft 404 can further include a proximal portion 408 proximal to the pressure-relief portion 406, a first lap joint 410 between the distal portion 112 and the pressure-relief portion 406, and a second lap joint 412 between the pressure-relief portion 406 and the proximal portion 408. In other embodiments, the first and second lap joints 410, 412 can be replaced with butt joints or other suitable connections. The pressure-relief portion 406 can have a lower pressure rating than the distal portion 112, the proximal portion 408, and the balloon 110 such that the pressure-relief portion 406 preferentially fails at a specific location along the device.



FIG. 5 is a cross-sectional view illustrating a cryotherapeutic system 500 configured in accordance with an embodiment of the present technology having another pressure-relief configuration. The cryotherapeutic system 500 can include a treatment catheter 502 having a shaft 504 with a pressure-relief portion 506 including a rupture element 508. In the embodiment shown in FIG. 5, the rupture element 508 does not extend around the entire circumference of the shaft 504. In other embodiments, the rupture element 508 can be annular and can extend around the entire circumference of the shaft 504. The rupture element 508 can include a membrane (e.g., embedded within a wall of the pressure-relief portion 506), a weakened (e.g., scored and/or thinned) portion of a wall of the pressure-relief portion 506, or another suitable structure configured to break predictably in response to pressure. The rupture element 508, for example, can be configured to rupture in response to a pressure in an adjacent portion of the exhaust passage 122 that is near or exceeds the threshold pressure. The size of the rupture element 508 can be selected to control the rate at which refrigerant is released from the exhaust passage 122 into the space in the guide passage 125.


With reference to FIGS. 1-5, the locations of the pressure-relief portions 124, 308, 406, 506 and/or portions thereof (e.g., the first segments 108a, 304a of the pressure-relief portions 124, 308 and the rupture element 508 of the pressure-relief portion 506) can be selected to control the locations where refrigerant is released into the space in the guide passage 125. In some embodiments, the release locations can be outside vessels or lumens of patients during treatment procedures. For example, such release locations can be proximal relative to entry points into the vessels or lumens and, in some cases, proximal to proximal openings of corresponding guide catheters 102. Such release locations can reduce the possibility that the refrigerant will be released into the vessels or lumens via the distal openings 123 of the guide catheters 102. Locations closer to the balloons 110, however, can be useful to decrease pressure differential and/or delay between the release point along the exhaust passages 122 and the balloon 110. This can improve the responsiveness of the pressure-relief portions 124, 308, 406, 506 to rapid increases in pressure within the balloon 110. Furthermore, in some cases, the pressure-relief portions 124, 308, 406, 506 may have limited effectiveness when blockages of the corresponding exhaust passages occur between the pressure-relief portions 124, 308, 406, 506 and the balloon 110. Decreasing the distance between the pressure-relief portions 124, 308, 406, 506 and the balloon 110 can decrease the likelihood of such blockages. In some embodiments, the pressure-relief portions 124, 308, 406, 506 can be proximally spaced apart from the balloon 110 such that the pressure-relief portions 124, 308, 406, 506 are just within the corresponding guide passage 125.


With reference again to FIG. 5, the cryotherapeutic system 500 can also include a guide catheter 510 having a flow restrictor 512 around a perimeter of the guide passage 125. In other embodiments, the treatment catheter 502 can include the flow restrictor 512 at a position distal to the pressure-relief portion 506. The flow restrictor 512 can be configured to reduce or prevent distal flow of released refrigerant within the guide passage 125 through the distal opening 123 and into a vessel or lumen of a patient. Instead, the path of least resistance for the released refrigerant can extend proximally through the guide passage 125 to the proximal opening of the guide catheter 510 outside the vessel or lumen. In some embodiments, the flow restrictor 512 can be at least partially annular and/or compressible and configured to conform to the shaft 504. Furthermore, the flow restrictor 512 can be configured to reduce or prevent proximal blood flow within the guide catheter 510 in addition to reducing or preventing distal refrigerant flow. Other embodiments can include different features for reducing or preventing distal flow of released refrigerant. For example, the cryotherapeutic system 200 shown in FIG. 2 can be modified such that the second segment 108b is within the first segment 108a at the lap joint 126 and the distal portion 112 has a larger diameter than the pressure-relief portion 124. This can reduce the space in the guide passage 125 around the distal portion 112 and thereby encourage flow of released refrigerant in a proximal direction. In some embodiments, refrigerant released into a vessel or lumen of a patient through the distal opening 123 can be less problematic than refrigerant release resulting from a balloon failure, thereby reducing the usefulness of the flow restrictor 512. Furthermore, the pressure-relief portion 506 can be located closer to the proximal opening of the guide catheter 510 than to the distal opening 123 of the guide catheter 510, which can delay or prevent refrigerant release into a vessel or lumen of a patient through the distal opening 123.


In some embodiments the diameter of the treatment catheter 502 and/or the diameter of the guide catheter 510 can be selected to size the space therebetween in the guide passage 125. For example, a difference between the outer diameter of the shaft 504 at and the inner diameter of the guide passage 125 can be greater than about 0.2 mm (e.g., greater than about 0.3 mm or greater than about 0.4 mm) along at least about 100 cm of the shaft 504 extending proximally from the pressure-relief portion 506. In some cases, however, it can be useful to reduce the size of the space in the guide passage 125 in favor of increasing the size of the shaft 504. For example, larger-diameter shafts can support greater cooling. FIG. 6 is a cross-sectional view illustrating a cryotherapeutic system 600 configured in accordance with an embodiment of the present technology and including a treatment catheter 602 and a guide catheter 603. The treatment catheter 602 can include a shaft 604 having a pressure-relief portion 606 with a rupture element 608. The guide catheter 603 can be smaller and/or the shaft 604 can be larger than the embodiments shown in FIGS. 1-5 to provide a relatively close fit that restricts the distal flow of refrigerant along the space in the guide passage 125.


The pressure-relief portion 606 and portions of the shaft 604 proximal to the pressure-relief portion 606 can have a smaller diameter than the distal portion 112 such that there is more space between the proximal portion of the shaft 604 and the guide catheter 602. This can facilitate the proximal flow of refrigerant along the space within the guide passage 125 (e.g., from a release location proximate the rupture element 608 along a generally continuous path to a proximal opening of the guide catheter 603). The path, for example, can be greater than about 100 cm (e.g., greater than about 200 cm or greater than about 300 cm) in length and can extend proximally from the rupture element 608. In some embodiments, the pressure-relief portion 606 can be configured to deform from a first state (not shown) in which the pressure-relief portion 606 has a diameter similar to the diameter of the distal portion 112 to a second state (shown in FIG. 6) in which the rupture element 608 is ruptured and the pressure-relief portion 606 deforms inwardly. The pressure-relief portion 606 can deform, for example, in response to pressure within the space in the guide passage 125 exceeding a threshold pressure. As shown in FIG. 6, in some embodiments, the pressure-relief portion 606 can deform generally evenly. In other embodiments, the pressure-relief portion 606 and portions of the shaft 604 proximal to the pressure-relief portion 606 can be configured to selectively deform (e.g., along a channel). Deforming can occur, for example, as a result of reversible or irreversible compression or expansion of at least a portion of a wall of the shaft 604. For example, the shaft 604 can be at least partially elastic, folded, articulated, or otherwise configured to expand or contract in response to pressure within the guide passage 125. In other embodiments, the shaft 604 can have general or local wall strength sufficiently low to allow the shaft 604 to deform inwardly in response to pressure within the guide passage 125.


In some embodiments, the disclosed pressure-relief features can be redundant to other features intended to prevent balloon failures. For example, the cryotherapeutic systems shown in FIGS. 1-6 can include one or more pressure sensors (not shown) configured to monitor pressures within the balloon 110 and controllers (not shown) configured to stop refrigerant flow to the balloon 110 if the monitored pressures increase above threshold pressures. In other embodiments, the disclosed pressure-relief features can take the place of pressure monitoring. Furthermore, reducing the likelihood of balloon failure can allow for greater freedom in balloon constructions and compositions. In some embodiments, the balloon 110 can have a pressure rating less than about 400% (e.g., less than about 300% or less than about 200%) of a steady-state pressure within the balloon 110 during normal operation. This can facilitate, for example, the use of balloons 110 having thinner walls and greater elasticity.


The above detailed descriptions of embodiments of the present technology are for purposes of illustration only and are not intended to be exhaustive or to limit the present technology to the precise form(s) disclosed above. Various equivalent modifications are possible within the scope of the present technology, as those skilled in the relevant art will recognize. For example, while stages may be presented in a given order, alternative embodiments may perform stages in a different order. The various embodiments described herein and elements thereof may also be combined to provide further embodiments. In some cases, well-known structures and functions have not been shown or described in detail to avoid unnecessarily obscuring the description of embodiments of the present technology.


Where the context permits, singular or plural terms may also include the plural or singular terms, respectively. Moreover, unless the word “or” is expressly limited to mean only a single item exclusive from the other items in reference to a list of two or more items, then the use of “or” in such a list is to be interpreted as including (a) any single item in the list, (b) all of the items in the list, or (c) any combination of the items in the list. Additionally, the terms “comprising” and the like are used throughout the disclosure to mean including at least the recited feature(s) such that any greater number of the same feature(s) and/or additional types of other features are not precluded. It will also be appreciated that various modifications may be made to the described embodiments without deviating from the present technology. Further, while advantages associated with certain embodiments of the present technology have been described in the context of those embodiments, other embodiments may also exhibit such advantages, and not all embodiments need necessarily exhibit such advantages to fall within the scope of the present technology. Accordingly, the disclosure and associated technology can encompass other embodiments not expressly shown or described herein.

Claims
  • 1. A cryotherapeutic catheter comprising: an elongate shaft having a distal end portion, a pressure-relief portion proximal to the distal end portion, and a collapsible portion proximal to the pressure-relief portion, wherein the shaft is configured to move longitudinally within a guide passage defined by a tubular guide catheter, wherein the distal end portion of the shaft is configured to sealingly contact the guide catheter and thereby occlude an annular gap between the shaft and the guide catheter;a supply lumen carried by the shaft;an exhaust passage carried by the shaft; anda balloon at the distal end portion of the shaft wherein the balloon is configured to receive refrigerant from the supply lumen and to exhaust refrigerant to the exhaust passage,wherein the pressure-relief portion of the shaft is configured to rupture and thereby release refrigerant therethrough from the exhaust passage when a pressure of refrigerant within the exhaust passage exceeds a threshold pressure less than a pressure rating of the balloon, andwherein the collapsible portion of the shaft configured to collapse in response to pressure from refrigerant released from the exhaust passage via the pressure-relief portion of the shaft.
  • 2. The cryotherapeutic catheter of claim 1 wherein the distal end portion of the shaft includes an annular flow restrictor configured to sealingly contact the guide catheter.
  • 3. The cryotherapeutic catheter of claim 2 wherein the flow restrictor is compressible.
  • 4. The cryotherapeutic catheter of claim 1, wherein the shaft has a first wall strength at its distal end portion;the shaft has a second wall strength at its pressure-relief portion; andthe second wall strength is less than the first wall strength.
  • 5. The cryotherapeutic catheter of claim 4, wherein the second wall strength is selected to cause the pressure-relief portion of the shaft to rupture when the pressure of refrigerant within the exhaust passage exceeds the threshold pressure.
  • 6. The cryotherapeutic catheter of claim 4, wherein the shaft includes a butt joint between its distal end portion and its pressure-relief portion.
  • 7. The cryotherapeutic catheter of claim 4, wherein the shaft includes a lap joint between its distal end portion and its pressure-relief portion.
  • 8. The cryotherapeutic catheter of claim 4 wherein the second wall strength is less than 80% of the first wall strength.
  • 9. The cryotherapeutic catheter of claim 1 wherein the pressure-relief portion of the shaft includes a membrane configured to rupture when the pressure of refrigerant within the exhaust passage exceeds the threshold pressure.
  • 10. The cryotherapeutic catheter of claim 1 wherein the pressure-relief portion of the shaft is a scored portion of a wall of the shaft.
  • 11. The cryotherapeutic catheter of claim 1 wherein the shaft has a smaller diameter at its pressure-relief portion than at its distal end portion.
  • 12. The cryotherapeutic catheter of claim 1 wherein the shaft has a smaller diameter proximal to its pressure-relief portion than at its distal end portion.
  • 13. The cryotherapeutic catheter of claim 1 wherein the collapsible portion of the shaft has a length of at least 100 cm.
  • 14. The cryotherapeutic catheter of claim 1, wherein the pressure rating of the balloon corresponds to a burst pressure of the balloon.
  • 15. The cryotherapeutic catheter of claim 1, wherein the shaft is configured to move longitudinally within a guide passage defined by a tubular guide catheter that is 8 French or smaller.
RELATED APPLICATIONS

This application is a continuation of and claims the benefit of U.S. patent application Ser. No. 13/458,120, filed Apr. 27, 2012, the disclosure of which is herein incorporated by reference in its entirety.

US Referenced Citations (343)
Number Name Date Kind
3125096 Antiles et al. Mar 1964 A
3298371 Lee Jan 1967 A
3901241 Allen, Jr. Aug 1975 A
3924628 Droegemueller et al. Dec 1975 A
4143651 Patel Mar 1979 A
4275734 Mitchiner Jun 1981 A
4483341 Witteles Nov 1984 A
4602624 Naples et al. Jul 1986 A
4649936 Ungar et al. Mar 1987 A
4709698 Johnston et al. Dec 1987 A
4764504 Johnson et al. Aug 1988 A
4890623 Cook et al. Jan 1990 A
4976711 Parins et al. Dec 1990 A
5108390 Potocky et al. Apr 1992 A
5190539 Fletcher et al. Mar 1993 A
5300068 Rosar et al. Apr 1994 A
5308323 Sogawa et al. May 1994 A
5334181 Rubinsky et al. Aug 1994 A
5342301 Saab Aug 1994 A
5358514 Schulman et al. Oct 1994 A
5368591 Lennox et al. Nov 1994 A
5383856 Bersin Jan 1995 A
5417355 Broussalian et al. May 1995 A
5423744 Gencheff et al. Jun 1995 A
5425364 Imran Jun 1995 A
5484400 Edwards et al. Jan 1996 A
5571147 Sluijter et al. Nov 1996 A
5588964 Imran et al. Dec 1996 A
5599345 Edwards et al. Feb 1997 A
5624392 Saab Apr 1997 A
5626576 Janssen May 1997 A
5672174 Gough et al. Sep 1997 A
5688266 Edwards et al. Nov 1997 A
5700282 Zabara Dec 1997 A
5707400 Terry, Jr. et al. Jan 1998 A
5758505 Dobak, III et al. Jun 1998 A
5772590 Webster, Jr. Jun 1998 A
5807391 Wijkamp Sep 1998 A
5837003 Ginsburg Nov 1998 A
5860970 Goddard et al. Jan 1999 A
5860974 Abele Jan 1999 A
5865787 Shapland et al. Feb 1999 A
5868735 Lafontaine Feb 1999 A
5893885 Webster et al. Apr 1999 A
5902299 Jayaraman May 1999 A
5944710 Dev et al. Aug 1999 A
5954719 Chen et al. Sep 1999 A
5971979 Joye et al. Oct 1999 A
5983141 Sluijter et al. Nov 1999 A
6004269 Crowley et al. Dec 1999 A
6009877 Edwards Jan 2000 A
6012457 Lesh Jan 2000 A
6024740 Lesh et al. Feb 2000 A
6024752 Horn et al. Feb 2000 A
6032675 Rubinsky Mar 2000 A
6036687 Laufer et al. Mar 2000 A
6056744 Edwards May 2000 A
6066134 Eggers et al. May 2000 A
6091995 Ingle et al. Jul 2000 A
6099524 Lipson et al. Aug 2000 A
6117101 Diederich et al. Sep 2000 A
6135999 Fanton et al. Oct 2000 A
6142991 Schatzberger Nov 2000 A
6142993 Whayne et al. Nov 2000 A
6149620 Baker et al. Nov 2000 A
6161048 Sluijter et al. Dec 2000 A
6161049 Rudie et al. Dec 2000 A
6161543 Cox et al. Dec 2000 A
6164283 Lesh Dec 2000 A
6190356 Bersin Feb 2001 B1
6219577 Brown, III et al. Apr 2001 B1
6224592 Eggers et al. May 2001 B1
6237355 Li May 2001 B1
6241722 Dobak et al. Jun 2001 B1
6246912 Sluijter et al. Jun 2001 B1
6273886 Edwards et al. Aug 2001 B1
6283951 Flaherty et al. Sep 2001 B1
6283959 Lalonde et al. Sep 2001 B1
6290696 Lafontaine Sep 2001 B1
6292695 Webster, Jr. et al. Sep 2001 B1
6314325 Fitz Nov 2001 B1
6322558 Taylor et al. Nov 2001 B1
6322559 Daulton et al. Nov 2001 B1
6355029 Joye et al. Mar 2002 B1
6405732 Edwards et al. Jun 2002 B1
6413255 Stern Jul 2002 B1
6428534 Joye et al. Aug 2002 B1
6432102 Joye et al. Aug 2002 B2
6451045 Walker et al. Sep 2002 B1
6468297 Williams et al. Oct 2002 B1
6488679 Swanson et al. Dec 2002 B1
6496737 Rudie et al. Dec 2002 B2
6497703 Korteling et al. Dec 2002 B1
6506189 Rittman, III et al. Jan 2003 B1
6514226 Levin et al. Feb 2003 B1
6514245 Williams et al. Feb 2003 B1
6517533 Swaminathan Feb 2003 B1
6522926 Kieval et al. Feb 2003 B1
6527739 Bigus et al. Mar 2003 B1
6527765 Kelman et al. Mar 2003 B2
6537271 Murray et al. Mar 2003 B1
6540734 Chiu et al. Apr 2003 B1
6542781 Koblish et al. Apr 2003 B1
6551309 LePivert Apr 2003 B1
6562034 Edwards et al. May 2003 B2
6575933 Wittenberger et al. Jun 2003 B1
6602246 Joye et al. Aug 2003 B1
6602247 Lalonde Aug 2003 B2
6610083 Keller et al. Aug 2003 B2
6616624 Kieval Sep 2003 B1
6622731 Daniel et al. Sep 2003 B2
6635054 Fjield et al. Oct 2003 B2
6640120 Swanson et al. Oct 2003 B1
6648878 Lafontaine Nov 2003 B2
6648879 Joye et al. Nov 2003 B2
6666858 Lafontaine Dec 2003 B2
6673066 Werneth Jan 2004 B2
6685648 Flaherty et al. Feb 2004 B2
6685732 Kramer Feb 2004 B2
6706037 Zvuloni et al. Mar 2004 B2
6709431 Lafontaine Mar 2004 B2
6711444 Koblish Mar 2004 B2
6736835 Pellegrino et al. May 2004 B2
6752805 Maguire et al. Jun 2004 B2
6755823 Lalonde Jun 2004 B2
6786900 Joye et al. Sep 2004 B2
6786901 Joye et al. Sep 2004 B2
6807444 Tu et al. Oct 2004 B2
6811550 Holland et al. Nov 2004 B2
6824543 Lentz Nov 2004 B2
6845267 Harrison et al. Jan 2005 B2
6850801 Kieval et al. Feb 2005 B2
6869431 Maguire et al. Mar 2005 B2
6875209 Zvuloni et al. Apr 2005 B2
6885888 Rezai Apr 2005 B2
6893436 Woodard et al. May 2005 B2
6905510 Saab Jun 2005 B2
6908462 Joye et al. Jun 2005 B2
6923808 Taimisto Aug 2005 B2
6929639 Lafontaine Aug 2005 B2
6939346 Kannenberg et al. Sep 2005 B2
6955174 Joye et al. Oct 2005 B2
6972015 Joye et al. Dec 2005 B2
6981382 Lentz et al. Jan 2006 B2
6989009 Lafontaine Jan 2006 B2
7001378 Yon et al. Feb 2006 B2
7022120 Lafontaine Apr 2006 B2
7060062 Joye et al. Jun 2006 B2
7081112 Joye et al. Jul 2006 B2
7081115 Taimisto Jul 2006 B2
7101368 Lafontaine Sep 2006 B2
7149574 Yun et al. Dec 2006 B2
7156840 Lentz et al. Jan 2007 B2
7162303 Levin et al. Jan 2007 B2
7172589 Lafontaine Feb 2007 B2
7189227 Lafontaine Mar 2007 B2
7221979 Zhou et al. May 2007 B2
7288089 Yon et al. Oct 2007 B2
7300433 Lane et al. Nov 2007 B2
7306590 Swanson Dec 2007 B2
7357797 Ryba Apr 2008 B2
7381200 Katoh et al. Jun 2008 B2
7387126 Cox et al. Jun 2008 B2
7390894 Weinshilboum et al. Jun 2008 B2
7449018 Kramer Nov 2008 B2
7487780 Hooven Feb 2009 B2
7507233 Littrup et al. Mar 2009 B2
7556624 Laufer et al. Jul 2009 B2
7604631 Reynolds Oct 2009 B2
7617005 Demarais et al. Nov 2009 B2
7620451 Demarais et al. Nov 2009 B2
7641679 Joye et al. Jan 2010 B2
7647115 Levin et al. Jan 2010 B2
7653438 Deem et al. Jan 2010 B2
7717948 Demarais et al. May 2010 B2
7727191 Mihalik et al. Jun 2010 B2
7758571 Saadat Jul 2010 B2
7778703 Gross et al. Aug 2010 B2
7785289 Rios et al. Aug 2010 B2
7861725 Swanson Jan 2011 B2
7892201 Laguna Feb 2011 B1
7947014 Kien May 2011 B2
7972327 Eberl et al. Jul 2011 B2
8012147 Lafontaine Sep 2011 B2
8062289 Babaev Nov 2011 B2
8080006 Lafontaine et al. Dec 2011 B2
8088125 Lafontaine Jan 2012 B2
8123741 Marrouche et al. Feb 2012 B2
8128617 Bencini et al. Mar 2012 B2
8131371 Demarais et al. Mar 2012 B2
8131372 Levin et al. Mar 2012 B2
8140170 Rezai et al. Mar 2012 B2
8145317 Demarais et al. Mar 2012 B2
8150518 Levin et al. Apr 2012 B2
8150519 Demarais et al. Apr 2012 B2
8150520 Demarais et al. Apr 2012 B2
8175711 Demarais et al. May 2012 B2
8187261 Watson May 2012 B2
8439909 Wang et al. May 2013 B2
8469919 Ingle et al. Jun 2013 B2
8473067 Hastings et al. Jun 2013 B2
8475441 Babkin et al. Jul 2013 B2
8480663 Ingle et al. Jul 2013 B2
8480664 Watson et al. Jul 2013 B2
8663211 Fourkas et al. Mar 2014 B2
8740895 Mayse et al. Jun 2014 B2
8777943 Mayse Jul 2014 B2
8814899 Pepper Aug 2014 B2
9101343 Duong et al. Aug 2015 B2
9259559 Pepper Feb 2016 B2
20020045893 Lane et al. Apr 2002 A1
20020045894 Joye Apr 2002 A1
20020065487 Wollschlager May 2002 A1
20020087208 Koblish et al. Jul 2002 A1
20020107515 Edwards et al. Aug 2002 A1
20020120258 Lalonde Aug 2002 A1
20020139379 Edwards et al. Oct 2002 A1
20020165532 Hill et al. Nov 2002 A1
20020183682 Darvish et al. Dec 2002 A1
20030014095 Kramer et al. Jan 2003 A1
20030036752 Joye et al. Feb 2003 A1
20030050635 Truckai et al. Mar 2003 A1
20030050681 Pianca et al. Mar 2003 A1
20030060762 Zvuloni Mar 2003 A1
20030060858 Kieval et al. Mar 2003 A1
20030074039 Puskas Apr 2003 A1
20030088189 Tu et al. May 2003 A1
20030088240 Saadat May 2003 A1
20030109912 Joye Jun 2003 A1
20030125721 Yon Jul 2003 A1
20030125790 Fastovsky et al. Jul 2003 A1
20030181897 Thomas et al. Sep 2003 A1
20030195507 Stewart et al. Oct 2003 A1
20030199861 Lafontaine Oct 2003 A1
20030199863 Swanson et al. Oct 2003 A1
20030216792 Levin et al. Nov 2003 A1
20030229340 Sherry et al. Dec 2003 A1
20030233099 Danek et al. Dec 2003 A1
20040010289 Biggs et al. Jan 2004 A1
20040024392 Lewis et al. Feb 2004 A1
20040167509 Taimisto Aug 2004 A1
20040215186 Cornelius et al. Oct 2004 A1
20040243119 Lane et al. Dec 2004 A1
20040267250 Yon et al. Dec 2004 A1
20050080409 Young et al. Apr 2005 A1
20050096647 Steinke et al. May 2005 A1
20050187579 Danek et al. Aug 2005 A1
20050209587 Joye et al. Sep 2005 A1
20050228367 Abboud Oct 2005 A1
20050228460 Levin et al. Oct 2005 A1
20050240117 Zvuloni et al. Oct 2005 A1
20060084962 Joye Apr 2006 A1
20060085054 Zikorus et al. Apr 2006 A1
20060095029 Young et al. May 2006 A1
20060100618 Chan et al. May 2006 A1
20060161102 Newcomb Jul 2006 A1
20060167438 Kalser Jul 2006 A1
20060206150 Demarais et al. Sep 2006 A1
20060212027 Marrouche et al. Sep 2006 A1
20060212076 Demarais et al. Sep 2006 A1
20060247611 Abboud et al. Nov 2006 A1
20060264823 Newcomb Nov 2006 A1
20060270982 Mihalik Nov 2006 A1
20060271111 Demarais et al. Nov 2006 A1
20070049924 Rahn Mar 2007 A1
20070093710 Maschke Apr 2007 A1
20070129720 Demarais et al. Jun 2007 A1
20070185445 Nahon et al. Aug 2007 A1
20070265687 Deem et al. Nov 2007 A1
20070299433 Williams et al. Dec 2007 A1
20080097251 Babaev Apr 2008 A1
20080171974 Lafontaine et al. Jul 2008 A1
20080208182 Lafontaine et al. Aug 2008 A1
20080300584 Lentz et al. Dec 2008 A1
20080306475 Lentz et al. Dec 2008 A1
20080312644 Fourkas et al. Dec 2008 A1
20080319513 Pu et al. Dec 2008 A1
20090036948 Levin et al. Feb 2009 A1
20090171333 Hon Jul 2009 A1
20090182316 Bencini Jul 2009 A1
20090182317 Bencini Jul 2009 A1
20090209949 Ingle et al. Aug 2009 A1
20090221955 Babaev Sep 2009 A1
20090281533 Ingle et al. Nov 2009 A1
20090287202 Ingle et al. Nov 2009 A1
20090299355 Bencini et al. Dec 2009 A1
20100049184 George et al. Feb 2010 A1
20100069900 Shirley Mar 2010 A1
20100100087 Mazzone et al. Apr 2010 A1
20100106148 Joye et al. Apr 2010 A1
20100114269 Wittenberger et al. May 2010 A1
20100125266 Deem et al. May 2010 A1
20100130970 Williams et al. May 2010 A1
20100137860 Demarais et al. Jun 2010 A1
20100137952 Demarais et al. Jun 2010 A1
20100179526 Lawrence Jul 2010 A1
20100179527 Watson et al. Jul 2010 A1
20100191112 Demarais et al. Jul 2010 A1
20100198203 Kuck et al. Aug 2010 A1
20100217189 Pepper Aug 2010 A1
20100222786 Kassab Sep 2010 A1
20100222851 Deem et al. Sep 2010 A1
20100222854 Demarais et al. Sep 2010 A1
20100234838 Watson Sep 2010 A1
20100249766 Saadat Sep 2010 A1
20100256621 Babkin et al. Oct 2010 A1
20100274189 Kurth Oct 2010 A1
20100280507 Babkin et al. Nov 2010 A1
20100292640 Kien Nov 2010 A1
20110125143 Gross et al. May 2011 A1
20110152855 Mayse et al. Jun 2011 A1
20110257642 Griggs, III Oct 2011 A1
20110263921 Vrba et al. Oct 2011 A1
20110270238 Rizq et al. Nov 2011 A1
20110282272 Lafontaine Nov 2011 A1
20120029509 Smith Feb 2012 A1
20120029511 Smith et al. Feb 2012 A1
20120089047 Ryba et al. Apr 2012 A1
20120109021 Hastings et al. May 2012 A1
20120123261 Jenson et al. May 2012 A1
20120130289 Demarais et al. May 2012 A1
20120130345 Levin et al. May 2012 A1
20120130360 Buckley et al. May 2012 A1
20120130368 Jenson May 2012 A1
20120136417 Buckley et al. May 2012 A1
20120136418 Buckley et al. May 2012 A1
20120143097 Pike, Jr. Jun 2012 A1
20120143177 Avitall Jun 2012 A1
20120150267 Buckley et al. Jun 2012 A1
20120172837 Demarais et al. Jul 2012 A1
20120253336 Littrup et al. Oct 2012 A1
20130090650 Jenson et al. Apr 2013 A1
20130123770 Smith May 2013 A1
20130184696 Fourkas et al. Jul 2013 A1
20130345688 Babkin et al. Dec 2013 A1
20140046313 Pederson et al. Feb 2014 A1
20140066914 Lafontaine Mar 2014 A1
20140276724 Goshayeshgar Sep 2014 A1
20140276728 Goshayeshgar Sep 2014 A1
20140276811 Koblish et al. Sep 2014 A1
20140364893 Pepper Dec 2014 A1
20150105764 Rizq et al. Apr 2015 A1
20150231378 Pepper Aug 2015 A1
Foreign Referenced Citations (71)
Number Date Country
1408451 Apr 2003 CN
4406451 Sep 1995 DE
102005041601 Apr 2007 DE
0655225 May 1995 EP
0955012 Nov 1999 EP
1129670 Sep 2001 EP
1164963 Jan 2002 EP
1210959 Jun 2002 EP
1389477 Feb 2004 EP
1502553 Feb 2005 EP
1559362 Aug 2005 EP
2558016 Feb 2013 EP
2598070 Jun 2013 EP
2598071 Jun 2013 EP
2608837 Jul 2013 EP
1422535 Jan 1976 GB
2283678 May 1995 GB
2289414 Nov 1995 GB
718099 Feb 1980 SU
1153901 May 1985 SU
1329781 Aug 1987 SU
1378835 Mar 1988 SU
1771725 Oct 1992 SU
WO-199407446 Apr 1994 WO
WO-1995025472 Sep 1995 WO
WO-9531142 Nov 1995 WO
WO-9725011 Jul 1997 WO
WO-1997036548 Oct 1997 WO
WO1998042403 Oct 1998 WO
WO-9900060 Jan 1999 WO
WO-9905979 Feb 1999 WO
WO-9927862 Jun 1999 WO
WO-0047118 Aug 2000 WO
WO-2001022897 Apr 2001 WO
WO-0164145 Sep 2001 WO
WO-2001070114 Sep 2001 WO
WO-0200128 Jan 2002 WO
WO-0204042 Jan 2002 WO
WO-0207625 Jan 2002 WO
WO-0207628 Jan 2002 WO
WO-0213710 Feb 2002 WO
WO-0215807 Feb 2002 WO
WO-02058576 Aug 2002 WO
WO-03020334 Mar 2003 WO
WO-2003022167 Mar 2003 WO
WO-03061496 Jul 2003 WO
WO-2003082080 Oct 2003 WO
WO-2005030072 Apr 2005 WO
WO-2005038357 Apr 2005 WO
WO--2005041748 May 2005 WO
WO-2005110528 Nov 2005 WO
WO-2006041881 Apr 2006 WO
WO-2006096272 Sep 2006 WO
WO-2006105121 Oct 2006 WO
WO-2006124177 Nov 2006 WO
WO-2007008954 Jan 2007 WO
WO-2007078997 Jul 2007 WO
WO-2008049084 Apr 2008 WO
WO-2008131037 Oct 2008 WO
WO-2011056684 May 2011 WO
WO-2011082278 Jul 2011 WO
WO-2011082279 Jul 2011 WO
WO-2012016135 Feb 2012 WO
WO-2012016137 Feb 2012 WO
WO-2012058430 May 2012 WO
WO-2013074683 May 2013 WO
WO-2013106859 Jul 2013 WO
WO-2013163325 Oct 2013 WO
WO-2014150204 Sep 2014 WO
WO-2014158727 Oct 2014 WO
WO-2014164445 Oct 2014 WO
Non-Patent Literature Citations (156)
Entry
U.S. Appl. No. 95/002,110, filed Aug. 29, 2012, Demarais et al.
U.S. Appl. No. 95/002,209, filed Sep. 13, 2012, Levin et al.
U.S. Appl. No. 95/002,233, filed Sep. 13, 2012, Levin et al.
U.S. Appl. No. 95/002,243, filed Sep. 13, 2012, Levin et al.
U.S. Appl. No. 95/002,253, filed Sep. 13, 2012, Demarais et al.
U.S. Appl. No. 95/002,255, filed Sep. 13, 2012, Demarais et al.
U.S. Appl. No. 95/002,292, filed Sep. 14, 2012, Demarais et al.
U.S. Appl. No. 95/002,327, filed Sep. 14, 2012, Demarais et al.
U.S. Appl. No. 95/002,335, filed Sep. 14, 2012, Demarais et al.
U.S. Appl. No. 95/002,336, filed Sep. 14, 2012, Levin et al.
U.S. Appl. No. 95/002,356, filed Sep. 14, 2012, Demarais et al.
“2011 Edison Award Winners.” Edison Awards: Honoring Innovations & Innovators, 2011, 6 pages, <http://www.edisonawards.com/BestNewProduct—2011.php>.
“2012 top 10 advances in heart disease and stroke research: American Heart Association/America Stroke Association Top 10 Research Report.” American Heart Association, Dec. 17, 2012, 5 pages, <http://newsroom.heart.org/news/2012-top-10-advances-in-heart-241901>.
“Ardian(R) Receives 2010 EuroPCR Innovation Award and Demonstrates Further Durability of Renal Denervation Treatment for Hypertension.” PR Newswire, Jun. 3, 2010, 2 pages, <http://www.prnewswire.com/news-releases/ardianr-receives-2010-europer-innovation-award-and-demonstrates-further-durability-of-renal-denervation-treatment-for-hypertension-95545014.html>.
“Boston Scientific to Acquire Vessix Vascular, Inc.: Company to Strengthen Hypertension Program with Acquisition of Renal Denervation Technology.” Boston Scientific: Advancing science for life—Investor Relations, Nov. 8, 2012, 2 pages, <http://phx.corporate-ir.net/phoenix.zhtml?c=62272&p=irol-newsArticle&id=1756108>.
“Cleveland Clinic Unveils Top 10 Medical Innovations for 2012: Experts Predict Ten Emerging Technologies that will Shape Health Care Next Year.” Cleveland Clinic, Oct. 6, 2011, 2 pages. <http://my.clevelandclinic.org/media—relations/library/2011/2011-10-6-cleveland-clinic-unveils-top-10-medical-innovations-for-2012.aspx>.
“Does renal denervation represent a new treatment option for resistant hypertension?” Interventional News, Aug. 3, 2010, 2 pages. <http://www.cxvascular.com/in-latest-news/interventional-news---latest-news/does-renal-denervation-represent-a-new-treatment-option-for-resistant-hypertension>.
“Iberis—Renal Sympathetic Denervation System: Turning innovation into quality care.” [Brochure], Terumo Europe N.V., 2013, Europe, 3 pages.
“Neurotech Reports Announces Winners of Gold Electrode Awards.” Neurotech business report, 2009. 1 page. <http://www.neurotechreports.com/pages/goldelectrodes09.html>.
“Quick. Consistent. Controlled. OneShot renal Denervation System” [Brochure], Covidien: positive results for life, 2013, (n.l.), 4 pages.
“Renal Denervation Technology of Vessix Vascular, Inc. been acquired by Boston Scientific Corporation (BSX) to pay up to $425 Million.” Vessix Vascular Pharmaceutical Intelligence: A blog specializing in Pharmaceutical Intelligence and Analytics, Nov. 8, 2012, 21 pages, <http://pharmaceuticalintelligence.com/tag/vessix-vascular/>.
“The Edison Awards™” Edison Awards: Honoring Innovations & Innovators, 2013, 2 pages, <http://www.edisonawards.com/Awards.php>.
“The Future of Renal denervation for the Treatment of Resistant Hypertension.” St. Jude Medical, Inc., 2012, 12 pages.
“Vessix Renal Denervation System: So Advanced It's Simple.” [Brochure], Boston Scientific: Advancing science for life, 2013, 6 pages.
Asbell, Penny, “Conductive Keratoplasty For The Correction of Hyperopia.” Tr Am Ophth Soc, 2001, vol. 99, 10 pages.
Badoer, Emilio, “Cardiac afferents play the dominant role in renal nerve inhibition elicited by volume expansion in the rabbit.” Am J Physiol Regul Integr Comp Physiol, vol. 274, 1998, 7 pages.
Bengel, Frank, “Serial Assessment of Sympathetic Reinnervation After Orthotopic Heart Transplantation: A longitudinal Study Using PET and C-11 Hydroxyephedrine.” Circulation, vol. 99, 1999,7 pages.
Benito, F., et al. “Radiofrequency catheter ablation of accessory pathways in infants.” Heart, 78:160-162 (1997).
Bettmann, Michael, Carotid Stenting and Angioplasty: A Statement for Healthcare Professionals From the Councils on Cardiovascular Radiology, Stroke, Cardio-Thoracic and Vascular Surgery, Epidemiology and Prevention, and Clinical Cardiology, American Heart Association, Circulation, vol. 97, 1998, 4 pages.
Bohm, Michael et al., “Rationale and design of a large registry on renal denervation: the Global SYMPLICITY registry.” EuroIntervention, vol. 9, 2013, 9 pages.
Brosky, John, “EuroPCR 2013: CE-approved devices line up for renal denervation approval.” Medical Device Daily, May 28, 2013, 3 pages, <http://www.medicaldevicedaily.com/servlet/com.accumedia.web.Dispatcher?next=bioWorldHeadlines—article&forceid=83002>.
Davis, Mark et al., “Effectiveness of Renal Denervation Therapy for Resistant Hypertension.” Journal of the American College of Cardiology, vol. 62, No. 3, 2013, 11 pages.
Dibona, G.F. “Sympathetic nervous system and kidney in hypertension.” Nephrol and Hypertension, 11: 197-200 (2002).
Dubuc, M., et al., “Feasibility of cardiac cryoablation using a transvenous steerable electrode catheter.” J Intery Cardiac Electrophysiol, 2:285-292 (1998).
Final Office Action, U.S. Appl. No. 12/827,700, dated Feb. 5, 2013, 61 pages.
Geisler, Benjamin et al., “Cost-Effectiveness and Clinical Effectiveness of Catheter-Based Renal Denervation for Resistant Hypertension.” Journal of the American College of Cardiology, col. 60, No. 14, 2012, 7 pages.
Gelfand, M., et al., “Treatment of renal failure and hypertension.” U.S. Appl. No. 60/442,970, filed Jan. 29, 2003, 23 pages.
Gertner, Jon, “Meet the Tech Duo That's Revitalizing The Medical Device Industry.” Fast Company, Apr. 15, 2013, 6:00 AM, 17 pages, <http://www.fastcompany.com/3007845/meet-tech-duo-thats-revitalizing-medical-device-industry>.
Golwyn, D. H., Jr., et al. “Percutaneous Transcatheter Renal Ablation with Absolute Ethanol for Uncontrolled Hypertension or Nephrotic Syndrome: Results in 11 Patients with End-Stage Renal Disease.” JVIR, 8: 527-533 (1997).
Hall, W. H., et al. “Combined embolization and percutaneous radiofrequency ablation of a solid renal tumor.” Am. J. Roentgenol,174: 1592-1594 (2000).
Han, Y.-M, et al., “Renal artery ebolization with diluted hot contrast medium: An experimental study.” J Vasc Interv Radiol, 12: 862-868 (2001).
Hansen, J. M., et al. “The transplanted human kidney does not achieve functional reinnervation.” Clin. Sci, 87: 13-19 (1994).
Hendee, W. R. et al. “Use of Animals in Biomedical Research: The Challenge and Response.” American Medical Association White Paper (1988) 39 pages.
Hering, Dagmara et al., “Chronic kidney disease: role of sympathetic nervous system activation and potential benefits of renal denervation.” EuroIntervention, vol. 9, 2013, 9 pages.
Huang et al., “Renal denervation prevents and reverses hyperinsulinemia-induced hypertension in rats.” Hypertension 32 (1998) pp. 249-254.
Imimdtanz, “Medtronic awarded industry's highest honor for renal denervation system.” The official blog of Medtronic Australasia, Nov. 12, 2012, 2 pages, <http://97waterlooroad.wordpress.com/2012/11/12/medtronic-awarded-industrys-highest-honour-for-renal-denervation-system/>.
Kaiser, Chris, AHA Lists Year's Big Advances in CV Research, medpage Today, Dec. 18, 2012, 4 pages, <http://www.medpagetoday.com/Cardiology/PCI/36509>.
Kompanowska, E., et al., “Early Effects of renal denervation in the anaesthetised rat: Natriuresis and increased cortical blood flow.” J Physiol, 531. 2:527-534 (2001).
Lee, S.J., et al. “Ultrasonic energy in endoscopic surgery.” Yonsei Med J, 40:545-549 (1999).
Linz, Dominik et al., “Renal denervation suppresses ventricular arrhythmias during acute ventricular ischemia in pigs.” Heart Rhythm, vol. 0, No. 0, 2013, 6 pages.
Lustgarten, D.L.,et al., “Cryothermal ablation: Mechanism of tissue injury and current experience in the treatment of tachyarrhythmias.” Progr Cardiovasc Dis, 41:481-498 (1999).
Mabin, Tom et al., “First experience with endovascular ultrasound renal denervation for the treatment of resistant hypertension.” EuroIntervention, vol. 8, 2012, 5 pages.
Mahfoud, Felix et al., “Ambulatory Blood Pressure Changes after Renal Sympathetic Denervation in Patients with Resistant Hypertension.” Circulation, 2013, 25 pages.
Mahfoud, Felix et al., “Expert consensus document from the European Society of Cardiology on catheter-based renal denervation.” European Heart Journal, 2013, 9 pages.
Mahfoud, Felix et al., “Renal Hemodynamics and Renal Function After Catheter-Based Renal Sympathetic Denervation in Patients With Resistant Hypertension.” Hypertension, 2012, 6 pages.
Medical-Dictionary.com, Definition of “Animal Model,” http://medical-dictionary.com (search “Animal Model”), 2005, 1 page.
Medtronic, Inc., Annual Report (Form 10-K) (Jun. 28, 2011) 44 pages.
Millard, F. C., et al, “Renal Embolization for ablation of function in renal failure and hypertension.” Postgraduate Medical Journal, 65, 729-734, (1989).
Oliveira, V., et al., “Renal denervation normalizes pressure and baroreceptor reflex in high renin hypertension in conscious rats.” Hypertension, 19:II-17-II-21 (1992).
Ong, K. L., et al. “Prevalence, Awareness, Treatment, and Control of Hypertension Among United States Adults 1999-2004.” Hypertension, 49: 69-75 (2007) (originally published online Dec. 11, 2006).
Ormiston, John et al., “First-in-human use of the OneShot™ renal denervation system from Covidien.” EuroIntervention, vol. 8, 2013, 4 pages.
Ormiston, John et al., “Renal denervation for resistant hypertension using an irrigated radiofrequency balloon: 12-month results from the Renal Hypertension Ablation System (RHAS) trial.” EuroIntervention, vol. 9, 2013, 5 pages.
Pedersen, Amanda, “TCT 2012: Renal denervation device makers play show and tell.” Medical Device Daily, Oct. 26, 2012, 2 pages, <http://www.medicaldevicedaily.com/servlet/com.accumedia.web.Dispatcher?next=bioWorldHeadlines—article&forceid=80880>.
Peet, M., “Hypertension and its Surgical Treatment by bilateral supradiaphragmatic splanchnicectomy” Am J Surgery (1948) pp. 48-68.
Renal Denervation (RDN), Symplicity RDN System Common Q&A (2011), 4 pages, http://www.medtronic.com/rdn/mediakit/RDN%20FAQ.pdf.
Schauerte, P., et al. “Catheter ablation of cardiac autonomic nerves for prevention of vagal atrial fibrillation.” Circulation, 102:2774-2780 (2000).
Schlaich, Markus et al., “Renal Denervation in Human Hypertension: Mechanisms, Current Findings, and Future Prospects.” Curr Hypertens Rep, vol. 14, 2012, 7 pages.
Schmid, Axel et al., “Does Renal Artery Supply Indicate Treatment Success of Renal Denervation.” Cardiovasc Intervent Radiol, vol. 36, 2013, 5 pages.
Schmieder, Roland E. et al., “Updated ESH position paper on interventional therapy of resistant hypertension.” EuroIntervention, vol. 9, 2013, 9 pages.
Sievert, Horst, “Novelty Award EuroPCR 2010.” Euro PCR, 2010, 15 pages.
Solis-Herruzo et al., “Effects of lumbar sympathetic block on kidney function in cirrhotic patients with hepatorenal syndrome,” J. Hepatol. 5 (1987), pp. 167-173.
Stella, A., et al., “Effects of reversible renal denervation on haemodynamic and excretory functions on the ipsilateral and contralateral kidney in the cat.” Hypertension, 4:181-188 (1986).
Stouffer, G. A. et al., “Catheter-based renal denervation in the treatment of resistant hypertension.” Journal of Molecular and Cellular Cardiology, vol. 62, 2013, 6 pages.
Swartz, J.F., et al., “Radiofrequency endocardial catheter ablation of accessory atrioventricular pathway atrial insertion sites.” Circulation, 87: 487-499 (1993).
Uchida, F., et al., “Effect of radiofrequency catheter ablation on parasympathetic denervation: A comparison of three different ablation sites.” PACE, 21:2517-2521 (1998).
Verloop, W. L. et al., “Renal denervation: a new treatment option in resistant arterial hypertension.” Neth Heart J., Nov. 30, 2012, 6 pages, <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3547427/>.
Weinstock, M., et al., “Renal denervation prevents sodium retention and hypertension in salt sensitive rabbits with genetic baroreflex impairment.” Clinical Science, 90:287-293 (1996).
Wilcox, Josiah N., Scientific Basis Behind Renal Denervation for the Control of Hypertension, ICI 2012, Dec. 5-6, 2012. 38 pages.
Worthley, Stephen et al., “Safety and efficacy of a multi-electrode renal sympathetic denervation system in resistant hypertension: the EnligHTN I trial.” European Heart Journal, vol. 34, 2013, 9 pages.
Worthley, Stephen, “The St. Jude Renal Denervation System Technology and Clinical Review.” The University of Adelaide Australia, 2012, 24 pages.
Zuern, Christine S., “Impaired Cardiac Baroflex Sensitivity Predicts Response to Renal Sympathetic Denervation in Patients with Resistant Hypertension.” Journal of the American College of Cardiology, 2013, doi: 10.1016/j.jacc.2013.07.046, 24 pages.
Miller, Reed, “Finding A Future for Renal Denervation With Better Controlled Trials.” Pharma & Medtech Business Intelligence, Article # 01141006003, Oct. 6, 2014, 4 pages.
Papademetriou, Vasilios, “Renal Denervation and Symplicity HTN-3: “Dubium Sapientiae Initium” (Doubt Is the Beginning of Wisdom)”, Circulation Research, 2014; 115: 211-214.
Papademetriou, Vasilios et al., “Renal Nerve Ablation for Resistant Hypertension: How Did We Get Here, Present Status, and Future Directions.” Circulation. 2014; 129: 1440-1450.
Papademetriou, Vasilios et al., “Catheter-Based Renal Denervation for Resistant Hypertension: 12-Month Results of the EnligHTN I First-in-Human Study Using a Multielectrode Ablation System.” Hypertension. 2014; 64: 565-572.
Doumas, Michael et al., “Renal Nerve Ablation for Resistant Hypertension: The Dust Has Not Yet Settled.” The Journal of Clinical Hypertension. 2014; vol. 16, No. 6, 2 pages.
Messerli, Franz H. et al. “Renal Denervation for Resistant Hypertension: Dead or Alive?” Healio: Cardiology today's Intervention, May/Jun. 2014, 2 pages.
Allen, E.V., Sympathectomy for essential hypertension, Circulation, 1952, 6:131-140.
Bello-Reuss, E. et al., “Effects of Acute Unilateral Renal Denervation in the Rat,” Journal of Clinical Investigation, vol. 56, Jul. 1975, pp. 208-217.
Bello-Reuss, E. et al., “Effects of Renal Sympathetic Nerve Stimulation on Proximal Water and Sodium Reabsorption,” Journal of Clinical Investigation, vol. 57, Apr. 1976, pp. 1104-1107.
Bhandari, A. and Ellias, M., “Loin Pain Hematuria Syndrome: Pain Control with RFA to the Splanchanic Plexus,” The Pain Clinc, 2000, vol. 12, No. 4, pp. 323-327.
Curtis, John J. et al., “Surgical Therapy for Persistent Hypertension After Renal Transplantation” Transplantation, 31:125-128 (1981).
Dibona, Gerald F. et al., “Neural Control of Renal Function,” Physiological Reviews, vol. 77, No. 1, Jan. 1997, The American Physiological Society 1997, pp. 75-197.
Dibona, Gerald F., “Neural Control of the Kidney—Past, Present and Future,” Nov. 4, 2002, Novartis Lecture, Hypertension 2003, 41 part 2, 2002 American Heart Association, Inc., pp. 621-624.
Janssen, Ben J.A. et al., “Effects of Complete Renal Denervation and Selective Afferent Renal Denervation on the Hypertension Induced by Intrarenal Norepinephrine Infusion in Conscious Rats”, Journal of Hypertension 1989, 7: 447-455.
Katholi, Richard E., “Renal Nerves in the Pathogenesis of Hypertension in Experimental Animals and Humans,” Am J. Physiol. vol. 245, 1983, the American Physiological Society 1983, pp. F1-F14.
Krum, Henry et al., “Catheter-Based Renal Sympathetic Denervation for Resistant Hypertension: A Mulitcentre Safety and Proof-of Principle Cohort Study,” Lancet 2009; 373:1275-81.
Krum, et al., “Renal Sympathetic-Nerve Ablation for Uncontrolled Hypertension.” New England Journal of Med, Aug. 2009, 361; 9, 3 pages.
Luippold, Gerd et al., “Chronic Renal Denervation Prevents Glomerular Hyperfiltration in Diabetic Rats”, Nephrol Dial Transplant, vol. 19, No. 2, 2004, pp. 342-347.
Mahfoud et al. “Treatment strategies for resistant arterial hypertension” Dtsch Arztebl Int. 2011;108:725-731.
Osborn, et al., “Effect of Renal Nerve Stimulation on Renal Blood Flow Autoregulation and Antinatriuresis During Reductions in Renal Perfusion Pressure,” Proceedings of the Society for Experimental Biology and Medicine, vol. 168, 77-81, 1981.
Page, I.H. et al., “The Effect of Renal Denervation on Patients Suffering From Nephritis,” Feb. 27, 1935;443-458.
Page, I.H. et al., “The Effect of Renal Denervation on the Level of Arterial Blood Pressure and Renal Function in Essential Hypertension,” J. Clin Invest. 1934;14:27-30.
Rocha-Singh, “Catheter-Based Sympathetic Renal Denervation,” Endovascular Today, Aug. 2009, 4 pages.
Schlaich, M.P. et al., “Renal Denervation as a Therapeutic Approach for Hypertension: Novel Implications for an Old Concept,” Hypertension, 2009; 54:1195-1201.
Schlaich, M.P. et al., “Renal Sympathetic-Nerve Ablation for Uncontrolled Hypertension,” N Engl J Med 2009; 361(9): 932-934.
Smithwick, R.H. et al., “Splanchnicectomy for Essential Hypertension,” Journal Am Med Assn, 1953; 152:1501-1504.
Symplicity HTN-1 Investigators; Krum H, Barman N, Schlaich M, et al. Catheter-based renal sympathetic denervation for resistant hypertension: durability of blood pressure reduction out to 24 months. Hypertension. 2011;57(5):911-917.
Symplicity HTN-2 Investigators, “Renal Sympathetic Denervation in Patients with Treatment-Resistant Hypertension (The Symplicity HTN-2 Trial): A Randomised Controlled Trial”; Lancet, Dec. 4, 2010, vol. 376, pp. 1903-1909.
United States Renal Data System, USRDS 2003 Annual Data Report: Atlas of End-Stage Renal Disease in the United States, National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, 2003, 593 pages.
Valente, John F. et al., “Laparoscopic Renal Denervation for Intractable ADPKD-Related Pain”, Nephrol Dial Transplant (2001) 16: 1 page.
Wagner, C.D. et al., “Very Low Frequency Oscillations in Arterial Blood Pressure After Autonomic Blockade in Conscious Dogs,” Feb. 5, 1997, Am J Physiol Regul Integr Comp Physiol 1997, vol. 272, 1997 the American Physiological Society, pp. 2034-2039.
International Search Report and Written Opinion of International Application No. PCT/US2013/038036, dated Jan. 15, 2014, 24 pages.
European Search Report for European Application No. 13159256, dated Oct. 17, 2013, 6 pages.
510K Summary of CryoGen Cryosurgery System, filed with FDA Jul. 3, 1997—approved Oct. 1, 1997, 1997, 5 pages.
CO2/Gas Composite Regulator, Sep. 6, 2011, 2 pages. <http://www.genuineinnovations.com/composite-regulator.html>.
CryoGen SS&E: HerOption Uterine Cryoblatin Therapy System, filed with FDA Aug. 15, 2000 approved Apr. 20, 2001, 1999, 84 pages.
International Search Report and Written Opinion for International Application No. PCT/US2012/063411 dated Jun. 13, 2013, 13 pages.
Lura Harrison, Ph.D. et al., “Cryosurgical Ablation of the A-V Node-His Bundle—A New Method for Producing A-V Block,” Circulation, vol. 55, 1977 pp. 463-470.
Medical Grade Gas Dispenser, Sep. 6, 2011, 1 page, <http://www.abd-inc.com/Frame-904990-page1namepage904990.html?refresh=1205442262133>.
Sesia G. et al., “The use of nitrous oxide as a freezing agent in cryosurgery of the prostate,” International Surgery [Int Surg], vol. 53, 1970, pp. 82-90.
Special Order Only Thermal Dilution Injector, Obsolete Product, Sep. 6, 2011, 1 page, <http://www.abd-inc.com/Frame-904990-page1namepage904990.html?refresh=1205442262133>.
Torre, Douglas, MD, “Alternate Cryogens for Cryosurgery,” J. Derm. Surgery, Jun. 1975, pp. 56-58.
Votyna SV, “Cryocatheter-tourniquet,” Meditsinskaia Tekhnika [Med Tekh], vol. 6, 1976, pp. 47-48.
Ahmed, Humera et al., Renal Sympathetic Denervation Using an Irrigated Radiofrequency Ablation Catheter for the Management of Drug-Resistant Hypertension, JACC Cardiovascular Interventions, vol. 5, No. 7, 2012, pp. 758-765.
Avitall et al., “The creation of linear contiguous lesions in the atria with an expandable loop catheter,” Journal of the American College of Cardiology, 1999; 33; pp. 972-984.
Beale et al., “Minimally Invasive Treatment for Varicose Veins: A Review of Endovenous Laser Treatment and Radiofrequency Ablation”. Lower Extremity Wounds 3(4), 2004, 10 pages.
Blessing, Erwin et al., Cardiac Ablation and Renal Denervation Systems Have Distinct Purposes and Different Technical Requirements, JACC Cardiovascular Interventions, vol. 6, No. 3, 2013, 1 page.
ClinicalTrials.gov, Renal Denervation in Patients with uncontrolled Hypertension in Chinese (2011), 6pages. www.clinicaltrials.gov/ct2/show/NCT01390831.
Excerpt of Operator's Manual of Boston Scientific's EPT-1000 XP Cardiac Ablation Controller & Accessories, Version of Apr. 2003, (6 pages).
Excerpt of Operator's Manual of Boston Scientific's Maestro 30000 Cardiac Ablation System, Version of Oct. 17, 2005 , (4 pages).
Holmes et al., Pulmonary Vein Stenosis Complicating Ablation for Atrial Fibrillation: Clinical Spectrum and Interventional Considerations, JACC: Cardiovascular Interventions, 2: 4, 2009, 10 pages.
Kandarpa, Krishna et al., “Handbook of Interventional Radiologic Procedures”, Third Edition, pp. 194-210 (2002).
Mount Sinai School of Medicine clinical trial for Impact of Renal Sympathetic Denervation of Chronic Hypertension, Mar. 2013, 11 pages. http://clinicaltrials.gov/ct2/show/NCT01628198.
Opposition to European Patent No. EP1802370, Granted Jan. 5, 2011, Date of Opposition Oct. 5, 2011, 20 pages.
Opposition to European Patent No. EP2037840, Granted Dec. 7, 2011, Date of Opposition Sep. 7, 2012, 25 pages.
Opposition to European Patent No. EP2092957, Granted Jan. 5, 2011, Date of Opposition Oct. 5, 2011, 26 pages.
Oz, Mehmet, Pressure Relief, TIME, Jan. 9, 2012, 2 pages. <www.time.com/time/printout/0,8816,2103278,00.html>.
Papademetriou, Vasilios, Renal Sympathetic Denervation for the Treatment of Difficult-to-Control or Resistant Hypertension, Int. Journal of Hypertension, 2011, 8 pages.
Pieper et al., “Design and Implementation of a New Computerized System for Intraoperative Cardiac Mapping.” Journal of Applied Physiology, 1991, vol. 71, No. 4, pp. 1529-1539.
Prochnau, Dirk et al., Catheter-based renal denervation for drug-resistant hypertension by using a standard electrophysiology catheter; Euro Intervention 2012, vol. 7, pp. 1077-1080.
Purerfellner, Helmut et al., Incidence, Management, and Outcome in Significant Pulmonary Vein Stenosis Complicating Ablation for Atrial Fibrillation, Am. J. Cardiol , 93, Jun. 1, 2004, 4 pages.
Purerfellner, Helmut et al., Pulmonary Vein Stenosis Following Catheter Ablation of Atrial Fibrillation, Curr. Opin. Cardio. 20 :484-490, 2005.
Remo, Benjamin F. et al., “Safety and Efficacy of Renal Denervation as a Novel Treatment of Ventricular Tachycardia Storm in Patients with Cardiomyopathy.” Heart Rhythm, 2014, 11(4), 541-6.
Schneider, Peter A., “Endovascular Skills—Guidewire and Catheter Skills for Endovascular Surgery,” Second Edition Revised and Expanded, 10 pages, (2003).
ThermoCool Irrigated Catheter and Integrated Ablation System, Biosense Webster (2006), 6 pages.
Tsao, Hsuan-Ming, Evaluation of Pulmonary Vein Stenosis after Catheter Ablation of Atrial Fibrillation, Cardiac Electrophysiology Review, 6, 2002, 4 pages.
U.S. Appl. No. 60/852,787, filed Oct. 18, 2006, 112 pages.
Wittkampf et al., “Control of radiofrequency lesion size by power regulation,” Journal of the American Heart Associate, 1989, 80: pp. 962-968.
Zheng et al., “Comparison of the temperature profile and pathological effect at unipolar, bipolar and phased radiofrequency current configurations,” Journal of Interventional Cardiac Electrophysiology, 2001, pp. 401-410.
Dodge, et al., “Lumen Diameter of Normal Human Coronary Arteries Influence of Age, Sex, Anatomic Variation, and Left Ventricular Hypertrophy or Dilation”, Circulation, 1992, vol. 86 (1), pp. 232-246.
Doumas, et al., “Renal Nerve Ablation for Resistant Hypertension: The Dust Has Not Yet Settled.” The Journal of Clinical Hypertension. 2014; vol. 16, No. 6, 2 pages.
Opposition to European Patent No. 2,465,470, Granted Oct. 28, 2015, Date of Opposition Jul. 27, 2016, 34 pp.
U.S. Appl. No. 11/363,867, filed Feb. 27, 2006, 70 pp.
U.S. Appl. No. 60/813,589, filed Dec. 29, 2005, 62 pp.
Ureter, https://en.wikipedia.org/wiki/Ureter, Jun. 2016, 6 pp.
Related Publications (1)
Number Date Country
20160166305 A1 Jun 2016 US
Continuations (1)
Number Date Country
Parent 13458120 Apr 2012 US
Child 14967425 US