1. Technical Field of the Invention
The present invention relates to marine geophysics using electromagnetic detection of buried geological formations. The invention is particularly useful for determining whether a prospective petroleum reservoir indicated in seismics is oil-bearing, and also desirably the horizontal extension of the petroleum reservoir, and determining a range for some of the electrical properties of the petroleum reservoir. The depth, the extension and particularly the electrical properties may provide important information about whether a volume of oil in the reservoir may be distinguished from ubiquitous pore water that is generally present in most porous subterranean rocks.
More specifically, the invention relates to a method for generating very long-wavelength electromagnetic signals under the sea, and detecting electromagnetic waves under the sea, some of which waves have traveled downward, along and upward through geological layers under the sea, as indicated in
2. Description of the Related Art
Several geophysical and direct methods may be used for detecting the presence of a petroleum reservoir. The methods applied may be used in different sequences, depending on the amount of knowledge acquired from previous exploration steps. Magnetometry may be used to determine and map depths to the bedrock below a sedimentary basin, and is rapidly and cheaply measured. Gravity measurements may delineate volcanic stocks and sills that will have a positive gravity anomaly, and salt dome features will display a negative anomaly in gravity profiles and maps. A petroleum reservoir may display a negative gravity anomaly due to the fact that the petroleum fluids are of less density compared to the water that they displace, but such features are usually not of significant size to be directly detected, but may constitute a significantly measurable difference during production of the field. Gravity measurements are also rather rapidly acquired, but rather more time-consuming as compared to magnetometry.
Such electromagnetic prospecting may be used to delineate some geological layers of higher or lower resistivity than their surrounding geological formations. A transmitter antenna is used in the sea for transmitting electromagnetic waves that propagate through the sea and the geological formations. A small proportion of refracted and reflected electromagnetic energy will reach back to the seafloor and be detectable. The detected signals are analysed to indicate petroleum-bearing formations.
A major practical problem in marine electromagnetic geophysics is the fact that the sea is conductive, having a conductivity of about 0.3 Ohm-meter due to its salinity. The conductivity incurs significant signal attenuation as the electromagnetic waves propagate through the conductive saline water. Also a major proportion of the rocks from the seafloor and down through all the overburden are more or less conductive, having a conductivity that may vary from 0.3 for generally seawater-wet unconsolidated porous seafloor sediments, to 10 Ohm-meter for more consolidated sediments containing less salt and less ion mobility. However, the electrical properties of a petroleum-bearing rock are significantly different from a saline water-bearing rock. A petroleum bearing sandstone may have a conductivity of about 20-300 Ohm-meter. An deep waters, Ellingsrud et al. in U.S. Pat. No. 6,717,411 have used a transmitter in the form of a towed horizontally arranged dipole electrode pair of 100-1000 m separation and using a 1 Hz alternating current. The wavelength/of the transmission is indicated to be in the range
The sea depth used in Ellingsruds examples is 1000 m, and the resistivity of the overburden is 0.7 Ohm meter. For wavelengths through the overburden as preferably indicated
The preferred wavelengths indicated by Ellingsrud do not correspond with the indicated transmission frequency range indicated:
The actually used frequency in Ellingsrud's example is 1 Hz, giving an actual wavelength of 421 m if the resistivity of the overburden is 0.7 Ohm meter.
When towing the transmitter antenna near the seafloor at a sea depth of 1000 m like in Ellingsrud's example, due to the conductivity of the sea water, the air wave poses no significant problem. The sea depths relevant to our present invention may be about 50 to about 350 meters, far shallower than in the above-mentioned US Patent. The depth may even be as shallow as 20 meters or even 10 meters. The air wave is believed to be a significant problem when using a frequency of about 0.5 Hz, please see
One disadvantage of the known art is the use of sine wave pulses, in which the wave is a continuous wave, being difficult to maintain when produced in marine electrical generators that in practice shall be more or less short-circuited through transmitter antennas in the sea. A simpler signal source is sought in the present invention.
One solution to some of the above-mentioned problems is a method for determining electrical properties of a submarine petroleum fluid-bearing formation under overburden geological layers of thickness s under a seafloor of a sea, the method comprising the following steps:
In a preferred embodiment of the invention, a square pulse signal of frequency f=0.01 Hz to 1.10 Hz, preferably about 0.02 Hz is emitted. The square pulse signal has at least a harmonic component of 3*f detectable at said offset.
The invention is illustrated in the enclosed drawings, which are meant for illustration purposes only. The drawings shall not be construed to limit the scope of the invention, which shall be limited by the attached claims only.
a illustrates an imagined geological section of a sedimentary formation forming a petroleum reservoir, and having an overburden of about 500 m to 3000 m and a water depth of about 50 m to 350 m. The depth may be even as shallow as 20 or 10 meters. A ship tows a marine electromagnetic horizontally arranged signal source. The inbound leg is called the <<in towing>> portion of the curve with the transmitter approaching the receiver, and the outbound leg is correspondingly called <<out towing>>. Both reflected and refracted electromagnetic signal paths are shown between the transmitter and the receiver. Also indicated in
b is a simple illustration of the electromagnetic field as measured over one single receiver according to the field set-up of
(V/m)/(Am)=V/Am2,
and is a source-normalized amplitude often called “magnitude”.
a is such a normalized measurement curve of the horizontal in-line field for a transmitted frequency of 0.025 Hz, i.e. a period of 40 seconds, and a water depth of 128 m. The thickness of the model is about 1600 m overburden of resistivity 1 Ohm-meter, and the reservoir thickness of the model is about 100 m having a resistivity of 80 Ohm-meter. For hydrocarbon detection in the present case with more or less horizontal petroleum-bearing formations, the in-line response is considered more important than the cross line response. In areas with lithological complications like salt deposits, the cross-line response may be more important.
b is a corresponding normalized curve for a transmitted frequency of 0.05 Hz, i.e. a period of 20 seconds.
c is a corresponding normalized curve for a transmitted frequency of 0.10 Hz, i.e. a period of 10 seconds.
d is a corresponding normalized curve for a transmitted frequency of 0.20 Hz, giving a period of 5 seconds.
e represents the corresponding curve for 0.25 Hz, i.e. a period of 4 seconds.
f represents the curve for 0.5 Hz, i.e. a period of 2 seconds.
g is a normalized curve for 0.25 Hz and deep water, here 1024 m. It has been assembled on the same sheet as a copy of
a is a map of the Grane oilfield in the North Sea. The reservoir portion of the reservoir formation is roughly outlined. A north-south running electromagnetic survey line from 2003 is indicated across the map.
b is a normalized electrical magnitude plot as received on one single receiver, Rx12, for a transmitted frequency of 0.25 Hz.
c shows a summary plot of normalized electrical magnitude for all receivers. The abscissa is in meters. The receivers numbered 1 to 16 are indicated along the abscissa, and correspond to the profile line shown in
a is a corresponding survey map for two electric seabed logging lines conducted across the Grane field in 2004.
b is similar to
c is an electrical magnitude plot as received on one single receiver, Rx10, of line 2 of the Grane 2004 survey. The transmitted signal is a square pulse having a fundamental frequency of f=0.02 Hz, and thus harmonic frequencies of 3*f, 5*f, 71, and so on. The curves “O: above oil-bearing fm.” are compared to a signal registered at a reference station outside the reservoir, the “W: above water-bearing fm.” The displayed measured range is in meters from 3000 m to 12000 m offset for the station Rx10, and from 3000 m to about 8000 m for the reference station. The ordinate axis is in log amplitude of the source-normalised received signal, from 10−13.5 V/Am2 to 10−11 V/Am2.
The invention is a method for determining electrical properties of a submarine petroleum fluid bearing formation 1 having an overburden 2 of geological layers 2 thickness s and having a seafloor 3 covered in the area of interest by a sea 4.
The method comprises the following steps:
One or more components of said detected signals 12 is analyzed for offset distances between about 3 km to about 10 km between the transmitter 9 and receivers 8. It is expected that for such offsets, said detected signals 12 will differ significantly from a corresponding signal 12′ that would be detected from a similar but water bearing formation 1, said differing signal indicating that said formation 1 is petroleum-fluid bearing.
Towing Method
According to the method of the invention, said one or more receivers 8 are arranged on said seafloor 3, and said preferably one transmitter 9 is towed in said sea 4 by a marine vessel 5, either a surface vessel or a submarine vessel. Said transmitter 9 may be towed on said seafloor 3, but in order not to enforce a destructive electrical current onto a receiver 8 while being moved near the necessarily very sensitive electrical receiver 8, the transmitter 9 could be towed 30 to 70 meters above said receiver 8 if the track is more or less directly over the receiver. Alternatively, according to the method of the invention, said receivers 8 may be towed in said sea 4, said receivers being arranged as one single towed receiver 8 or several receivers 8 arranged on a cable towed after a marine vessel 5.
According to an alternative embodiment of the invention, said receivers 8 may be towed on said seafloor 3.
Analysis
The analysis may be conducted with respect to amplitude of said detected signals 12, using so-called 1-D modelling as illustrated in
f represents the curve for 0.5 Hz, i.e. a period of 2 seconds at a sea depth of 128 meters. The thickness of the overburden in the model is about 1600 m of resistivity 1 Ohm-meter, and the reservoir thickness of the model is 100 m of 80 Ohm-meter resistivity. This illustrates one major problem using such high frequencies at relatively shallow water compared to the thickness of the overburden: the response in the source-normalized amplitude curve is negligible. This is modelled data, and real data would have natural resistivity variations with depth that could probably hide such small signal anomalies below the noise level.
Above
d is a corresponding normalized curve for a transmitted frequency of 0.20 Hz, giving a period of 5 seconds. The depth is as with the other models of
The changes of the curves are further seen with decreasing frequencies.
The effects indicated in
The preliminary strongest maximum is illustrated in
It can be seen from the calculated source-normalized amplitude curves that using very low frequencies in the range from about 0.025 Hz to about 0.25 Hz, far more significant anomalies may be found using a model of a high-resistivity formation below an overburden of ordinary resistivity, and shallow sea water. Knowing the depth and the thickness of the potentially petroleum-bearing formation from seismic analysis, but not the resistivity, that particular question may be given an answer using the method according to the invention.
g is a normalized curve for 0.25 Hz and deep water, here 1024 m. It has been assembled on the same sheet as a copy of
Signal Emission
According to a preferred embodiment of the invention, said transmitted signal pulses 11 being generally square pulses comprising first, harmonic cosine waves being detectable far away. One advantage using low frequencies according to the invention is that also third harmonic waves and fifth harmonic waves may be detectable at said intermediate distances. This makes it possible to conduct independent analyses for different frequencies. Using a base frequency for the transmitted square pulse of 0.02 Hz, one would receive a remote signal composed of the following:
Below are listed propagation velocity and electromagnetic wavelength for some values of overburden resistivity and emitted low frequencies.
It may be seen that the wavelengths used for 1, 2 or 3 Ohm-meter resistivity in the overburden sending with a very low frequency of 0.02 Hz result in extremely long wavelengths of between 22400 m and 38700 m.
Transmitter Antenna
According to the invention, said transmitter antenna 9 has an equivalent product of current I times length L component in the horizontal direction of between about 10000 Am, preferably up to 300000 Am or more, in general horizontally, as explained below. The transmitter antenna 9 should preferably be arranged to carry an electrical current between about 80 A and 2000 A, and have a length of 50 to 500 m. Transmitting the signal may then comprise simply producing a DC of, say, about 80 A to about 2000 A, preferably in the range from 100 A to 1000 A, and sending the direct current through the two transmitter electrodes 9A, 9B arranged about 5-70 m above the seafloor separated by a generally horizontal distance of about 50 m to about 500 m, preferably about 100 to about 300 m, producing an equivalent product of about 400 Am to about 1000000 Am, preferably from 10000 Am to 300000 Am. Using a base frequency for the transmitted square pulse of 0.02 Hz as used in the present example, i.e. having a period of 50 s, one may simply reverse the electrical current each 25 second to produce the electrical square pulse of length 50 s desired.
Results
a is a map of the electromagnetic seabed logging program in 2003 over the Grane oilfield in the North Sea. The reservoir portion of the reservoir formation is roughly outlined. A north-south running electromagnetic sounding line is indicated across the map. Receiver stations 12, 13, 14, 15, and 16 are placed in the portion of the profile across the northern limits of the oil-baring formation in this profile. Receiver stations 1-11 are placed in the portions of the profile across the southern limits of the oil-bearing formation in this profile. Over the central portions of profile over the petroleum-bearing formation of the Grane field, no receivers are placed.
b is a normalized electrical magnitude plot as received on one single receiver, Rx12, for a transmitted frequency of 0.25 Hz. The <<water>>-curve and the <<HC>>-curve shows a small but significant difference between 4 and about 7 km in these real data.
c shows a summary plot of normalized electrical magnitude for all receivers. The abscissa is in meters. The receivers 1-16 are indicated along the abscissa, and correspond to the profile line shown in
c is an electrical magnitude plot as received on one single receiver, Rx10, of line 2 of the Grane 2004 survey. The transmitted signal is a square pulse having a fundamental frequency of f=0.02 Hz, and thus the emitted signal contains harmonic frequencies of 31, 51, 71, and so on. Station Rx10 is situated above an oil-bearing portion of the reservoir. The curves are also compared to a signal registered at a reference station outside the reservoir, which may be used for normalizing. The displayed measured range is in meters from 3000 m to 12000 m offset for the station Rx10, and from 3000 m to about 8000 m for the reference station. The ordinate axis is in log amplitude of the source-normalized received signal, from 10−13.5 V/Am2 to 10−11 V/Am2. Even without normalizing the received signals, the received fundamental frequency signal f=0.02 Hz and the odd harmonics filtered 31=0.06 Hz and 51=0.10 Hz, clearly display a response that is generally higher than the signal from the reference station. Beyond 8000 m no reference signal for comparison has been plotted. The f=0.02 Hz “above oil” signal over the oil-bearing portion of the formation is distinctly higher than the reference signal between about 5000 m and 8000 m. The f=0.02 Hz signal is so far in rough agreement with the range of Which the theoretical curve of 0.025 Hz of
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/NO2006/000007 | 1/9/2006 | WO | 00 | 9/12/2007 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2006/073315 | 7/13/2006 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4616184 | Lee et al. | Oct 1986 | A |
6339333 | Kuo | Jan 2002 | B1 |
6628119 | Eidesmo et al. | Sep 2003 | B1 |
20030052685 | Ellingsrud et al. | Mar 2003 | A1 |
Number | Date | Country |
---|---|---|
1122998 | Mar 1993 | RU |
1805425 | Nov 1984 | SU |
03048812 | Jun 2003 | WO |
2004083898 | Sep 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20090267608 A1 | Oct 2009 | US |