Shampoo composition

Abstract
A stable mild shampoo composition delivering consumer desired wet conditioning, moisture feel and viscosity. The shampoo may contain 5 wt % to 35 wt % of alkyl polyglucoside; 0.15 wt % to 1.05% sclerotium gum, and 0.15 wt % to 1.05% of a cationic polymer. The shampoo has a viscosity of 0.6 Pa-s to 20 Pa-s, which allows for ease of use by the consumer. It may be desirable for the shampoo to contain less than 1 wt % ionic surfactant.
Description
FIELD

The present disclosure relates to mild shampoo compositions comprising alkyl polyglucoside, sclerotium gum, and a cationic polymer which deliver consumer desired wet conditioning and adequate viscosity for ease of use.


BACKGROUND

Human hair becomes soiled due to contact with the surrounding environment and from sebum secreted by the scalp. Soiled hair has a dirty feel and an unattractive appearance. Application and washing of the soiled hair with a shampoo composition can restore hair to a clean and attractive appearance by removing oil and other soils from the hair. Known shampoo compositions typically remove oil and soil from hair with anionic surfactants. Shampoos including anionic surfactants, however, may result in a number of undesirable characteristics such as poor quality of hair feel. Cationic polymers are commonly used in anionic surfactant cleansing compositions to provide moisturization and wet detangle to hair. Non-ionic surfactants are known for mildness on skin but are also known to be difficult to use in combination with charged polymers (cationic polymers) resulting in an unstable composition. Additionally, non-ionic surfactant systems are typically thin (low viscosity) and may need a thickening polymer to increase viscosity to prevent solution dripping off consumers hands prior to application to hair. However, the combination of cationic polymer and a commonly used thickener such as guar gum typically results in an unstable composition. Surprisingly it has been found that sclerotium gum with the unique triple helix structure is able to stabilize cationic polymer to achieve a single-phase stable cleansing composition delivering a range of desired wet conditioning benefit and desired viscosity.


It is desirable to have a shampoo composition that cleans without the use of anionic surfactants and also results in good in use physical properties, while also delivering the desired hair benefits. Surprisingly, it has been found that a shampoo composition comprising a nonionic surfactant alkyl polyglucoside, sclerotium gum, and a cationic polymer is phase stable and delivers consumer desired wet conditioning and adequate viscosity for ease of use.


SUMMARY

A shampoo composition comprising 5 wt % to 35 wt % of alkyl polyglucoside; 0.15 wt % to 1.05% sclerotium gum, and 0.15 wt % to 1.05% of a cationic polymer, wherein the shampoo composition has a viscosity of 0.6 Pa-s to 20 Pa-s, and wherein the shampoo composition comprises less than 1 wt % ionic surfactant.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates an examples of a typical sclerotium gum structure.



FIG. 2 illustrates an example of a β-(1,3)-β(1,6) glucan structure exhibiting the (3:1) side branching ratio of scleroglucan.



FIG. 3 illustrates an example of a tridimensional conformation of a scleroglucan triplex.





DETAILED DESCRIPTION

While the specification concludes with claims which particularly point out and distinctly claim the invention, it is believed the present disclosure will be better understood from the following description.


Definitions


In all embodiments of the present disclosure, all percentages are by weight of the total composition, unless specifically stated otherwise. All ratios are weight ratios, unless specifically stated otherwise. All ranges are inclusive and combinable. The number of significant digits conveys neither a limitation on the indicated amounts nor on the accuracy of the measurements. All numerical amounts are understood to be modified by the word “about” unless otherwise specifically indicated. Unless otherwise indicated, all measurements are understood to be made at 25° C. and at ambient conditions, where “ambient conditions” means conditions under one atmosphere of pressure and at 50% relative humidity. All such weights as they pertain to listed ingredients are based on the active level and do not include carriers or by-products that may be included in commercially available materials, unless otherwise specified.


As used herein, “molecular weight” or “Molecular weight” refers to the weight average molecular weight unless otherwise stated. Molecular weight is measured using industry standard method, gel permeation chromatography (“GPC”).


The term “charge density,” as used herein, refers to the ratio of the number of positive charges on a polymer to the molecular weight of said polymer.


The term “comprising,” as used herein, means that other steps and other ingredients which do not affect the end result can be added. This term encompasses the terms “consisting of” and “consisting essentially of.” The compositions and methods/processes of the present disclosure can comprise, consist of, and consist essentially of the elements and limitations of the invention described herein, as well as any of the additional or optional ingredients, components, steps, or limitations described herein.


The term “polymer,” as used herein, includes materials whether made by polymerization of one type of monomer or made by two (i.e., copolymers) or more types of monomers.


The term “suitable for application to human hair,” as used herein, means that the personal care compositions or components thereof, are acceptable for use in contact with human hair and the scalp and skin without undue toxicity, incompatibility, instability, allergic response, and the like.


The term “water soluble,” as used herein, means that the material is soluble in water. The material can be soluble at 25° C. at a concentration of 0.1% by weight of the water solvent, at 1% by weight of the water solvent, at 5% by weight of the water solvent, and at 15% or more by weight of the water solvent.


The terms “sulfate free” and “substantially free of sulfates” means essentially free of sulfate-containing compounds except as otherwise incidentally incorporated as minor components. The term “sulfated surfactants” means surfactants which contain a sulfate group. The term “substantially free of sulfated surfactants” means essentially free of surfactants containing a sulfate group except as otherwise incidentally incorporated as minor components.


Shampoo Composition


The shampoo composition as described herein provides consumer desired hair conditioning feel, and the shampoo composition is stable and has a viscosity which delivers a good in use experience. The shampoo composition comprises a nonionic surfactant such as an alkyl polyglucoside. The shampoo composition further comprises sclerotium gum, and a cationic polymer. This composition remains phase stable and has good viscosity and continues to provide desired lather for cleaning, quick rinse and clean hair feel. Suitable viscosity of the shampoo composition is 0.6 Pa-s to 20 Pa-S, 0.7 Pa-s to 18 Pa-s, 0.8 Pa-s to 18 Pa-s, and 1.0 Pa-s to 16 Pa-s.


The shampoo composition is substantially free of ionic surfactant, including sodium alkyl sulfate, sodium cocoyl isethionate, sodium lauroyl sarcosinate, cocamidopropyl betaine, sodium lauroamphoacetate, cetyltrimethylammonium chloride, behenyltrimethylammonium chloride and mixtures thereof. As used herein, substantially free of ionic surfactant means comprises less than 1 wt %, 0 wt % to 1 wt %, 0 wt % to 0.5 wt %, 0.1 wt % to 0.2 wt %, and alternatively 0 wt % to 0.3 wt % of ionic surfactant.


Non-Ionic Surfactant


The shampoo composition comprises 5% to 35% of the non-ionic surfactant alkyl polyglucoside. The shampoo composition comprises 5 wt % to 35 wt % of alkyl polyglucoside, 5 wt % to 25 wt % of alkyl polyglucoside, 7 wt % to 20 wt % of alkyl polyglucoside, and any combination thereof. The non-ionic surfactant can be a polyglucoside selected from decyl glucoside, caprylyl glucoside, caprylyl/capryl glucoside, undecyl glucoside, octyl glucoside, and mixtures thereof.


The non-ionic surfactant can be an alkyl polyglucoside having the structure:




embedded image



where “R” is an alkyl or alkenyl group having 8 to 20 carbons, and “m” is degree of polymerization of from 1 to 5. Alternatively, the R is from 8 to 16 carbons, and alternatively wherein the R is from 8 to 12 carbons.


The non-ionic surfactant can be a decyl glucoside having the structure:




embedded image



where R is a C10 alkyl or alkenyl group and the degree of polymerization (m) is 1.


Sclerotium Gum


The shampoo composition comprises 0.15 wt % to 1.05 wt % sclerotium gum, 0.15 wt % to 1.0 wt % sclerotium gum, 0.2 wt % to 0.8 wt % sclerotium gum, 0.4 wt % to 0.8 wt % sclerotium gum, and/or 0.4 wt % to 0.6 wt % sclerotium gum, and any combination thereof. Sclerotium gum is also called scleroglucan, and it is a branched polysaccharide. In some instances, the primary structure of the scleroglucan consists of glucose molecules linked by β-(1,3) linkage, and every third glucose molecule in the primary structure contains an additional glucose molecule linked by a β-(1,6) linkage. In certain solutions, scleroglucan forms a triple helix shape.



FIG. 1 shows an example of a typical sclerotium gum structure. FIG. 2 shows an example of a β-(1,3)-β-(1,6) glucan structure exhibiting the (3:1) side branching ratio of scleroglucan (Martin et al., 2007). FIG. 3 shows an example of a tridimensional conformation of a scleroglucan triplex (Crescenzi et al., 1988). Specific examples of sclerotium gum include Amigum ER commercially available from Alban Muller and Actigum CS 11 QD commercially available from Cargill.


Cationic Polymer


A shampoo composition can include a cationic polymer for wet conditioning benefits. Suitable cationic polymers can include: (a) a cationic guar polymer, (b) a cationic non-guar galactomannan polymer, (c) a cationic starch polymer, (d) a cationic copolymer of acrylamide monomers and cationic monomers, (e) a synthetic, non-crosslinked, cationic polymer, which may or may not form lyotropic liquid crystals upon combination with the detersive surfactant, and (f) a cationic cellulose polymer. In certain examples, more than one cationic polymer can be included.


A cationic polymer can be included by weight of the shampoo composition at 0.05% to 3%, 0.075% to 2.0%, or at 0.1% to 1.0%. Cationic polymers can have cationic charge densities of 0.9 meq/g or more, 1.2 meq/g or more, and 1.5 meq/g or more. However, cationic charge density can also be 7 meq/g or less and alternatively 5 meq/g or less. The charge densities can be measured at the pH of intended use of the shampoo composition. (e.g., at pH 3 to pH 9; or pH 4 to pH 8). The average molecular weight of cationic polymers can generally be between 10,000 and 10 million, between 50,000 and 5 million, and between 100,000 and 3 million, and between 100,000 and 2.5 million. Low molecular weight cationic polymers can be used. Low molecular weight cationic polymers can have greater translucency in the liquid carrier of a shampoo composition. The cationic polymer can be a single type, such as the cationic guar polymer guar hydroxypropyltrimonium chloride having a weight average molecular weight of 2.5 million g/mol or less, and the shampoo composition can be substantially free of additional cationic polymers. As used herein, substantially free of additional cationic polymers means 0 to 0.05 of an additional cationic polymer.


Cationic Guar Polymer


The cationic polymer can be a cationic guar polymer, which is a cationically substituted galactomannan (guar) gum derivative. Suitable guar gums for guar gum derivatives can be obtained as a naturally occurring material from the seeds of the guar plant. As can be appreciated, the guar molecule is a straight chain mannan which is branched at regular intervals with single membered galactose units on alternative mannose units. The mannose units are linked to each other by means of β(1-4) glycosidic linkages. The galactose branching arises by way of an α(1-6) linkage. Cationic derivatives of the guar gums can be obtained through reactions between the hydroxyl groups of the polygalactomannan and reactive quaternary ammonium compounds. The degree of substitution of the cationic groups onto the guar structure can be sufficient to provide the requisite cationic charge density described above.


A cationic guar polymer can have a weight average molecular weight (“M.Wt.”) of less than 2.5 million g/mol, and can have a charge density 0.05 meq/g to 2.5 meq/g. Alternatively, the cationic guar polymer can have a weight average M.Wt. of less than 1.5 million g/mol, 150 thousand g/mol to 1.5 million g/mol, 200 thousand g/mol to 1.5 million g/mol, 300 thousand g/mol to 1.5 million g/mol, and 700,000 thousand g/mol to 1.5 million g/mol. The cationic guar polymer can have a charge density 0.2 meq/g to 2.2 meq/g, 0.3 meq/g to 2.0 meq/g, 0.4 meq/g to 1.8 meq/g; and 0.5 meq/g to 1.7 meq/g.


A cationic guar polymer can have a weight average M.Wt. of less than 1 million g/mol, and can have a charge density 0.1 meq/g to 2.5 meq/g. A cationic guar polymer can have a weight average M.Wt. of less than 900 thousand g/mol, 150 thousand to 800 thousand g/mol, 200 thousand g/mol to 700 thousand g/mol, 300 thousand to 700 thousand g/mol, 400 thousand to 600 thousand g/mol, 150 thousand g/mol to 800 thousand g/mol, 200 thousand g/mol to 700 thousand g/mol, 300 thousand g/mol to 700 thousand g/mol, and 400 thousand g/mol to 600 thousand g/mol. A cationic guar polymer has a charge density 0.2 meq/g to 2.2 meq/g, 0.3 meq/g to 2.0 meq/g, 0.4 meq/g to 1.8 meq/g; and 0.5 meq/g to 1.5 meq/g.


A shampoo composition can include 0.01% to less than 0.7%, by weight of the shampoo composition of a cationic guar polymer, 0.04% to 0.55%, by weight, 0.08% to 0.5%, by weight, 0.16% to 0.5%, by weight, 0.2% to 0.5%, by weight, 0.3% to 0.5%, by weight, and 0.4% to 0.5%, by weight.


The cationic guar polymer can be formed from quaternary ammonium compounds which conform to general Formula II:




embedded image



where R3, R4 and R5 are methyl or ethyl groups, and R6 is either an epoxyalkyl group of the general Formula III:




embedded image



or R6 is a halohydrin group of the general Formula IV:




embedded image



wherein R7 is a C1 to C3 alkylene; X is chlorine or bromine, and Z is an anion such as Cl—, Br—, I— or HSO4.


Suitable cationic guar polymers can conform to the general formula V:




embedded image



wherein R8 is guar gum; and wherein R4, R5, R6 and R7 are as defined above; and wherein Z is a halogen.


Suitable cationic guar polymers can conform to Formula VI:




embedded image



wherein R8 is guar gum.


Suitable cationic guar polymers can also include cationic guar gum derivatives, such as guar hydroxypropyltrimonium chloride. Suitable examples of guar hydroxypropyltrimonium chlorides can include the Jaguar® series commercially available from Solvay S.A., Hi-Care Series from Rhodia, and N-Hance and AquaCat from Ashland Inc. Jaguar® C-500 has a charge density of 0.8 meq/g and a M.Wt. of 500,000 g/mole; Jaguar® C-17 has a cationic charge density of 0.6 meq/g and a M.Wt. of 2.2 million g/mol; Jaguar® C 13S has a M.Wt. of 2.2 million g/mol and a cationic charge density of 0.8 meq/g; Hi-Care 1000 has a charge density of 0.7 meq/g and a M.Wt. of 600,000 g/mole; N-Hance 3269 and N-Hance 3270, have a charge density of 0.7 meq/g and a M.Wt. of 425,000 g/mole; N-Hance 3196 has a charge density of 0.8 meq/g and a M.Wt. of 1,100,000 g/mole; and AquaCat CG518 has a charge density of 0.9 meq/g and a M.Wt. of 50,000 g/mole. N-Hance BF-13 and N-Hance BF-17 are borate (boron) free guar polymers. N-Hance BF-13 has a charge density of 1.1 meq/g and M.W.t of 800,000 and N-Hance BF-17 has a charge density of 1.7 meq/g and M.W.t of 800,000.


Cationic Non-Guar Galactomannan Polymer


The cationic polymer can be a galactomannan polymer derivative. Suitable galactomannan polymer can have a mannose to galactose ratio of greater than 2:1 on a monomer-to-monomer basis and can be a cationic galactomannan polymer derivative or an amphoteric galactomannan polymer derivative having a net positive charge. As used herein, the term “cationic galactomannan” refers to a galactomannan polymer to which a cationic group is added. The term “amphoteric galactomannan” refers to a galactomannan polymer to which a cationic group and an anionic group are added such that the polymer has a net positive charge.


Galactomannan polymers can be present in the endosperm of seeds of the Leguminosae family Galactomannan polymers are made up of a combination of mannose monomers and galactose monomers. The galactomannan molecule is a straight chain mannan branched at regular intervals with single membered galactose units on specific mannose units. The mannose units are linked to each other by means of β (1-4) glycosidic linkages. The galactose branching arises by way of an α (1-6) linkage. The ratio of mannose monomers to galactose monomers varies according to the species of the plant and can be affected by climate. Non-guar galactomannan polymer derivatives can have a ratio of mannose to galactose of greater than 2:1 on a monomer to monomer basis. Suitable ratios of mannose to galactose can also be greater than 3:1 or greater than 4:1. Analysis of mannose to galactose ratios is well known in the art and is typically based on the measurement of the galactose content.


The gum for use in preparing the non-guar galactomannan polymer derivatives can be obtained from naturally occurring materials such as seeds or beans from plants. Examples of various non-guar galactomannan polymers include Tara gum (3 parts mannose/1 part galactose), Locust bean or Carob (4 parts mannose/1 part galactose), and Cassia gum (5 parts mannose/1 part galactose).


A non-guar galactomannan polymer derivative can have a M. Wt. 1,000 g/mol to 10,000,000 g/mol, and a M.Wt. 5,000 g/mol to 3,000,000 g/mol.


The shampoo compositions described herein can include galactomannan polymer derivatives which have a cationic charge density 0.5 meq/g to 7 meq/g. The galactomannan polymer derivatives can have a cationic charge density 1 meq/g to 5 meq/g. The degree of substitution of the cationic groups onto the galactomannan structure can be sufficient to provide the requisite cationic charge density.


A galactomannan polymer derivative can be a cationic derivative of the non-guar galactomannan polymer, which is obtained by reaction between the hydroxyl groups of the polygalactomannan polymer and reactive quaternary ammonium compounds. Suitable quaternary ammonium compounds for use in forming the cationic galactomannan polymer derivatives include those conforming to the general Formulas II to VI, as defined above.


Cationic non-guar galactomannan polymer derivatives formed from the reagents described above can be represented by the general Formula VII:




embedded image



wherein R is the gum. The cationic galactomannan derivative can be a gum hydroxypropyltrimethylammonium chloride, which can be more specifically represented by the general Formula VIII:




embedded image


The galactomannan polymer derivative can be an amphoteric galactomannan polymer derivative having a net positive charge, obtained when the cationic galactomannan polymer derivative further comprises an anionic group.


A cationic non-guar galactomannan can have a ratio of mannose to galactose which is greater than 4:1, a M.Wt. of 100,000 g/mol to 500,000 g/mol, a M.Wt. of 50,000 g/mol to 400,000 g/mol, and a cationic charge density 1 meq/g to 5 meq/g, and 2 meq/g to 4 meq/g.


Shampoo compositions can include at least 0.05% of a galactomannan polymer derivative by weight of the composition. The shampoo compositions can include 0.05% to 2%, by weight of the composition, of a galactomannan polymer derivative.


Cationic Starch Polymers


Suitable cationic polymers can also be water-soluble cationically modified starch polymers. As used herein, the term “cationically modified starch” refers to a starch to which a cationic group is added prior to degradation of the starch to a smaller molecular weight, or wherein a cationic group is added after modification of the starch to achieve a desired molecular weight. The definition of the term “cationically modified starch” also includes amphoterically modified starch. The term “amphoterically modified starch” refers to a starch hydrolysate to which a cationic group and an anionic group are added.


The shampoo compositions described herein can include cationically modified starch polymers at a range of 0.01% to 10%, and/or 0.05% to 5%, by weight of the composition.


The cationically modified starch polymers disclosed herein have a percent of bound nitrogen of 0.5% to 4%.


The cationically modified starch polymers can have a molecular weight 850,000 g/mol to 15,000,000 g/mol and 900,000 g/mol to 5,000,000 g/mol.


Cationically modified starch polymers can have a charge density of 0.2 meq/g to 5 meq/g, and 0.2 meq/g to 2 meq/g. The chemical modification to obtain such a charge density can include the addition of amino and/or ammonium groups into the starch molecules. Non-limiting examples of such ammonium groups can include substituents such as hydroxypropyl trimmonium chloride, trimethylhydroxypropyl ammonium chloride, dimethylstearylhydroxypropyl ammonium chloride, and dimethyldodecylhydroxypropyl ammonium chloride. Further details are described in Solarek, D. B., Cationic Starches in Modified Starches: Properties and Uses, Wurzburg, O. B., Ed., CRC Press, Inc., Boca Raton, Fla. 1986, pp 113-125 which is hereby incorporated by reference. The cationic groups can be added to the starch prior to degradation to a smaller molecular weight or the cationic groups may be added after such modification.


A cationically modified starch polymer can have a degree of substitution of a cationic group 0.2 to 2.5. As used herein, the “degree of substitution” of the cationically modified starch polymers is an average measure of the number of hydroxyl groups on each anhydroglucose unit which is derivatized by substituent groups. Since each anhydroglucose unit has three potential hydroxyl groups available for substitution, the maximum possible degree of substitution is 3. The degree of substitution is expressed as the number of moles of substituent groups per mole of anhydroglucose unit, on a molar average basis. The degree of substitution can be determined using proton nuclear magnetic resonance spectroscopy (“1H NMR”) methods well known in the art. Suitable 1H NMR techniques include those described in “Observation on NMR Spectra of Starches in Dimethyl Sulfoxide, Iodine-Complexing, and Solvating in Water-Dimethyl Sulfoxide”, Qin-Ji Peng and Arthur S. Perlin, Carbohydrate Research, 160 (1987), 57-72; and “An Approach to the Structural Analysis of Oligosaccharides by NMR Spectroscopy”, J. Howard Bradbury and J. Grant Collins, Carbohydrate Research, 71, (1979), 15-25.


The source of starch before chemical modification can be selected from a variety of sources such as tubers, legumes, cereal, and grains. For example, starch sources can include corn starch, wheat starch, rice starch, waxy corn starch, oat starch, cassaya starch, waxy barley, waxy rice starch, glutenous rice starch, sweet rice starch, amioca, potato starch, tapioca starch, oat starch, sago starch, sweet rice, or mixtures thereof. Suitable cationically modified starch polymers can be selected from degraded cationic maize starch, cationic tapioca, cationic potato starch, and mixtures thereof. Cationically modified starch polymers are cationic corn starch and cationic tapioca.


The starch, prior to degradation or after modification to a smaller molecular weight, can include one or more additional modifications. For example, these modifications may include cross-linking, stabilization reactions, phosphorylations, and hydrolyzations. Stabilization reactions can include alkylation and esterification.


Cationically modified starch polymers can be included in a shampoo composition in the form of hydrolyzed starch (e.g., acid, enzyme, or alkaline degradation), oxidized starch (e.g., peroxide, peracid, hypochlorite, alkaline, or any other oxidizing agent), physically/mechanically degraded starch (e.g., via the thermo-mechanical energy input of the processing equipment), or combinations thereof.


The starch can be readily soluble in water and can form a substantially translucent solution in water. The transparency of the composition is measured by Ultra-Violet/Visible (“UV/VIS”) spectrophotometry, which determines the absorption or transmission of UV/VIS light by a sample, using a Gretag Macbeth Colorimeter Color. A light wavelength of 600 nm has been shown to be adequate for characterizing the degree of clarity of shampoo compositions.


Cationic Copolymer of an Acrylamide Monomer and a Cationic Monomer


A shampoo composition can include a cationic copolymer of an acrylamide monomer and a cationic monomer, wherein the copolymer has a charge density of 1.0 meq/g to 3.0 meq/g. The cationic copolymer can be a synthetic cationic copolymer of acrylamide monomers and cationic monomers.


Suitable cationic polymers can include:


(i) an acrylamide monomer of the following Formula IX:




embedded image



where R9 is H or C1-4 alkyl; and R19 and R11 are independently selected from the group consisting of H, C1-4 alkyl, CH2OCH3, CH2OCH2CH(CH3)2, and phenyl, or together are C3-6 cycloalkyl; and


(ii) a cationic monomer conforming to Formula X:




embedded image



where k=1, each of v, v′, and v″ is independently an integer of from 1 to 6, w is zero or an integer of from 1 to 10, and X is an anion.


A cationic monomer can conform to Formula X where k=1, v=3 and w=0, z=1 and X is Cl to form the following structure (Formula XI):




embedded image



As can be appreciated, the above structure can be referred to as diquat.


A cationic monomer can conform to Formula X wherein v and v″ are each 3, v′=1, w=1, y=1 and X is Cl, to form the following structure of Formula XII:




embedded image



The structure of Formula XII can be referred to as triquat.


The acrylamide monomer can be either acrylamide or methacrylamide.


The cationic copolymer can be AM:TRIQUAT which is a copolymer of acrylamide and 1,3-Propanediaminium,N-[2-[[[dimethyl[3-[(2-methyl-1-oxo-2-propenyl)amino]propyl]ammonio]acetyl]amino]ethyl]2-hydroxy-N,N,N′,N′-pentamethyl-, trichloride. AM:TRIQUAT is also known as polyquaternium 76 (PQ76). AM:TRIQUAT can have a charge density of 1.6 meq/g and a M.Wt. of 1.1 million g/mol.


The cationic copolymer can include an acrylamide monomer and a cationic monomer, wherein the cationic monomer is selected from the group consisting of: dimethylaminoethyl (meth)acrylate, dimethylaminopropyl (meth)acrylate, ditertiobutylaminoethyl (meth)acrylate, dimethylaminomethyl (meth)acrylamide, dimethylaminopropyl (meth)acrylamide; ethylenimine, vinylamine, 2-vinylpyridine, 4-vinylpyridine; trimethylammonium ethyl (meth)acrylate chloride, trimethylammonium ethyl (meth)acrylate methyl sulphate, dimethylammonium ethyl (meth)acrylate benzyl chloride, 4-benzoylbenzyl dimethylammonium ethyl acrylate chloride, trimethyl ammonium ethyl (meth)acrylamido chloride, trimethyl ammonium propyl (meth)acrylamido chloride, vinylbenzyl trimethyl ammonium chloride, diallyldimethyl ammonium chloride, and mixtures thereof.


The cationic copolymer can include a cationic monomer selected from the group consisting of: trimethylammonium ethyl (meth)acrylate chloride, trimethylammonium ethyl (meth)acrylate methyl sulphate, dimethylammonium ethyl (meth)acrylate benzyl chloride, 4-benzoylbenzyl dimethylammonium ethyl acrylate chloride, trimethyl ammonium ethyl (meth)acrylamido chloride, trimethyl ammonium propyl (meth)acrylamido chloride, vinylbenzyl trimethyl ammonium chloride, and mixtures thereof.


The cationic copolymer can be formed from (1) copolymers of (meth)acrylamide and cationic monomers based on (meth)acrylamide, and/or hydrolysis-stable cationic monomers, (2) terpolymers of (meth)acrylamide, monomers based on cationic (meth)acrylic acid esters, and monomers based on (meth)acrylamide, and/or hydrolysis-stable cationic monomers. Monomers based on cationic (meth)acrylic acid esters can be cationized esters of the (meth)acrylic acid containing a quaternized N atom. Cationized esters of the (meth)acrylic acid containing a quaternized N atom can be quaternized dialkylaminoalkyl (meth)acrylates with C1 to C3 in the alkyl and alkylene groups. The cationized esters of the (meth)acrylic acid containing a quaternized N atom can be selected from the group consisting of ammonium salts of dimethylaminomethyl (meth)acrylate, dimethylaminoethyl (meth)acrylate, dimethylaminopropyl (meth)acrylate, diethylaminomethyl (meth)acrylate, diethylaminoethyl (meth)acrylate; and diethylaminopropyl (meth)acrylate quaternized with methyl chloride. The cationized esters of the (meth)acrylic acid containing a quaternized N atom can be dimethylaminoethyl acrylate, which is quaternized with an alkyl halide, or with methyl chloride or benzyl chloride or dimethyl sulfate (ADAME-Quat). The cationic monomer when based on (meth)acrylamides are quaternized dialkylaminoalkyl(meth)acrylamides with C1 to C3 in the alkyl and alkylene groups, or dimethylaminopropylacrylamide, which is quaternized with an alkyl halide, or methyl chloride or benzyl chloride or dimethyl sulfate.


The cationic monomer based on a (meth)acrylamide can be a quaternized dialkylaminoalkyl(meth)acrylamide with C1 to C3 in the alkyl and alkylene groups. The cationic monomer based on a (meth)acrylamide can be dimethylaminopropylacrylamide, which is quaternized with an alkyl halide, especially methyl chloride or benzyl chloride or dimethyl sulfate.


The cationic monomer can be a hydrolysis-stable cationic monomer. Hydrolysis-stable cationic monomers can be, in addition to a dialkylaminoalkyl(meth)acrylamide, any monomer that can be regarded as stable to the OECD hydrolysis test. The cationic monomer can be hydrolysis-stable and the hydrolysis-stable cationic monomer can be selected from the group consisting of: diallyldimethylammonium chloride and water-soluble, cationic styrene derivatives.


The cationic copolymer can be a terpolymer of acrylamide, 2-dimethylammoniumethyl (meth)acrylate quaternized with methyl chloride (ADAME-Q) and 3-dimethylammoniumpropyl(meth)acrylamide quaternized with methyl chloride (DIMAPA-Q). The cationic copolymer can be formed from acrylamide and acrylamidopropyltrimethylammonium chloride, wherein the acrylamidopropyltrimethylammonium chloride has a charge density of 1.0 meq/g to 3.0 meq/g.


The cationic copolymer can have a charge density of 1.1 meq/g to 2.5 meq/g, 1.1 meq/g to 2.3 meq/g, 1.2 meq/g to 2.2 meq/g, 1.2 meq/g to 2.1 meq/g, 1.3 meq/g to 2.0 meq/g, and 1.3 meq/g to 1.9 meq/g.


The cationic copolymer can have a M.Wt. 100 thousand g/mol to 2 million g/mol, 300 thousand g/mol to 1.8 million g/mol, 500 thousand g/mol to 1.6 million g/mol, 700 thousand g/mol to 1.4 million g/mol, and 900 thousand g/mol to 1.2 million g/mol.


The cationic copolymer can be a trimethylammoniopropylmethacrylamide chloride-N-Acrylamide copolymer, which is also known as AM:MAPTAC and can have a charge density of 1.3 meq/g and a M.Wt. of 1.1 million g/mol. The cationic copolymer can be AM:ATPAC and can have a charge density of 1.8 meq/g and a M.Wt. of 1.1 million g/mol.


Synthetic Polymers


A cationic polymer can be a synthetic polymer that is formed from:


i) one or more cationic monomer units, and optionally


ii) one or more monomer units bearing a negative charge, and/or


iii) a nonionic monomer,


wherein the subsequent charge of the copolymer is positive. The ratio of the three types of monomers is given by “m”, “p” and “q” where “m” is the number of cationic monomers, “p” is the number of monomers bearing a negative charge and “q” is the number of nonionic monomers


The cationic polymers can be water soluble or dispersible, non-crosslinked, and synthetic cationic polymers which have the structure of Formula XIII:




embedded image



where A may be one or more of the following cationic moieties:




embedded image



where @=amido, alkylamido, ester, ether, alkyl or alkylaryl,


where Y=C1-C22 alkyl, alkoxy, alkylidene, alkyl or aryloxy,


where ψ=C1-C22 alkyl, alkyloxy, alkyl aryl or alkyl arylox,


where Z=C1-C22 alkyl, alkyloxy, aryl or aryloxy,


where R1=H, C1-C4 linear or branched alkyl,


where s=0 or 1, n=0 or ≥1,


where T and R7=C1-C22 alkyl,


where X−=halogen, hydroxide, alkoxide, sulfate or alkylsulfate;


where the monomer bearing a negative charge is defined by R2′=H, C1-C4 linear or branched alkyl and R3 is:




embedded image



where D=O, N, or S;


where Q=NH2 or O;


where u=1-6;


where t=0-1; and


where J=oxygenated functional group containing the following elements P, S, C; and


where the nonionic monomer is defined by R2″=H, C1-C4 linear or branched alkyl, R6=linear or branched alkyl, alkyl aryl, aryl oxy, alkyloxy, alkylaryl oxy and β is defined as:




embedded image



where G′ and G″ are, independently of one another, O, S or N—H and L=0 or 1.


Suitable monomers can include aminoalkyl (meth)acrylates, (meth)aminoalkyl (meth)acrylamides; monomers comprising at least one secondary, tertiary or quaternary amine function, or a heterocyclic group containing a nitrogen atom, vinylamine or ethylenimine; diallyldialkyl ammonium salts; their mixtures, their salts, and macromonomers deriving from therefrom.


Further examples of suitable cationic monomers can include dimethylaminoethyl (meth)acrylate, dimethylaminopropyl (meth)acrylate, ditertiobutylaminoethyl (meth)acrylate, dimethylaminomethyl (meth)acrylamide, dimethylaminopropyl (meth)acrylamide, ethylenimine, vinylamine, 2-vinylpyridine, 4-vinylpyridine, trimethylammonium ethyl (meth)acrylate chloride, trimethylammonium ethyl (meth)acrylate methyl sulphate, dimethylammonium ethyl (meth)acrylate benzyl chloride, 4-benzoylbenzyl dimethylammonium ethyl acrylate chloride, trimethyl ammonium ethyl (meth)acrylamido chloride, trimethyl ammonium propyl (meth)acrylamido chloride, vinylbenzyl trimethyl ammonium chloride, diallyldimethyl ammonium chloride.


Suitable cationic monomers can include quaternary monomers of formula —NR3+, wherein each R can be identical or different, and can be a hydrogen atom, an alkyl group comprising 1 to 10 carbon atoms, or a benzyl group, optionally carrying a hydroxyl group, and including an anion (counter-ion). Examples of suitable anions include halides such as chlorides, bromides, sulphates, hydrosulphates, alkylsulphates (for example comprising 1 to 6 carbon atoms), phosphates, citrates, formates, and acetates.


Suitable cationic monomers can also include trimethylammonium ethyl (meth)acrylate chloride, trimethylammonium ethyl (meth)acrylate methyl sulphate, dimethylammonium ethyl (meth)acrylate benzyl chloride, 4-benzoylbenzyl dimethylammonium ethyl acrylate chloride, trimethyl ammonium ethyl (meth)acrylamido chloride, trimethyl ammonium propyl (meth)acrylamido chloride, vinylbenzyl trimethyl ammonium chloride. Additional suitable cationic monomers can include trimethyl ammonium propyl (meth)acrylamido chloride. Examples of monomers bearing a negative charge include alpha ethylenically unsaturated monomers including a phosphate or phosphonate group, alpha ethylenically unsaturated monocarboxylic acids, monoalkylesters of alpha ethylenically unsaturated dicarboxylic acids, monoalkylamides of alpha ethylenically unsaturated dicarboxylic acids, alpha ethylenically unsaturated compounds comprising a sulphonic acid group, and salts of alpha ethylenically unsaturated compounds comprising a sulphonic acid group.


Suitable monomers with a negative charge can include acrylic acid, methacrylic acid, vinyl sulphonic acid, salts of vinyl sulfonic acid, vinylbenzene sulphonic acid, salts of vinylbenzene sulphonic acid, alpha-acrylamidomethylpropanesulphonic acid, salts of alpha-acrylamidomethylpropanesulphonic acid, 2-sulphoethyl methacrylate, salts of 2-sulphoethyl methacrylate, acrylamido-2-methylpropanesulphonic acid (AMPS), salts of acrylamido-2-methylpropanesulphonic acid, and styrenesulphonate (SS).


Examples of nonionic monomers can include vinyl acetate, amides of alpha ethylenically unsaturated carboxylic acids, esters of an alpha ethylenically unsaturated monocarboxylic acids with an hydrogenated or fluorinated alcohol, polyethylene oxide (meth)acrylate (i.e. polyethoxylated (meth)acrylic acid), monoalkylesters of alpha ethylenically unsaturated dicarboxylic acids, monoalkylamides of alpha ethylenically unsaturated dicarboxylic acids, vinyl nitriles, vinylamine amides, vinyl alcohol, vinyl pyrolidone, and vinyl aromatic compounds.


Suitable nonionic monomers can also include styrene, acrylamide, methacrylamide, acrylonitrile, methylacrylate, ethylacrylate, n-propylacrylate, n-butylacrylate, methylmethacrylate, ethylmethacrylate, n-propylmethacrylate, n-butylmethacrylate, 2-ethyl-hexyl acrylate, 2-ethyl-hexyl methacrylate, 2-hydroxyethylacrylate and 2-hydroxyethylmethacrylate.


The anionic counterion (X) in association with the synthetic cationic polymers can be any known counterion so long as the polymers remain soluble or dispersible in water, in the shampoo composition, or in a coacervate phase of the shampoo composition, and so long as the counterions are physically and chemically compatible with the essential components of the shampoo composition or do not otherwise unduly impair product performance, stability or aesthetics. Non limiting examples of suitable counterions can include halides (e.g., chlorine, fluorine, bromine, iodine), sulfate, and methylsulfate.


The cationic polymer described herein can also aid in repairing damaged hair, particularly chemically treated hair by providing a surrogate hydrophobic F-layer. The microscopically thin F-layer provides natural weatherproofing, while helping to seal in moisture and prevent further damage. Chemical treatments damage the hair cuticle and strip away its protective F-layer. As the F-layer is stripped away, the hair becomes increasingly hydrophilic. It has been found that when lyotropic liquid crystals are applied to chemically treated hair, the hair becomes more hydrophobic and more virgin-like, in both look and feel. Without being limited to any theory, it is believed that the lyotropic liquid crystal complex creates a hydrophobic layer or film, which coats the hair fibers and protects the hair, much like the natural F-layer protects the hair. The hydrophobic layer can return the hair to a generally virgin-like, healthier state. Lyotropic liquid crystals are formed by combining the synthetic cationic polymers described herein with the aforementioned anionic detersive surfactant component of the shampoo composition. The synthetic cationic polymer has a relatively high charge density. It should be noted that some synthetic polymers having a relatively high cationic charge density do not form lyotropic liquid crystals, primarily due to their abnormal linear charge densities. Such synthetic cationic polymers are described in PCT Patent App. No. WO 94/06403 which is incorporated by reference. The synthetic polymers described herein can be formulated in a stable shampoo composition that provides improved conditioning performance, with respect to damaged hair.


Cationic synthetic polymers that can form lyotropic liquid crystals have a cationic charge density of 2 meq/gm to 7 meq/gm, and/or 3 meq/gm to 7 meq/gm, and/or 4 meq/gm to 7 meq/gm. The cationic charge density is 6.2 meq/gm. The polymers also have a M. Wt. of 1,000 to 5,000,000, and/or 10,000 to 2,000,000, and/or 100,000 to 2,000,000.


Cationic synthetic polymers that provide enhanced conditioning and deposition of benefit agents but do not necessarily form lytropic liquid crystals can have a cationic charge density of 0.7 meq/gm to 7 meq/gm, and/or 0.8 meq/gm to 5 meq/gm, and/or 1.0 meq/gm to 3 meq/gm. The polymers also have a M.Wt. of 1,000 g/mol to 5,000,000 g/mol, 10,000 g/mol to 2,000,000 g/mol, and 100,000 g/mol to 2,000,000 g/mol.


Cationic Cellulose Polymer


Suitable cationic polymers can be cellulose polymers. Suitable cellulose polymers can include salts of hydroxyethyl cellulose reacted with trimethyl ammonium substituted epoxide, referred to in the industry (CTFA) as Polyquaternium 10 and available from Dwo/Amerchol Corp. (Edison, N.J., USA) in their Polymer LR, JR, and KG series of polymers. Other suitable types of cationic cellulose can include the polymeric quaternary ammonium salts of hydroxyethyl cellulose reacted with lauryl dimethyl ammonium-substituted epoxide referred to in the industry (CTFA) as Polyquaternium 24. These materials are available from Dow/Amerchol Corp. under the tradename Polymer LM-200. Other suitable types of cationic cellulose can include the polymeric quaternary ammonium salts of hydroxyethyl cellulose reacted with lauryl dimethyl ammonium-substituted epoxide and trimethyl ammonium substituted epoxide referred to in the industry (CTFA) as Polyquaternium 67. These materials are available from Dow/Amerchol Corp. under the tradename SoftCAT Polymer SL-5, SoftCAT Polymer SL-30, Polymer SL-60, Polymer SL-100, Polymer SK-L, Polymer SK-M, Polymer SK-MH, and Polymer SK-H.


Additional cationic polymers are also described in the CTFA Cosmetic Ingredient Dictionary, 3rd edition, edited by Estrin, Crosley, and Haynes, (The Cosmetic, Toiletry, and Fragrance Association, Inc., Washington, D.C. (1982)), which is incorporated herein by reference.


Techniques for analysis of formation of complex coacervates are known in the art. For example, microscopic analyses of the compositions, at any chosen stage of dilution, can be utilized to identify whether a coacervate phase has formed. Such coacervate phase can be identifiable as an additional emulsified phase in the composition. The use of dyes can aid in distinguishing the coacervate phase from other insoluble phases dispersed in the composition. Additional details the use of cationic polymers and coacervates are disclosed in U.S. Pat. No. 9,272,164 which is incorporated by reference.


Liquid Carrier for the Shampoo Composition


The shampoo composition also includes a liquid carrier. Inclusion of an appropriate quantity of a liquid carrier can facilitate the formation of a shampoo composition having an appropriate viscosity and rheology. A shampoo composition can include, by weight of the composition, 60% to 95% of a liquid carrier, 65% to 92%, 70% to 90% of a liquid carrier, and 75% to 90% of a liquid carrier.


A liquid carrier can be water or a miscible mixture of water and organic solvent. A liquid carrier can be water with minimal or no significant concentrations of organic solvent, except as otherwise incidentally incorporated into the composition as minor ingredients of other essential or optional components. Suitable organic solvents can include water solutions of lower alkyl alcohols and polyhydric alcohols. Useful lower alkyl alcohols include monohydric alcohols having 1 to 6 carbons, such as ethanol and isopropanol. Exemplary polyhydric alcohols include propylene glycol, hexylene glycol, glycerin, and propane diol.


Optional Components


As can be appreciated, shampoo compositions described herein can include a variety of optional components to tailor the properties and characteristics of the composition. As can be appreciated, suitable optional components are well known and can generally include any components which are physically and chemically compatible with the essential components of the shampoo compositions described herein. Optional components should not otherwise unduly impair product stability, aesthetics, or performance Individual concentrations of optional components can generally range 0.001% to 10%, by weight of a shampoo composition.


Suitable optional components which can be included in a shampoo composition can include natural ingredients such as, tea extracts, and natural antioxidants such as grape seed extracts, natural hair conditioning oils, such as safflower oil, jojoba oil, argon oil, and combinations thereof.


Suitable optional components which can be included in a shampoo composition can include, deposition aids, conditioning agents (including hydrocarbon oils, fatty esters, silicones), anti-dandruff agents, suspending agents, viscosity modifiers, dyes, nonvolatile solvents or diluents (water soluble and insoluble), pearlescent aids, foam boosters, pediculocides, pH adjusting agents, perfumes, preservatives, chelants, proteins, skin active agents, sunscreens, UV absorbers, and vitamins.


Silicone Emulsions


The hair care composition can comprise 0% to 10%, 0.1% to 8%, 0.1% to 5%, 0.1% to 4%, 0.1% to 3%, 0.1% to 2%, 0.1% to 1.5%, and/or 0.1% to 1.2%, by weight, of one of more silicone polymers. The silicone polymer can be added into the hair care composition as an aqueous pre-emulsion. The silicone pre-emulsion can comprise one or more silicone polymers and an emulsifying system. The silicone polymer content in the silicone pre-emulsion can be 10%, by weight, to 70%, by weight, or 15%, by weight, to 60%, by weight, or 18%, by weight, to 50% by weight.


The silicone emulsion can have an average particle size of less than 500 nm, alternatively 300 nm, alternatively less than 200 nm, and alternatively less than 100 nm. The silicone emulsion can have an average particle size of 5 nm to 500 nm, 10 nm to 400 nm, and/or 20 nm to 300 nm. The silicone emulsion can be in the form of a nano-emulsion.


The particle size of the one or more silicones may be measured by dynamic light scattering (DLS). A Malvern Zetasizer Nano ZEN3600 system using He—Ne laser 633 nm may be used for the measurement at 25° C.


The autocorrelation function may be analyzed using the Zetasizer Software provided by Malvern Instruments, which determines the effective hydrodynamic radius, using the Stokes-Einstein equation:






D
=



k
B


T


6

π

η

R







wherein kB is the Boltzmann Constant, T is the absolute temperature, η is the viscosity of the medium, D is the mean diffusion coefficient of the scattering species, and R is the hydrodynamic radius of particles.


Particle size (i.e. hydrodynamic radius) may be obtained by correlating the observed speckle pattern that arises due to Brownian motion and solving the Stokes-Einstein equation, which relates the particle size to the measured diffusion constant, as is known in the art.


For each sample, 3 measurements may be made and Z-average values may be reported as the particle size.


The one or more silicones may be in the form of a nanoemulsion. The nanoemulsion may comprise any silicone suitable for application to the skin and/or hair.


The one or more silicones may include in their molecular structure polar functional groups such as Si—OH (present in dimethiconols), primary amines, secondary amines, tertiary amines, and quaternary ammonium salts. The one or more silicones may be selected from aminosilicones, pendant quaternary ammonium silicones, terminal quaternary ammonium silicones, amino polyalkylene oxide silicones, quaternary ammonium polyalkylene oxide silicones, and amino morpholino silicones.


The one or more silicones may comprise:


(a) at least one aminosilicone corresponding to formula (XIV):

R′aG3-a-Si(OSiG2)n—(OSiGbR′2-b)m—O—SiG3-a-R′a  (XIV)

where:


G is chosen from a hydrogen atom, a phenyl group, OH group, and C1-C8 alkyl groups, for example methyl,


a is an integer ranging from 0 to 3, and in one embodiment a is 0,


b is chosen from 0 and 1, and in one embodiment b is 1,


m and n are numbers such that the sum (n+m) can range for example from 1 to 2 000, such as for example from 50 to 150, wherein n can be for example chosen from numbers ranging from 0 to 1 999, such as for example from 49 to 149, and wherein m can be chosen from numbers ranging for example from 1 to 2 000, such as for example from 1 to 10;


R′ is a monovalent group of formula —CqH2qL in which q is a number from 2 to 8 and L is an optionally quaternized amine group chosen from the groups:

—NR″—CH2—CH2—N′(R1)2,
—N(R″)2,
—N+(R″)3A,
—N+H(R″)2A,
—N+2(R″)A, and
—N(R″)—CH2—CH2—N+R″H2A,

Where R″ can be chosen from a hydrogen atom, phenyl groups, benzyl groups, and saturated monovalent hydrocarbon-based groups such as, for example, an alkyl group comprising from 1 to 20 carbon atoms, and A is chosen from halide ions such as, for example, fluoride, chloride, bromide and iodide.


The one or more silicones may include those corresponding to formula (XIV) wherein a=0, G=methyl, m and n are numbers such that the sum (n+m) can range for example from 1 to 2 000, such as for example from 50 to 150, wherein n can be for example chosen from numbers ranging from 0 to 1 999, such as for example from 49 to 149, and wherein m can be chosen from numbers ranging for example from 1 to 2 000, such as for example from 1 to 10; and L is —N(CH3)2 or —NH2, alternatively —NH2.


Additional said at least one aminosilicone of the invention include:


(b) pendant quaternary ammonium silicones of formula (XV):




embedded image



where:


R5 is chosen from monovalent hydrocarbon-based groups comprising from 1 to 18 carbon atoms, such as C1-C18 alkyl groups and C2-C18 alkenyl groups, for example methyl;


R6 is chosen from divalent hydrocarbon-based groups, such as divalent C1-C18 alkylene groups and divalent C1-C18 alkylenoxy groups, for example C1-C8 alkylenoxy groups, wherein said R6 is bonded to the Si by way of an SiC bond;


Q is an anion that can be for example chosen from halide ions, such as chloride, and organic acid salts (such as acetate);


r is an average statistical value ranging from 2 to 20, such as from 2 to 8;


s is an average statistical value ranging from 20 to 200, such as from 20 to 50.


Such aminosilicones are described more particularly in U.S. Pat. No. 4,185,087, the disclosure of which is incorporated by reference herein.


A silicone which falls within this class is the silicone sold by the company Union Carbide under the name “Ucar Silicone ALE 56”.


Further examples of said at least one aminosilicone include:


c) quaternary ammonium silicones of formula (XVI):




embedded image



where:


groups R7, which may be identical or different, are each chosen from monovalent hydrocarbon-based groups comprising from 1 to 18 carbon atoms, such as C1-C18 alkyl groups, for example methyl, C2-C18 alkenyl groups, and rings comprising 5 or 6 carbon atoms;


R6 is chosen from divalent hydrocarbon-based groups, such as divalent C1-C18 alkylene groups and divalent C1-C18alkylenoxy, for example C1-C8, group connected to the Si by an SiC bond;


R8, which may be identical or different, represent a hydrogen atom, a monovalent hydrocarbon-based group comprising from 1 to 18 carbon atoms, and in particular a C1-C18 alkyl group, a C2-C18 alkenyl group or a group —R6—NHCOR7;


X is an anion such as a halide ion, in particular chloride, or an organic acid salt (acetate, etc.);


r represents an average statistical value from 2 to 200 and in particular from 5 to 100.


Such silicones are described, for example, in application EP-A-0 530 974, the disclosure of which is incorporated by reference herein.


Silicones falling within this class are the silicones sold by the company Eovnik under the names Abil Quat 3270, Abil Quat 3272, Abil Quat 3474 and Abil ME 45.


Further examples of said at least one aminosilicone include:


d) quaternary ammonium and polyalkylene oxide silicones


wherein the quaternary nitrogen groups are located in the polysiloxane backbone, at the termini, or both.


Such silicones are described in PCT Publication No. WO 2002/010257, the disclosure of which is incorporated by reference herein.


Silicones falling within this class are the silicones sold by the company Momentive under the names Silsoft Q.


(e) Aminofunctional silicones having morpholino groups of formula (XVII):




embedded image



where A denotes a structural unit (a), (b), or (c) bound via —O—




embedded image




    • or an oligomeric or polymeric residue, bound via —O—, containing structural units of formulas (I), (II), or (III), or half of a connecting oxygen atom to a structural unit (III), or denotes —OH,

    • * denotes a bond to one of the structural units (I), (II), or (III), or denotes a terminal group B (Si-bound) or D (O-bound),

    • B denotes an —OH, —O—Si(CH3)3, —O—Si(CH3)2OH, —O—Si(CH3)2OCH3 group,

    • D denotes an —H, —Si(CH3)3, —Si(CH3)2OH, —Si(CH3)2OCH3 group,

    • a, b, and c denote integers between 0 and 1000, with the provision that a+b+c>0,

    • m, n, and o denote integers between 1 and 1000.





Aminofunctional silicones of this kind bear the INCI name: Amodimethicone/Morpholinomethyl Silsesquioxane Copolymer. A particularly suitable amodimethicone is the product having the commercial name Wacker Belsil® ADM 8301E.


Examples of such silicones are available from the following suppliers:


offered by the company Dow Corning: Fluids: 2-8566, AP 6087, AP 6088, DC 8040 Fluid, fluid 8822A DC, DC 8803 & 8813 polymer, 7-6030, AP-8104, AP 8201; Emulsions: CE-8170 AF Micro Emulsion, 2-8177, 2-8194 Microemulsion, 9224 Emulsion, DC 1872 Emulsion, 939, 949, 959, DC 5-7113 Quat Microemulsion, DC 5-7070 Emulsion, DC CE-8810, CE 8401 Emulsion, CE 1619, Dow Corning Toray SS-3551, Dow Corning Toray SS-3552;


offered by the company Wacker: Wacker Belsil ADM 652, ADM 656, 1100, 1600, 1650 (fluids) ADM 6060 (linear amodimethicone) emulsion; ADM 6057 E (branched amodimethicone) emulsion; ADM 8020 VP (micro emulsion); SLM 28040 (micro emulsion); DM5500 emulsion;


offered by the Company Momentive: Silsoft 331, SF1708, SME 253 & 254 (emulsion), SM2125 (emulsion), SM 2658 (emulsion), Silsoft Q (emulsion)


offered by the company Shin-Etsu: KF-889, KF-867S, KF-8004, X-52-2265 (emulsion);


offered by the Company Siltech Silicones: Siltech E-2145, E-Siltech 2145-35;


offered by the company Evonik Industries: Abil T Quat 60th


Some non-limiting examples of aminosilicones include the compounds having the following INCI names Silicone Quaternium-1, Silicone Quaternium-2, Silicone Quaternium-3, Silicone Quaternium-4, Silicone Quaternium-5, Silicone Quaternium-6, Silicone Quaternium-7, Silicone Quaternium-8, Silicone Quaternium-9, Silicone Quaternium-10, Silicone Quaternium-11, Silicone Quaternium-12, Silicone Quaternium-15, Silicone Quaternium-16, Silicone Quaternium-17, Silicone Quaternium-18, Silicone Quaternium-20, Silicone Quaternium-21, Silicone Quaternium-22, Quaternium-80, as well as Silicone Quaternium-2 Panthenol Succinate and Silicone Quaternium-16/Glycidyl Dimethicone Crosspolymer.


The aminosilicones can be supplied in the form of a nanoemulsion and include MEM 9049, MEM 8177, MEM 0959, MEM 8194, SME 253, and Silsoft Q.


The one or more silicones may include dimethicones, and/or dimethiconols. The dimethiconols are hydroxyl terminated dimethylsilicones represented by the general chemical formulas




embedded image



where R is an alkyl group (preferably R is methyl or ethyl, more preferably methyl) and x is an integer up to 500, chosen to achieve the desired molecular weight. Commercial dimethiconols typically are sold as mixtures with dimethicone or cyclomethicone (e.g., Dow Corning® 1401, 1402, and 1403 fluids).


According to another aspect of the silicone emulsion, the emulsion further includes an anionic surfactant that participates in providing high internal phase viscosity emulsions having particle sizes in the range 30 nm to 10 micron. The anionic surfactant is selected from organic sulfonic acids. Most common sulfonic acids used in the present process are alkylaryl sulfonic acid; alkylaryl polyoxyethylene sulphonic acid; alkyl sulfonic acid; and alkyl polyoxyethylene sulfonic acid. General formulas of the sulfonic acids are as shown below:


R16C6H4SO3H,


R16C6H4O(C2H4O)mSO3H,


R16SO3H, and


R16O(C2H4O)mSO3H.


Where R16, which may differ, is a monovalent hydrocarbon radical having at least 6 carbon atoms. Non-limiting examples of R16 include hexyl, octyl, decyl, dodecyl, cetyl, stearyl, myristyl, and oleyl. ‘m’ is an integer from 1 to 25. Exemplary anionic surfactants include but are not limited to octylbenzene sulfonic acid; dodecylbenzene sulfonic acid; cetylbenzene sulfonic acid; alpha-octyl sulfonic acid; alpha-dodecyl sulfonic acid; alpha-cetyl sulfonic acid; polyoxyethylene octylbenzene sulfonic acid; polyoxyethylene dodecylbenzene sulfonic acid; polyoxyethylene cetylbenzene sulfonic acid; polyoxyethylene octyl sulfonic acid; polyoxyethylene dodecyl sulfonic acid; and polyoxyethylene cetyl sulfonic acid. Generally, 1 to 15% anionic surfactant is used in the emulsion process. For example, 3-10% anionic surfactant can be used to obtain an optimum result. The silicone emulsion may further include an additional emulsifier together with the anionic surfactant, which along with the controlled temperature of emulsification and polymerization, facilitates making the emulsion in a simple and faster way. Non-ionic emulsifiers having a hydrophilic lipophilic balance (HLB) value of 10 to 19 are suitable and include polyoxyalkylene alkyl ether, polyoxyalkylene alkylphenyl ethers and polyoxyalkylene sorbitan esters. Some useful emulsifiers having an HLB value of 10 to 19 include, but are not limited to, polyethylene glycol octyl ether; polyethylene glycol lauryl ether; polyethylene glycol tridecyl ether; polyethylene glycol cetyl ether; polyethylene glycol stearyl ether; polyethylene glycol nonylphenyl ether; polyethylene glycol dodecylphenyl ether; polyethylene glycol cetylphenyl ether; polyethylene glycol stearylphenyl ether; polyethylene glycol sorbitan mono stearate; and polyethylene glycol sorbitan mono oleate.


Non-Silicone Conditioning Agents


The conditioning agent of the hair care compositions described herein may also comprise at least one organic conditioning agents, either alone or in combination with other conditioning agents, such as the silicones described above. Non-limiting examples of organic conditioning agents are described below.


a. Hydrocarbon Oils


Suitable organic conditioning agents for use as conditioning agents in hair care compositions include, but are not limited to, hydrocarbon oils having at least 10 carbon atoms, such as cyclic hydrocarbons, straight chain aliphatic hydrocarbons (saturated or unsaturated), and branched chain aliphatic hydrocarbons (saturated or unsaturated), including polymers and mixtures thereof. Straight chain hydrocarbon oils can be C12 to C19. Branched chain hydrocarbon oils, including hydrocarbon polymers, typically will contain more than 19 carbon atoms.


b. Polyolefins


Organic conditioning oils for use in the hair care compositions described herein also include liquid polyolefins, including liquid poly-α-olefins and/or hydrogenated liquid poly-α-olefins. Polyolefins for use herein are prepared by polymerization of C4 to C14 olefinic monomers, alternatively C6 to C12.


c. Fatty Esters


Other suitable organic conditioning agents for use as a conditioning agent in the hair care compositions described herein include fatty esters having at least 10 carbon atoms. These fatty esters include esters with hydrocarbyl chains derived from fatty acids or alcohols. The hydrocarbyl radicals of the fatty esters hereof may include or have covalently bonded thereto other compatible functionalities, such as amides and alkoxy moieties (e.g., ethoxy or ether linkages, etc.). Other oligomeric or polymeric esters, prepared from unsaturated glyceryl esters can also be used as conditioning materials.


d. Fluorinated Conditioning Compounds


Fluorinated compounds suitable for delivering conditioning to hair as organic conditioning agents include perfluoropolyethers, perfluorinated olefins, fluorine-based specialty polymers that may be in a fluid or elastomer form similar to the silicone fluids previously described, and perfluorinated dimethicones.


e. Fatty Alcohols


Other suitable organic conditioning oils for use in the hair care compositions described herein include, but are not limited to, fatty alcohols having at least 10 carbon atoms, 10 to 22 carbon atoms, and alternatively 12 to 16 carbon atoms.


f. Alkyl Glucosides and Alkyl Glucoside Derivatives


Suitable organic conditioning oils for use in the hair care compositions described herein include, but are not limited to, alkyl glucosides and alkyl glucoside derivatives. Specific non-limiting examples of suitable alkyl glucosides and alkyl glucoside derivatives include Glucam E-10, Glucam E-20, Glucam P-10, and Glucquat 125 commercially available from Amerchol.


g. Polyethylene Glycols


Additional compounds useful herein as conditioning agents include polyethylene glycols and polypropylene glycols having a molecular weight of up to 2,000,000 such as those with CTFA names PEG-200, PEG-400, PEG-600, PEG-1000, PEG-2M, PEG-7M, PEG-14M, PEG-45M and mixtures thereof.


2. Emulsifiers


A variety of anionic and nonionic emulsifiers can be used in the hair care compositions. The anionic and nonionic emulsifiers can be either monomeric or polymeric in nature. Monomeric examples include, by way of illustrating and not limitation, alkyl ethoxylates, alkyl sulfates, soaps, and fatty esters and their derivatives. Polymeric examples include, by way of illustrating and not limitation, polyacrylates, polyethylene glycols, and block copolymers and their derivatives. Naturally occurring emulsifiers such as lanolins, lecithin and lignin and their derivatives are also non-limiting examples of useful emulsifiers.


Anti-Dandruff Actives


A shampoo composition can also contain an anti-dandruff agent. Suitable anti-dandruff agents can include pyridinethione salts, azoles, selenium sulfide, particulate sulfur, and mixtures thereof. Such anti-dandruff particulate should be physically and chemically compatible with the essential components of the composition, and should not otherwise unduly impair product stability, aesthetics or performance A shampoo composition can include a cationic polymer to enhance deposition of an anti-dandruff active.


a. Pyridinethione Salts


An anti-dandruff agent can be a pyridinethione particulate such as a 1-hydroxy-2-pyridinethione salt. The concentration of pyridinethione anti-dandruff particulates can range 0.1% to 4%, 0.1% to 3%, and 0.3% to 2% by weight of the composition. Suitable pyridinethione salts include those formed from heavy metals such as zinc, tin, cadmium, magnesium, aluminum and zirconium, particularly suitable is the zinc salt of 1-hydroxy-2-pyridinethione (known as “zinc pyridinethione” or “ZPT”), 1-hydroxy-2-pyridinethione salts in platelet particle form, wherein the particles have an average size of up to 20μ, up to 5μ, up to 2.5 Salts formed from other cations, such as sodium, can also be suitable. Pyridinethione anti-dandruff agents are further described in U.S. Pat. Nos. 2,809,971; 3,236,733; 3,753,196; 3,761,418; 4,345,080; 4,323,683; 4,379,753; and 4,470,982, each of which are incorporated herein by reference. It is contemplated that when ZPT is used as the anti-dandruff particulate, that the growth or re-growth of hair may be stimulated or regulated, or both, or that hair loss may be reduced or inhibited, or that hair may appear thicker or fuller.


b. Other Anti-Microbial Actives


In addition to the anti-dandruff active selected from polyvalent metal salts of pyrithione, a shampoo composition can further include one or more anti-fungal or anti-microbial actives in addition to the metal pyrithione salt actives. Suitable anti-microbial actives include coal tar, sulfur, whitfield's ointment, castellani's paint, aluminum chloride, gentian violet, octopirox (piroctone olamine), ciclopirox olamine, undecylenic acid and it's metal salts, potassium permanganate, selenium sulphide, sodium thiosulfate, propylene glycol, oil of bitter orange, urea preparations, griseofulvin, 8-hydroxyquinoline ciloquinol, thiobendazole, thiocarbamates, haloprogin, polyenes, hydroxypyridone, morpholine, benzylamine, allylamines (such as terbinafine), tea tree oil, clove leaf oil, coriander, palmarosa, berberine, thyme red, cinnamon oil, cinnamic aldehyde, citronellic acid, hinokitol, ichthyol pale, Sensiva SC-50, Elestab HP-100, azelaic acid, lyticase, iodopropynyl butylcarbamate (IPBC), isothiazalinones such as octyl isothiazalinone and azoles, and combinations thereof. Suitable anti-microbials can include itraconazole, ketoconazole, selenium sulphide and coal tar.


c. Soluble Anti-Dandruff Agent


A suitable anti-microbial agent can be one material or a mixture selected from: azoles, such as climbazole, ketoconazole, itraconazole, econazole, and elubiol; hydroxy pyriclones, such as piroctone olamine, ciclopirox, rilopirox, and MEA-Hydroxyoctyloxypyridinone; kerolytic agents, such as salicylic acid and other hydroxy acids; strobilurins such as azoxystrobin and metal chelators such as 1,10-phenanthroline. Examples of azole anti-microbials can include imidazoles such as benzimidazole, benzothiazole, bifonazole, butaconazole nitrate, climbazole, clotrimazole, croconazole, eberconazole, econazole, elubiol, fenticonazole, fluconazole, flutimazole, isoconazole, ketoconazole, lanoconazole, metronidazole, miconazole, neticonazole, omoconazole, oxiconazole nitrate, sertaconazole, sulconazole nitrate, tioconazole, thiazole, and triazoles such as terconazole and itraconazole, and combinations thereof. When present in a shampoo composition, the soluble anti-microbial active can be included in an amount 0.01% to 5%, 0.5% to 6%, 0.1% to 3%, 0.1% to 9%, OA % to 1.5%, OA % to 2%, and more 0.3% to 2%, by weight of the composition.


d. Selenium Sulfide


Selenium sulfide is a particulate anti-dandruff agent suitable for use as an anti-microbial compositions when included at concentrations of 0.1% to 4%, by weight of the composition, 0.3% to 2.5% by weight, and 0.5% to 1.5% by weight. Selenium sulfide is generally regarded as a compound having one mole of selenium and two moles of sulfur, although it may also be a cyclic structure that conforms to the general formula SexSy, wherein x+y=8. Average particle diameters for the selenium sulfide are typically less than 15 μm, as measured by forward laser light scattering device (e.g. Malvern 3600 instrument), less than 10 pm. Selenium sulfide compounds are described, for example, in U.S. Pat. Nos. 2,694,668; 3,152,046; 4,089,945; and 4,885,107, each of which are incorporated herein by reference.


e. Sulfur


Sulfur can also be used as a particulate anti-microbial/anti-dandruff agent. Effective concentrations of the particulate sulfur are typically 1% to 4%, by weight of the composition, alternatively 2% to 4%.


f. Keratolytic Agents


Keratolytic agents such as salicylic acid can also be included in a shampoo composition described herein.


g. Other


Additional anti-microbial actives can include extracts of melaleuca (tea tree), wintergreen (such as gaultheria procumbens leaf) and charcoal. As can be appreciated, shampoo compositions can also include combinations of anti-microbial actives. Suitable combinations can include octopirox and zinc pyrithione combinations, pine tar and sulfur combinations, salicylic acid and zinc pyrithione combinations, octopirox and climbasole combinations, and salicylic acid and octopirox combinations, and mixtures thereof.


Humectant


A shampoo composition can also include a humectant to lower the rate of water evaporation. Suitable humectants can include polyhydric alcohols, water soluble alkoxylated nonionic polymers, and mixtures thereof. The humectants, when included, can be used at levels by weight of the composition of 0.1% to 20%, and 0.5% to 5%.


Suitable polyhydric alcohols can include glycerin, sorbitol, propylene glycol, butylene glycol, hexylene glycol, ethoxylated glucose, 1, 2-hexane diol, hexanetriol, dipropylene glycol, erythritol, trehalose, diglycerin, xylitol, maltitol, maltose, glucose, fructose, sodium chondroitin sulfate, sodium hyaluronate, sodium adenosine phosphate, sodium lactate, pyrrolidone carbonate, glucosamine, cyclodextrin, and mixtures thereof.


Suitable water soluble alkoxylated nonionic polymers can include polyethylene glycols and polypropylene glycols having a molecular weight of up to 1000 such as those with CTFA names PEG-200, PEG-400, PEG-600, PEG-1000, and mixtures thereof.


Other Optional Components


As can be appreciated, a shampoo composition can include still further optional components. For example, amino acids can be included. Suitable amino acids can include water soluble vitamins such as vitamins B1, B2, B6, B12, C, pantothenic acid, pantothenyl ethyl ether, panthenol, biotin, and their derivatives, water soluble amino acids such as asparagine, alanin, indole, glutamic acid and their salts, water insoluble vitamins such as vitamin A, D, E, and their derivatives, water insoluble amino acids such as tyrosine, tryptamine, and their salts.


A shampoo composition can include pigment materials such as inorganic, nitroso, monoazo, disazo, carotenoid, triphenyl methane, triaryl methane, xanthene, quinoline, oxazine, azine, anthraquinone, indigoid, thionindigoid, quinacridone, phthalocianine, botanical, natural colors, including: water soluble components such as those having C. I. Names. The compositions can also include antimicrobial agents which are useful as cosmetic biocides and antidandruff agents including: water soluble components such as piroctone olamine, water insoluble components such as 3,4,4′-trichlorocarbanilide (trichlosan), triclocarban and zinc pyrithione.


One or more stabilizers and preservatives can be included. For example, one or more of trihydroxystearin, ethylene glycol distearate, citric acid, sodium citrate dihydrate, a preservative such as kathon, sodium chloride, sodium benzoate, and ethylenediaminetetraacetic acid (“EDTA”) can be included to improve the lifespan of a shampoo composition.


Chelants can also be included to scavenge metal and reduce hair damage caused by exposure to UV radiation. Examples of suitable chelants can include histidine and N,N′ ethylenediamine disuccinic acid (“EDDS”).


Method of Use


The shampoo compositions described herein can be used in a conventional manner for cleansing and conditioning of hair or skin. Generally, a method of treating hair or skin can include applying the shampoo composition to the hair or skin. For example, an effective amount of the shampoo composition can be applied to the hair or skin, which has been wetted with water, and then the composition can be rinsed off. Effective amounts can generally range 1 g to 50 g, and 1 g to 20 g. Application to the hair typically includes working the composition through the hair such that most or all of the hair is contacted with the composition.


A method for treating the hair or skin can include the steps of: (a) wetting the hair or skin with water; (b) applying an effective amount of the shampoo composition to the hair or skin, and (c) rinsing the applied areas of skin or hair with water. These steps can be repeated as many times as desired to achieve the desired cleansing and conditioning benefit.


A shampoo composition as described herein can be used to treat damaged hair. Damaged hair can include hair permed hair, oxidatively colored hair, and mechanically damaged hair.


The shampoo compositions can be used as liquids, solids, semi-solids, flakes, gels, in a pressurized container with a propellant added, or used in a pump spray form. The viscosity of the product may be selected to accommodate the form desired.


TEST METHODS

A. Cone/Plate Viscosity Measurement


The viscosities of the examples are measured by a Cone/Plate Controlled. Stress Brookfield Rheometer R/S Plus, by Brookfield Engineering Laboratories, Stoughton, Mass. The cone used (Spindle C-75-1) has a diameter of 75 mm and 1° angle. The viscosity is determined using a steady state flow experiment at constant shear rate of 2 and at temperature of 26.5° C. The sample size is 2.5 nil and the total measurement reading time is 3 minutes.


B. pH Method


First, calibrate the Mettler Toledo Seven Compact pH meter. Do this by turning on the pH meter and waiting for 30 seconds. Then take the electrode out of the storage solution, rinse the electrode with distilled water, and carefully wipe the electrode with a scientific cleaning wipe, such as a Kimwipe®. Submerse the electrode in the pH 4 buffer and press the calibrate button. Wait until the icon stops flashing and press the calibrate button a second time. Rinse the electrode with distilled water and carefully wipe the electrode with a scientific cleaning wipe. Then submerse the electrode into the pH 7 buffer and press the calibrate button a second time. Wait until the pH icon stops flashing and press the calibrate button a third time. Rinse the electrode with distilled water and carefully wipe the electrode with a scientific cleaning wipe. Then submerse the electrode into the pH 10 buffer and press the calibrate button a third time. Wait until the pH icon stops flashing and press the measure button. Rinse the electrode with distilled water and carefully wipe with a scientific cleaning wipe.


Submerse the electrode into the testing sample and press the read button. Wait until the pH icon stops flashing and record the value.


C. Appearance Method


Following batch completion, first transfer batch to storage container. Second, sample batch in a glass vial. Third, visually inspect the sample. If the background can be seen distinctly record the appearance as transparent. If the background can be seen but distorted or hazy, record as semi-transparent. If the background cannot be seen record as opaque.


D. Phase Stability Method


Following batch completion, first transfer batch to storage container. Second, sample batch in a glass vial. Third, visually inspect the sample. If sample is homogeneous record as one phase. If sample has two or more distinct phases record as phase separated including number of phases present. Distinct phases are visually different (changes in hazy, color, texture). These distinct phases either settle to the bottom, on top or are suspended.


E. Hair Switch Evaluation


This method describes how to evaluate finished product on hair switches. First, wet hair for 15 seconds. Second, apply shampoo to hair switch; 0.1 g of shampoo per gram of hair. Then assess different attributes of shampoo performance on the hair throughout wash. Move hands up and down hair switch for 30 seconds. During these 30 seconds the following are assessed.

    • 1.) Speed to Lather—Assessment of how quickly lather is generated (Scale: 0=Slow to 10=Fast)
    • 2.) Lather Amount—Visual assessment of how much lather is generated (Scale: 0=Low to 10=High)


Next, run water over switch to begin rinsing. Rinse for 30 seconds. During the rinse assess the Rinse Feel/Rinse Count Drag. As soon as wetting begins, stroke the hair from top to bottom with non-dominant hand between the thumb and two fingers with medium pressure. Count the number of strokes until drag/skip is felt in the middle portion of the hair switch consistently for 2 consecutive strokes. This number of strokes is recorded as the Rinse Count Drag. The strokes should be at a rate of 1 stroke per second to a total of 20 strokes (Scale: 1=quick rinse/clean feel to 20=slow rinse/dirty feel).


After the 30 second rinse stroke the hair from top to bottom with non-dominant hand between the thumb and two fingers with medium pressure to remove access water. Repeat stroke of hair switch and assess the clean feel of the hair. This is recorded as the Post Rinse—Clean Feel (Scale: 0=Low/Dirty to 10=High/Clean).


F. Puff Lather Method


First, start water to allow it to reach desired temperature 37.5-38 C. Next, fluff the puff and wet it under the water. Apply the shampoo in a circular motion over top of the puff. Then move puff with lathered product overtop of a beaker. Next squeeze puff in a half turn forward direction 10 times. Repeat with squeeze and half turn in a backward direction 10 times. Lastly, squeeze puff to get all remaining lather out. Measure the amount of lather generated in the beaker.


G. Cylinder Lather Method—Lather Volume


Obtain 100 ml of Water in a 1,000 ml graduated cylinder. Then add 0.5 g of shampoo. The graduated cylinder is on a rotating apparatus. Rotate the cylinder for 25 complete revolutions at a rate of 10 revolutions per 18 seconds to create a lather and stop in a level, vertical position. A timer is set to allow 15 seconds for drainage. After 15 seconds, the lather volume is measured by recording the lather height to the nearest 10 ml mark (including any water that has drained to the bottom on top of which the lather is floating).


H. Kruss Lather Method


KRUSS Dynamic Foam Analyzer is used to evaluate lather. Add shampoo and water into device 1(shampoo):9 (water) dilution. Air going through the chamber generates lather. The speed to lather, lather volume, and bubble size are recorded.


EXAMPLES

The shampoo compositions illustrated in the following Examples illustrate specific embodiments of the shampoo compositions described herein, but are not intended to be limiting thereof. Other modifications can be undertaken by the skilled artisan without departing from the spirit and scope of this invention. These exemplified embodiments of the shampoo composition provide consumer desired mildness, moisture, slip feel, cleaning and viscosity.


The shampoo compositions illustrated in the following Examples are prepared by conventional formulation and mixing methods, an example of which is set forth below. All exemplified amounts are listed as weight percent's and exclude minor materials such as diluents, preservatives, color solutions, imagery ingredients, botanicals, and so forth, unless otherwise specified. All percentages are based on weight unless otherwise specified.









TABLE 1







Examples of Shampoo Compositions
















Ex. 1
Ex. 2
Ex. 3
Ex. 4
Ex. 5
Ex. 6
Ex. 7
Ex. 8



one
one
one
one
one
one
one
one


Phase Stability
phase
phase
phase
phase
phase
phase
phase
phase


















Viscosity (Pa-s)
6.137
5.970
3.826
2.533
4.405
8.683
5.823
6.394


Decyl Glucoside 1
12
12
12
12
12
12
12
12


Guar (Excel) 2
0.2
0.4
0.6
0.8
1
0.2
0.2
0.4


Sclerotium Gum 3
0.8
0.6
0.4
0.2
0.2
1




Sclerotium Gum 4






0.8
0.6


Sodium Benzoate
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6


Citric Acid
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4


Water
Q. S.
Q. S.
Q. S.
Q. S.
Q. S.
Q. S.
Q. S.
Q. S.
















TABLE 2







Comparative Examples of Shampoo Compositions
















C3
C4
C5
C6



C1
C2
Multiple
Multiple
One
One


Phase Stability
Multiple phases
Multiple phases
phases
phases
phase
phase
















Viscosity (Pa-s)
n/a
n/a
n/a
n/a
21.115
0.541


Decyl Glucoside 1
12
12
12
12
12
12


Guar (Excel) 2
0.95
0.95
0.25
0.95
1.1
0.1


Sodium Benzoate
0.6
0.6
0.6
0.6
0.6
0.6


Citric Acid
0.4
0.4
0.4
0.4
0.4
0.4


Sclerotium Gum 3




1.1
0.1


Xanthan Gum


0.6





Konjac Gum 5
0.6







Caesalpina Spinosa

1.0






Gum 6








Guar Gum 7



1.0




Water
Q. S.
Q. S.
Q. S.
Q. S.
Q. S.
Q. S.










1. PLANTAREN 2000 from BASF


2. JAGUAR EXCEL from Solvay


3. AMIGUM ER from Alban Muller


4. ACTIGUM CS 11 QD from Cargill


5. NUTRICOL XP3464 from FMC


6. SOLAGUM TARA from Seppic


7. SUPERCOL U2 from Ashland


As can be seen in the data for the Examples and Comparative Examples, the Comparative Examples C1-C4 contain gums in combination with cationic guar that are not phase stable. Comparative Example C5 is phase stable however it is too viscous. It is consumer desired that a Shampoo is less than 20 Pa-s for ease of spreading in hand. Comparative Example C6 is phase stable however low viscosity. It is consumer desired that a Shampoo is greater than 0.6 Pa-s to avoid running off the hands during use.


It will be appreciated that other modifications of the present disclosure are within the skill of those in the hair care formulation art can be undertaken without departing from the spirit and scope of this invention. All parts, percentages, and ratios herein are by weight unless otherwise specified. Some components may come from suppliers as dilute solutions. The levels given reflect the weight percent of the active material, unless otherwise specified. A level of perfume and/or preservatives may also be included in the following examples.


The dimensions and values disclosed herein are not to be understood as being strictly limited to the exact numerical values recited. Instead, unless otherwise specified, each such dimension is intended to mean both the recited value and a functionally equivalent range surrounding that value. For example, a dimension disclosed as “40 mm” is intended to mean “40 mm.”


Every document cited herein, including any cross referenced or related patent or application, is hereby incorporated herein by reference in its entirety unless expressly excluded or otherwise limited. The citation of any document is not an admission that it is prior art with respect to any invention disclosed or claimed herein or that it alone, or in any combination with any other reference or references, teaches, suggests, or discloses any such invention. Further, to the extent that any meaning or definition of a term in this document conflicts with any meaning or definition of the same term in a document incorporated by reference, the meaning or definition assigned to that term in this document shall govern.

Claims
  • 1. A shampoo composition comprising: a) about 5 wt % to about 35 wt % of alkyl polyglucoside;b) about 0.15 wt % to about 1.05 wt % sclerotium gum;c) about 0.15 wt % to about 1.05 wt % of cationic polymer; andd) less than 1% ionic surfactant, wherein the shampoo composition has a viscosity of about 0.6 Pa-s to about 20 Pa-s.
  • 2. The shampoo composition of claim 1, comprising about 0.15 wt % to about 1.05 wt % cationic guar.
  • 3. The shampoo composition of claim 2, comprising about 0.2 wt % to about 1.0 wt % cationic guar.
  • 4. The shampoo composition of claim 1, wherein the alkyl polyglucoside is selected from decyl glucoside, caprylyl glucoside, caprylyl/capryl glucoside, undecyl glucoside, octyl glucoside and combinations thereof.
  • 5. The shampoo composition of claim 4, wherein the alkyl polyglucoside comprises decyl glucoside.
  • 6. The shampoo composition of claim 4, comprising about 5 wt % to about 25 wt % of the decyl glucoside.
  • 7. The shampoo composition of claim 4, comprising about 7 wt % to about 20 wt % of the decyl glucoside.
  • 8. The shampoo composition of claim 1, wherein the composition is substantially free of a surfactant selected from sodium alkyl sulfate, sodium cocoyl isethionate, sodium lauroyl sarcosinate, cocamidopropyl betaine, sodium lauroamphoacetate, cetyltrimethylammonium chloride, behenyltrimethylammonium chloride and mixtures thereof.
  • 9. The shampoo composition of claim 1, wherein the non-ionic surfactant is a decyl glucoside having the structure:
  • 10. The shampoo composition of claim 1, wherein the viscosity is about 1.0 Pa-s to about 18 Pa-s.
  • 11. The shampoo composition of claim 1, wherein the viscosity is about 2 Pa-s to about 15 Pa-s.
  • 12. The shampoo composition of claim 1, wherein the composition further comprises a material selected from tea extracts, grape seed extracts, safflower oil, jojoba oil, argon oil, and combinations thereof.
  • 13. The shampoo composition of claim 1, wherein the composition further comprises an anti-microbial agent selected from azoles, climbazole, ketoconazole, itraconazole, econazole, elubiol, hydroxy pyridones, piroctone olamine, ciclopirox, rilopirox, MEA-hydroxyoctyloxypyridinon, kerolytic agents, salicylic acid, hydroxy acids, strobilurins, azoxystrobin, metal chelators, 1,10-phenanthroline, and combinations thereof.
US Referenced Citations (640)
Number Name Date Kind
1489388 Glenn Apr 1924 A
1600340 Hoffman Sep 1926 A
1612255 William Dec 1926 A
2438091 Lynch Mar 1948 A
2528378 Mannheimer Oct 1950 A
2658072 Milton Nov 1953 A
2809971 Jack et al. Oct 1957 A
2879231 Marshall Mar 1959 A
3219656 Boettner Nov 1965 A
3236733 Karsten et al. Feb 1966 A
3373208 Blumenthal Mar 1968 A
3636113 Hall Jan 1972 A
3709437 Wright Jan 1973 A
3716498 Hall Feb 1973 A
3753196 Kurtz et al. Aug 1973 A
3761418 Parran Sep 1973 A
3792068 Luedders et al. Feb 1974 A
3887692 Gilman Jun 1975 A
3904741 Jones et al. Sep 1975 A
3950532 Bouillon et al. Apr 1976 A
3959160 Horsler et al. May 1976 A
4049792 Elsnau Sep 1977 A
4089945 Brinkman et al. May 1978 A
4120948 Shelton Oct 1978 A
4137180 Naik Jan 1979 A
4237155 Kardouche Dec 1980 A
4309119 Wittersheim Jan 1982 A
4323683 Bolich, Jr. et al. Apr 1982 A
4329334 Su et al. May 1982 A
4345080 Bolich, Jr. Aug 1982 A
4359456 Gosling et al. Nov 1982 A
4379753 Bolich, Jr. Apr 1983 A
4430243 Bragg Feb 1984 A
4470982 Winkler Sep 1984 A
4726945 Patel Feb 1988 A
4732696 Urfer Mar 1988 A
4839166 Grollier et al. Jun 1989 A
4854333 Inman et al. Aug 1989 A
4867971 Ryan et al. Sep 1989 A
4931274 Barabino et al. Jun 1990 A
4973416 Kennedy Nov 1990 A
4985238 Tanner et al. Jan 1991 A
4997641 Hartnett Mar 1991 A
5019375 Tanner et al. May 1991 A
5093112 Birtwistle et al. Mar 1992 A
5104646 Bolich, Jr. Apr 1992 A
5106609 Bolich, Jr. Apr 1992 A
5135747 Faryniarz et al. Aug 1992 A
5156834 Beckmeyer et al. Oct 1992 A
5294644 Login et al. Mar 1994 A
5296622 Uphues Mar 1994 A
5298640 Callaghan et al. Mar 1994 A
5332569 Wood et al. Jul 1994 A
5364031 Taniguchi et al. Nov 1994 A
5374421 Tashiro Dec 1994 A
5374614 Behan et al. Dec 1994 A
5409695 Abrutyn et al. Apr 1995 A
5415810 Lee et al. May 1995 A
5417965 Janchitraponvej et al. May 1995 A
5429816 Hofrichter et al. Jul 1995 A
5439682 Wivell Aug 1995 A
5441659 Minor Aug 1995 A
5486303 Capeci Jan 1996 A
5489392 Capeci Feb 1996 A
5516448 Capeci May 1996 A
5536493 Dubief Jul 1996 A
5554588 Behan et al. Sep 1996 A
5560918 Wivell Oct 1996 A
5565422 Del Greco Oct 1996 A
5569645 Dinniwell Oct 1996 A
5574005 Welch Nov 1996 A
5576282 Miracle Nov 1996 A
5578298 Berthiaume Nov 1996 A
5595967 Miracle Jan 1997 A
5597936 Perkins Jan 1997 A
5599549 Wivell Feb 1997 A
5624666 Coffindaffer et al. Apr 1997 A
5635469 Fowler et al. Jun 1997 A
5665267 Dowell et al. Sep 1997 A
5691297 Nassano Nov 1997 A
5714137 Trinh Feb 1998 A
5747436 Patel May 1998 A
5776444 Birtwistle et al. Jul 1998 A
5800897 Sharma Sep 1998 A
5816446 Steindorf et al. Oct 1998 A
5830440 Sturla et al. Nov 1998 A
5853618 Barker Dec 1998 A
5879584 Bianchetti Mar 1999 A
5891424 Bretzler et al. Apr 1999 A
5902225 Monson May 1999 A
5925603 D'Angelo Jul 1999 A
5942217 Woo et al. Aug 1999 A
5976514 Guskey et al. Nov 1999 A
5980877 Baravetto Nov 1999 A
5985939 Minor Nov 1999 A
6015547 Yam Jan 2000 A
6015780 Llosas Bigorra et al. Jan 2000 A
6020303 Cripe et al. Feb 2000 A
6039933 Samain et al. Mar 2000 A
6046152 Vinson et al. Apr 2000 A
6060443 Cripe et al. May 2000 A
6087309 Vinson et al. Jul 2000 A
6110451 Matz et al. Aug 2000 A
6133222 Vinson et al. Oct 2000 A
6139828 Mccullough Oct 2000 A
6153567 Hughes Nov 2000 A
6153569 Halloran Nov 2000 A
6162834 Sebillotte-Arnaud et al. Dec 2000 A
6180121 Guenin et al. Jan 2001 B1
6225464 Hiler, II May 2001 B1
6231844 Nambu May 2001 B1
6232302 Alberico et al. May 2001 B1
6248135 Trinh et al. Jun 2001 B1
6268431 Snyder et al. Jul 2001 B1
6284225 Bhatt Sep 2001 B1
6329331 Aronson Dec 2001 B1
6335312 Coffindaffer et al. Jan 2002 B1
6352688 Scavone et al. Mar 2002 B1
6386392 Argentieri May 2002 B1
6413920 Bettiol Jul 2002 B1
6423305 Cauwet-Martin et al. Jul 2002 B1
6436442 Woo et al. Aug 2002 B1
6451300 Dunlop et al. Sep 2002 B1
6488943 Beerse et al. Dec 2002 B1
6511669 Garnier et al. Jan 2003 B1
6565863 Guillou et al. May 2003 B1
6579907 Sebillotte-Arnaud et al. Jun 2003 B1
6627585 Steer Sep 2003 B1
6642194 Harrison Nov 2003 B2
6649155 Dunlop et al. Nov 2003 B1
6656923 Trinh Dec 2003 B1
6660288 Behan et al. Dec 2003 B1
6679324 Den Boer et al. Jan 2004 B2
6716455 Birkel Apr 2004 B2
6716805 Sherry Apr 2004 B1
6740713 Busch et al. May 2004 B1
6743760 Hardy et al. Jun 2004 B1
6764986 Busch et al. Jul 2004 B1
6767507 Woo et al. Jul 2004 B1
6794356 Turner Sep 2004 B2
6814088 Barnabas et al. Nov 2004 B2
6827795 Kasturi et al. Dec 2004 B1
6869923 Cunningham Mar 2005 B1
6897253 Schmucker-castner May 2005 B2
6908889 Niemiec et al. Jun 2005 B2
6930078 Wells Aug 2005 B2
6992054 Lee et al. Jan 2006 B2
7018978 Miracle et al. Mar 2006 B2
7030068 Clare et al. Apr 2006 B2
7100767 Chomik et al. Sep 2006 B2
7151079 Fack et al. Dec 2006 B2
7172099 Hoefte Feb 2007 B2
7202198 Gordon et al. Apr 2007 B2
7217752 Schmucker-Castner et al. May 2007 B2
7220408 Decoster et al. May 2007 B2
7223361 Kvietok May 2007 B2
7223385 Gawtrey et al. May 2007 B2
7485289 Gawtrey et al. Feb 2009 B2
7504094 Decoster et al. Mar 2009 B2
7531497 Midha et al. May 2009 B2
7541320 Dabkowski et al. Jun 2009 B2
7598213 Geary et al. Oct 2009 B2
7659233 Hurley et al. Feb 2010 B2
7666825 Wagner et al. Feb 2010 B2
7820609 Soffin et al. Oct 2010 B2
7829514 Paul et al. Nov 2010 B2
7841036 Smith Nov 2010 B2
7867505 Elliott et al. Jan 2011 B2
7928053 Hecht et al. Apr 2011 B2
7977288 SenGupta Jul 2011 B2
8007545 Fujii et al. Aug 2011 B2
8058500 Sojka et al. Nov 2011 B2
8084407 Soffin et al. Dec 2011 B2
8088721 Soffin et al. Jan 2012 B2
8119168 Johnson Feb 2012 B2
8124063 Harichian et al. Feb 2012 B2
8158571 Alonso Apr 2012 B2
8300949 Xu Oct 2012 B2
8322631 Richardson et al. Dec 2012 B2
8343469 Bierganns et al. Jan 2013 B2
8349300 Wells Jan 2013 B2
8357359 Woo et al. Jan 2013 B2
8361450 Johnson et al. Jan 2013 B2
8388699 Wood Mar 2013 B2
8401304 Cavallaro et al. Mar 2013 B2
8435501 Peffly et al. May 2013 B2
8437556 Saisan May 2013 B1
8491877 Schwartz et al. Jul 2013 B2
8539631 Catalfamo et al. Sep 2013 B2
8574561 Patel et al. Nov 2013 B1
8580725 Kuhlman et al. Nov 2013 B2
8609600 Warr et al. Dec 2013 B2
8628760 Carter et al. Jan 2014 B2
8629095 Deleersnyder Jan 2014 B2
8653014 Hilvert Feb 2014 B2
8675919 Maladen Mar 2014 B2
8679316 Brunner et al. Mar 2014 B2
8680035 Kuhlman et al. Mar 2014 B2
8699751 Maladen Apr 2014 B2
8709337 Gruenbacher et al. Apr 2014 B2
8709385 Tamarkin Apr 2014 B2
8741275 Dente et al. Jun 2014 B2
8741363 Albrecht et al. Jun 2014 B2
8771765 Fernandez Jul 2014 B1
8772354 Williams et al. Jul 2014 B2
8795635 Tamarkin et al. Aug 2014 B2
8877316 Hasenoehrl et al. Nov 2014 B2
8883698 Scheibel et al. Nov 2014 B2
8931711 Gruenbacher Jan 2015 B2
8980239 Staudigel et al. Mar 2015 B2
8987187 Smets et al. Mar 2015 B2
9006162 Rizk Apr 2015 B1
9186642 Dihora et al. Nov 2015 B2
9187407 Koshti et al. Nov 2015 B2
9265727 Lowenborg Feb 2016 B1
9272164 Johnson et al. Mar 2016 B2
9296550 Smith Mar 2016 B2
9308398 Hutton et al. Apr 2016 B2
9393447 Zasloff Jul 2016 B2
9428616 Wagner Aug 2016 B2
9512275 Wagner Dec 2016 B2
9610239 Feng Apr 2017 B2
9655821 Carter et al. May 2017 B2
9662291 Johnson et al. May 2017 B2
9682021 Tamarkin et al. Jun 2017 B2
9776787 Nakajima Oct 2017 B2
9949901 Zhao et al. Apr 2018 B2
9949911 Cetti Apr 2018 B2
9968535 Kitko May 2018 B2
9968537 Sharma May 2018 B2
9993419 Glenn, Jr. Jun 2018 B2
9993420 Glenn, Jr. et al. Jun 2018 B2
10039706 Meralli et al. Aug 2018 B2
10039939 Xavier et al. Aug 2018 B2
10113140 Frankenbach Oct 2018 B2
10182976 Staudigel Jan 2019 B2
10238685 Dunn et al. Mar 2019 B2
10265261 Park et al. Apr 2019 B2
10311575 Stofel Jun 2019 B2
10392625 Jin et al. Aug 2019 B2
10426713 Song Oct 2019 B2
10441519 Zhao Oct 2019 B2
10552557 Frankenbach et al. Feb 2020 B2
10610473 Hertenstein et al. Apr 2020 B2
10653590 Torres Rivera May 2020 B2
10799434 Torres Rivera Oct 2020 B2
10842720 Thompson Nov 2020 B2
10881597 Lane et al. Jan 2021 B2
10888505 Johnson Jan 2021 B2
10912732 Gillis Feb 2021 B2
11116703 Song et al. Sep 2021 B2
11116704 Song et al. Sep 2021 B2
11129775 Song et al. Sep 2021 B2
11334694 Cetti et al. May 2022 B2
11334695 Cetti et al. May 2022 B2
20010000467 Murray Apr 2001 A1
20010006088 Lyle Jul 2001 A1
20010006621 Coupe et al. Jul 2001 A1
20010016565 Bodet et al. Aug 2001 A1
20020012646 Royce et al. Jan 2002 A1
20020028182 Dawson Mar 2002 A1
20020037299 Turowski-Wanke et al. Mar 2002 A1
20020172648 Hehner et al. Nov 2002 A1
20020193265 Perron et al. Dec 2002 A1
20020197213 Schmenger et al. Dec 2002 A1
20030003070 Eggers et al. Jan 2003 A1
20030008787 Mcgee et al. Jan 2003 A1
20030022799 Alvarado et al. Jan 2003 A1
20030049292 Turowski-Wanke et al. Mar 2003 A1
20030050150 Tanaka Mar 2003 A1
20030059377 Riley Mar 2003 A1
20030083210 Goldberg May 2003 A1
20030108501 Hofrichter Jun 2003 A1
20030147842 Restle et al. Aug 2003 A1
20030154561 Patel Aug 2003 A1
20030161802 Flammer Aug 2003 A1
20030180238 Sakurai et al. Sep 2003 A1
20030180246 Frantz et al. Sep 2003 A1
20030185867 Kerschner et al. Oct 2003 A1
20030192922 Ceppaluni et al. Oct 2003 A1
20030202952 Wells et al. Oct 2003 A1
20030223951 Geary et al. Dec 2003 A1
20030228272 Amjad et al. Dec 2003 A1
20040014879 Denzer et al. Jan 2004 A1
20040064117 Hammons Apr 2004 A1
20040144863 Kendrick Jul 2004 A1
20040151793 Paspaleeva-kuhn et al. Aug 2004 A1
20040157754 Geary et al. Aug 2004 A1
20040229963 Stephane Nov 2004 A1
20040234484 Peffly Nov 2004 A1
20040235689 Sakai et al. Nov 2004 A1
20050003975 Browne et al. Jan 2005 A1
20050003980 Baker Jan 2005 A1
20050020468 Frantz et al. Jan 2005 A1
20050136011 Nekludoff Jun 2005 A1
20050152863 Brautigam Jul 2005 A1
20050192207 Morgan, III et al. Sep 2005 A1
20050201967 Albrecht et al. Sep 2005 A1
20050202984 Schwartz et al. Sep 2005 A1
20050227902 Erazo-majewicz et al. Oct 2005 A1
20050233929 Queen Oct 2005 A1
20050245407 Ishihara Nov 2005 A1
20050276831 Dihora Dec 2005 A1
20060002880 Peffly Jan 2006 A1
20060005333 Catalfamo et al. Jan 2006 A1
20060009337 Smith Jan 2006 A1
20060030509 Modi Feb 2006 A1
20060034778 Kitano et al. Feb 2006 A1
20060057075 Arkin et al. Mar 2006 A1
20060057097 Derici Mar 2006 A1
20060079417 Wagner Apr 2006 A1
20060079418 Wagner et al. Apr 2006 A1
20060079419 Wagner et al. Apr 2006 A1
20060079420 Wagner et al. Apr 2006 A1
20060079421 Wagner et al. Apr 2006 A1
20060084589 Vlad et al. Apr 2006 A1
20060090777 Hecht et al. May 2006 A1
20060094610 Yamato et al. May 2006 A1
20060110415 Gupta May 2006 A1
20060120982 Derici et al. Jun 2006 A1
20060120988 Bailey et al. Jun 2006 A1
20060135397 Bissey-beugras Jun 2006 A1
20060166857 Surburg et al. Jul 2006 A1
20060171911 Schwartz et al. Aug 2006 A1
20060183662 Crotty Aug 2006 A1
20060210139 Carroll Sep 2006 A1
20060229227 Goldman Oct 2006 A1
20060252662 Soffin Nov 2006 A1
20060263319 Fan et al. Nov 2006 A1
20060276357 Smith, III et al. Dec 2006 A1
20060292104 Guskey Dec 2006 A1
20070003499 Shen et al. Jan 2007 A1
20070020263 Shitara et al. Jan 2007 A1
20070072781 Soffin et al. Mar 2007 A1
20070110700 Wells May 2007 A1
20070154402 Trumbore et al. Jul 2007 A1
20070155637 Smith et al. Jul 2007 A1
20070160555 Staudigel Jul 2007 A1
20070179207 Fernandez de Castro et al. Aug 2007 A1
20070225193 Kuhlman et al. Sep 2007 A1
20070269397 Terada Nov 2007 A1
20070275866 Dykstra Nov 2007 A1
20070292380 Staudigel Dec 2007 A1
20070298994 Finke et al. Dec 2007 A1
20080003245 Kroepke et al. Jan 2008 A1
20080008668 Harichian et al. Jan 2008 A1
20080019928 Franzke Jan 2008 A1
20080063618 Johnson Mar 2008 A1
20080138442 Johnson Jun 2008 A1
20080152610 Cajan Jun 2008 A1
20080160093 Schwartz et al. Jul 2008 A1
20080176780 Warr Jul 2008 A1
20080194454 Morgan Aug 2008 A1
20080206179 Peffly et al. Aug 2008 A1
20080260655 Tamarkin et al. Oct 2008 A1
20080260665 Guerchet et al. Oct 2008 A1
20080261844 Ruppert et al. Oct 2008 A1
20080317698 Wells et al. Dec 2008 A1
20090005280 Woo et al. Jan 2009 A1
20090029900 Cetti et al. Jan 2009 A1
20090041702 Molenda Feb 2009 A1
20090062406 Loeffler Mar 2009 A1
20090155383 Kitko et al. Jun 2009 A1
20090178210 Bistram Jul 2009 A1
20090197784 Ainger Aug 2009 A1
20090221463 Kitko et al. Sep 2009 A1
20090240223 Warren Sep 2009 A1
20090246236 Kitko Oct 2009 A1
20090312223 Yang et al. Dec 2009 A1
20090312224 Yang et al. Dec 2009 A1
20090324505 Seidling Dec 2009 A1
20100000116 Aouad et al. Jan 2010 A1
20100001116 Johnson Jan 2010 A1
20100009285 Daems et al. Jan 2010 A1
20100061946 Scherner et al. Mar 2010 A1
20100087357 Morgan, III et al. Apr 2010 A1
20100152083 Velazquez Jun 2010 A1
20100168251 Warr et al. Jul 2010 A1
20100183539 Bernhardt Jul 2010 A1
20100215775 Schmaus et al. Aug 2010 A1
20100287710 Denutte et al. Nov 2010 A1
20100310644 Liebmann Dec 2010 A1
20100322878 Stella et al. Dec 2010 A1
20110008267 Arkin et al. Jan 2011 A1
20110023266 Gross et al. Feb 2011 A1
20110098209 Smets et al. Apr 2011 A1
20110107524 Chieffi et al. May 2011 A1
20110118691 Nishitani May 2011 A1
20110139170 Hippe et al. Jun 2011 A1
20110150815 Woo et al. Jun 2011 A1
20110165107 Derks et al. Jul 2011 A1
20110171155 Federle Jul 2011 A1
20110177017 Coffindaffer et al. Jul 2011 A1
20110232668 Hoffmann et al. Sep 2011 A1
20110245126 Tsaur et al. Oct 2011 A1
20110245134 Smets Oct 2011 A1
20110245136 Smets Oct 2011 A1
20110268778 Dihora et al. Nov 2011 A1
20110269657 Dihora Nov 2011 A1
20110300095 Dente et al. Dec 2011 A1
20110303766 Smith Dec 2011 A1
20110305739 Royce Dec 2011 A1
20110305778 Caggioni et al. Dec 2011 A1
20110308555 Smets et al. Dec 2011 A1
20110308556 Smets et al. Dec 2011 A1
20110319790 Kost et al. Dec 2011 A1
20120004328 Huchel et al. Jan 2012 A1
20120009285 Wei et al. Jan 2012 A1
20120014901 Sunkel et al. Jan 2012 A1
20120031419 Batt Feb 2012 A1
20120034173 Batt Feb 2012 A1
20120052031 Troccaz et al. Mar 2012 A1
20120100091 Hata et al. Apr 2012 A1
20120100092 Murray Apr 2012 A1
20120129924 Park et al. May 2012 A1
20120219610 Smith, III et al. Aug 2012 A1
20120230936 Mikkelsen Sep 2012 A1
20120237469 Dente et al. Sep 2012 A1
20120246851 Smith, III et al. Oct 2012 A1
20120258150 Rauckhorst et al. Oct 2012 A1
20120291911 Smith Nov 2012 A1
20120309660 Kawasoe Dec 2012 A1
20120316095 Wei et al. Dec 2012 A1
20130029932 Kachi et al. Jan 2013 A1
20130034515 Stone et al. Feb 2013 A1
20130043145 Smith, III et al. Feb 2013 A1
20130043146 Smith, III et al. Feb 2013 A1
20130043147 Smith, III et al. Feb 2013 A1
20130045285 Stella et al. Feb 2013 A1
20130053295 Kinoshita et al. Feb 2013 A1
20130053300 Scheibel et al. Feb 2013 A1
20130089587 Staudigel Apr 2013 A1
20130115173 Trumbore et al. May 2013 A1
20130143784 Rizk Jun 2013 A1
20130150338 Ananthapadmanabhan Jun 2013 A1
20130156712 Frantz Jun 2013 A1
20130189212 Jawale et al. Jul 2013 A1
20130211952 Sugaya Aug 2013 A1
20130216491 Ogihara et al. Aug 2013 A1
20130243718 Pasquet Sep 2013 A1
20130244922 Bartelt Sep 2013 A1
20130266642 Hollingshead et al. Oct 2013 A1
20130280192 Carter et al. Oct 2013 A1
20130280202 Stella et al. Oct 2013 A1
20130284195 Murdock Oct 2013 A1
20130296289 Hall et al. Nov 2013 A1
20130319463 Policicchio Dec 2013 A1
20140037703 Dihora et al. Feb 2014 A1
20140039066 Grimadell et al. Feb 2014 A1
20140086893 Gutmann et al. Mar 2014 A1
20140112879 Molenda et al. Apr 2014 A1
20140127149 Lepilleur May 2014 A1
20140131395 Chang May 2014 A1
20140134125 Dahl May 2014 A1
20140162979 Palla-venkata Jun 2014 A1
20140171471 Krueger Jun 2014 A1
20140186864 Kato et al. Jul 2014 A1
20140201927 Bianchetti et al. Jul 2014 A1
20140216495 Bureiko Aug 2014 A1
20140221269 Sobel et al. Aug 2014 A1
20140228268 Fahl et al. Aug 2014 A1
20140237732 Zuedel Fernandes et al. Aug 2014 A1
20140246515 Nakajima Sep 2014 A1
20140308227 Mabille Oct 2014 A1
20140309154 Carter et al. Oct 2014 A1
20140335041 Peffly et al. Nov 2014 A1
20140348884 Hilvert et al. Nov 2014 A1
20140348886 Johnson et al. Nov 2014 A1
20140349902 Allef et al. Nov 2014 A1
20150017152 Potechin et al. Jan 2015 A1
20150021496 Shabbir Jan 2015 A1
20150037273 Wagner Feb 2015 A1
20150050231 Murase Feb 2015 A1
20150071977 Dihora Mar 2015 A1
20150093420 Snyder Apr 2015 A1
20150093429 Carter et al. Apr 2015 A1
20150098921 Franzke et al. Apr 2015 A1
20150099684 Boutique Apr 2015 A1
20150108163 Smith et al. Apr 2015 A1
20150110728 Jayaswal Apr 2015 A1
20150141310 Smets et al. May 2015 A1
20150147286 Barrera May 2015 A1
20150157548 De Feij et al. Jun 2015 A1
20150218496 Schmiedel et al. Aug 2015 A1
20150231045 Krohn et al. Aug 2015 A1
20150262354 Periaswamy Sep 2015 A1
20150297489 Kleinen et al. Oct 2015 A1
20150299400 Wagner et al. Oct 2015 A1
20150313818 Stagg Nov 2015 A1
20150352027 Thomas et al. Dec 2015 A1
20150359725 Glenn, Jr. et al. Dec 2015 A1
20150359726 Glenn, Jr. et al. Dec 2015 A1
20150359728 Glenn, Jr. et al. Dec 2015 A1
20160008257 Zhou et al. Jan 2016 A1
20160022566 Figura Jan 2016 A1
20160089317 Cetti et al. Mar 2016 A1
20160089318 Cetti et al. Mar 2016 A1
20160089322 Santos Nogueira et al. Mar 2016 A1
20160089462 Frankenbach Mar 2016 A1
20160089464 Frankenbach et al. Mar 2016 A1
20160089465 Frankenbach et al. Mar 2016 A1
20160090555 Frankenbach Mar 2016 A1
20160090556 Frankenbach et al. Mar 2016 A1
20160090557 Frankenbach et al. Mar 2016 A1
20160090558 Frankenbach et al. Mar 2016 A1
20160092661 Hollingshead et al. Mar 2016 A1
20160095804 Xavier et al. Apr 2016 A1
20160113849 Grimadell et al. Apr 2016 A1
20160128944 Chawrai May 2016 A1
20160193125 Jones et al. Jul 2016 A1
20160206522 Ribaut et al. Jul 2016 A1
20160235643 Mathonneau et al. Aug 2016 A1
20160250115 Li et al. Sep 2016 A1
20160279048 Jayaswal et al. Sep 2016 A1
20160287503 Schroeder Oct 2016 A1
20160287509 Peffly Oct 2016 A1
20160296656 Scavone et al. Oct 2016 A1
20160303043 Khoury Oct 2016 A1
20160306909 Hollingshead et al. Oct 2016 A1
20160309871 Torres Rivera et al. Oct 2016 A1
20160310369 Thompson et al. Oct 2016 A1
20160310370 Zhao et al. Oct 2016 A1
20160310371 Zhao Oct 2016 A1
20160310375 Torres Rivera Oct 2016 A1
20160310386 Smith, III et al. Oct 2016 A1
20160310388 Smith, III et al. Oct 2016 A1
20160310389 Thompson et al. Oct 2016 A1
20160310390 Smith, III et al. Oct 2016 A1
20160310391 Smith, III et al. Oct 2016 A1
20160310393 Chang et al. Oct 2016 A1
20160310402 Zhao et al. Oct 2016 A1
20160317424 Kadir et al. Nov 2016 A1
20160326458 Smets et al. Nov 2016 A1
20160354300 Thompson et al. Dec 2016 A1
20170066579 Zillges Mar 2017 A1
20170071837 Schelges et al. Mar 2017 A1
20170101609 Vargas Apr 2017 A1
20170110690 Lamansky et al. Apr 2017 A1
20170110695 Nishikawa et al. Apr 2017 A1
20170119917 Frankenbach et al. May 2017 A1
20170137752 Frankenbach et al. May 2017 A1
20170137753 Frankenbach et al. May 2017 A1
20170165164 Zhao et al. Jun 2017 A1
20170165165 Zhao et al. Jun 2017 A1
20170209359 Zhao et al. Jul 2017 A1
20170239155 Hartnett Aug 2017 A1
20170249407 Cetti et al. Aug 2017 A1
20170249408 Cetti et al. Aug 2017 A1
20170252273 Renock et al. Sep 2017 A1
20170255725 Frankenbach et al. Sep 2017 A1
20170278249 Stofel Sep 2017 A1
20170283959 Shellef Oct 2017 A1
20170304172 Chang et al. Oct 2017 A1
20170304184 Glenn, Jr. Oct 2017 A1
20170304185 Glenn, Jr. et al. Oct 2017 A1
20170304186 Glenn, Jr. Oct 2017 A1
20170333321 Carnali Nov 2017 A1
20170333591 Scavone et al. Nov 2017 A9
20170367963 Kadir et al. Dec 2017 A1
20180004875 Cetti et al. Jan 2018 A1
20180044097 Zeik Feb 2018 A1
20180057451 Owens et al. Mar 2018 A1
20180066210 Frankenbach et al. Mar 2018 A1
20180110594 Atkin Apr 2018 A1
20180110688 Torres Rivera et al. Apr 2018 A1
20180110689 Torres Rivera et al. Apr 2018 A1
20180110690 Torres Rivera Apr 2018 A1
20180110691 Torres Rivera et al. Apr 2018 A1
20180110692 Torres Rivera et al. Apr 2018 A1
20180110693 Renock et al. Apr 2018 A1
20180110694 Renock et al. Apr 2018 A1
20180110695 Thompson Apr 2018 A1
20180110696 Johnson et al. Apr 2018 A1
20180110704 Zhao et al. Apr 2018 A1
20180110707 Zhao et al. Apr 2018 A1
20180110710 Zhao et al. Apr 2018 A1
20180110714 Glenn, Jr. et al. Apr 2018 A1
20180116937 Park et al. May 2018 A1
20180116941 Wang May 2018 A1
20180133133 Kleinen et al. May 2018 A1
20180177708 Lee et al. Jun 2018 A1
20180221266 Zhao et al. Aug 2018 A1
20180256481 Glenn, Jr. Sep 2018 A1
20180280270 Rughani et al. Oct 2018 A1
20180311135 Chang Nov 2018 A1
20180311136 Chang Nov 2018 A1
20180318194 Hoffmann et al. Nov 2018 A1
20180344611 Zhao et al. Dec 2018 A1
20180344612 Zhao et al. Dec 2018 A1
20180344613 Zhao et al. Dec 2018 A1
20180344614 Zhao et al. Dec 2018 A1
20180360713 Jouy et al. Dec 2018 A1
20190105242 Song Apr 2019 A1
20190105243 Song Apr 2019 A1
20190105244 Song Apr 2019 A1
20190105245 Song Apr 2019 A1
20190105246 Cochran Apr 2019 A1
20190105247 Song Apr 2019 A1
20190117543 Zhao Apr 2019 A1
20190117544 Zhao Apr 2019 A1
20190117545 Zhao Apr 2019 A1
20190125650 Lee et al. May 2019 A1
20190142711 Torres Rivera May 2019 A1
20190142800 Ghosh et al. May 2019 A1
20190155975 Cetti et al. May 2019 A9
20190167554 Wankhade Jun 2019 A1
20190183777 Gillis Jun 2019 A1
20190183778 Glenn, Jr. Jun 2019 A1
20190192405 Zhao Jun 2019 A1
20190240121 Torres Rivera Aug 2019 A1
20190307298 Zhao Oct 2019 A1
20190328647 Chang et al. Oct 2019 A1
20190365619 Ceballos Dec 2019 A1
20190365633 Glenn, Jr. Dec 2019 A1
20200000690 Renock Jan 2020 A1
20200078284 Botto et al. Mar 2020 A1
20200129402 Jamadagni Apr 2020 A1
20200163846 Song May 2020 A1
20200170894 Park et al. Jun 2020 A1
20200197272 Hertenstein et al. Jun 2020 A1
20200206110 Hertenstein et al. Jul 2020 A1
20200237628 Torres Rivera Jul 2020 A1
20210022986 Glenn, Jr. Jan 2021 A1
20210093543 Parikh et al. Apr 2021 A1
20210121385 Muller et al. Apr 2021 A1
20210128444 Muller et al. May 2021 A1
20210128447 Galpin et al. May 2021 A1
20210169765 Renock Jun 2021 A1
20210212927 Hutton, III et al. Jul 2021 A1
20210267853 Johnson et al. Sep 2021 A1
20210275410 Hutton, III Sep 2021 A1
20210353518 Ballhaus et al. Nov 2021 A1
20210353522 Ballhaus et al. Nov 2021 A1
20210401716 Gogineni Dec 2021 A1
20220062136 Feng Mar 2022 A1
20220160606 Renock May 2022 A1
20220175640 Herteinstein et al. Jun 2022 A1
20220378684 Cochran et al. Dec 2022 A1
20220395444 Hutton, III Dec 2022 A1
20230053056 Renock et al. Feb 2023 A1
Foreign Referenced Citations (216)
Number Date Country
825146 Aug 1975 BE
199400875 May 1996 BR
704195 Feb 1965 CA
1248458 Jan 1989 CA
2078375 Mar 1994 CA
1263455 Aug 2000 CN
1286612 Mar 2001 CN
1545404 Nov 2004 CN
1823929 Aug 2006 CN
100534415 Sep 2009 CN
101112349 May 2011 CN
101690697 Oct 2011 CN
101559034 Jan 2013 CN
102895151 Jan 2013 CN
102973437 Mar 2013 CN
102697668 Aug 2013 CN
103356408 Oct 2013 CN
102697670 Jul 2014 CN
104107401 Oct 2014 CN
102851015 Dec 2014 CN
105726393 Jul 2016 CN
105769617 Jul 2016 CN
106659664 May 2017 CN
106750361 May 2017 CN
107595657 Jan 2018 CN
107595673 Jan 2018 CN
107648096 Feb 2018 CN
107737329 Feb 2018 CN
108186385 Jun 2018 CN
108283583 Jul 2018 CN
110279591 Sep 2019 CN
2145204 Mar 1973 DE
3018456 Nov 1981 DE
4315396 Nov 1994 DE
102004012009 Sep 2005 DE
202005009618 Sep 2005 DE
102004023720 Dec 2005 DE
102014225083 Oct 2015 DE
102014225606 Oct 2015 DE
102015204987 Sep 2016 DE
0108517 May 1984 EP
0574086 Dec 1993 EP
0666358 Aug 1995 EP
0674898 Oct 1995 EP
1340485 Feb 2003 EP
1346720 Sep 2003 EP
067898 Mar 2006 EP
1714678 Oct 2006 EP
1842572 Oct 2007 EP
2005939 Dec 2008 EP
1970045 Sep 2009 EP
2042216 Sep 2015 EP
3260171 Dec 2017 EP
3622946 Mar 2020 EP
2052450 Dec 1994 ES
2669531 May 1992 FR
2795955 Jan 2001 FR
190110699 Aug 1901 GB
191023922 Oct 1911 GB
1347950 Feb 1974 GB
2048229 Dec 1980 GB
2450727 Jan 2009 GB
42318 Aug 1986 HU
S56011009 Dec 1981 JP
S58113300 Jul 1983 JP
S58198412 Nov 1983 JP
AS60004598 Jan 1985 JP
S61236708 Oct 1986 JP
S62205200 Sep 1987 JP
S63165308 Jul 1988 JP
H04364114 Dec 1992 JP
H06220495 Aug 1994 JP
07252134 Oct 1995 JP
H08310924 Nov 1996 JP
09020618 Jan 1997 JP
09030938 Feb 1997 JP
H09175961 Jul 1997 JP
H10017894 Jan 1998 JP
2964226 Oct 1999 JP
2000178586 Jun 2000 JP
3069802 Jul 2000 JP
2001011492 Jan 2001 JP
2001011497 Jan 2001 JP
2001254099 Sep 2001 JP
2001261529 Sep 2001 JP
2003201217 Dec 2001 JP
2002179552 Jun 2002 JP
2002226889 Aug 2002 JP
2002336337 Nov 2002 JP
2003055699 Feb 2003 JP
2003082398 Mar 2003 JP
2003171688 Jun 2003 JP
2003176497 Jun 2003 JP
2003261413 Sep 2003 JP
2003268398 Sep 2003 JP
3480165 Dec 2003 JP
2003342131 Dec 2003 JP
3634988 Mar 2005 JP
3634991 Mar 2005 JP
3634996 Mar 2005 JP
2005187359 Jul 2005 JP
2005232113 Sep 2005 JP
2006063044 Mar 2006 JP
2006104149 Apr 2006 JP
2006124312 May 2006 JP
2006183039 Jul 2006 JP
2006193549 Jul 2006 JP
2006249092 Sep 2006 JP
2006282565 Oct 2006 JP
2007131687 May 2007 JP
2007177047 Jul 2007 JP
2007223935 Sep 2007 JP
2008001626 Jan 2008 JP
2008214292 Sep 2008 JP
2009096778 May 2009 JP
2009120559 Jun 2009 JP
2009161866 Jul 2009 JP
2011153167 Aug 2011 JP
2011190221 Sep 2011 JP
2011241353 Dec 2011 JP
5041113 Jul 2012 JP
2013010757 Jan 2013 JP
2013091641 May 2013 JP
2013151434 Aug 2013 JP
2013155143 Aug 2013 JP
2013216639 Oct 2013 JP
6046394 Jan 2014 JP
2014024875 Feb 2014 JP
2014091723 May 2014 JP
2014234350 Dec 2014 JP
5667790 Feb 2015 JP
2015101545 Jun 2015 JP
2016013973 Jan 2016 JP
2016088910 May 2016 JP
6184550 Aug 2017 JP
2018012673 Jan 2018 JP
100290589 Sep 2001 KR
100821846 Apr 2008 KR
1020080111280 Dec 2008 KR
20090095359 Sep 2009 KR
20100040180 Apr 2010 KR
20140060882 May 2014 KR
101494008 Feb 2015 KR
101503922 Mar 2015 KR
101532070 Jul 2015 KR
50333 May 2010 UA
8603679 Jul 1986 WO
9114759 Oct 1991 WO
91017237 Nov 1991 WO
9213520 Aug 1992 WO
199325650 Dec 1993 WO
9417783 Aug 1994 WO
9502389 Jan 1995 WO
9726854 Jul 1997 WO
9823258 Jun 1998 WO
9906010 Feb 1999 WO
9918928 Apr 1999 WO
9924004 May 1999 WO
9924013 May 1999 WO
9949837 Oct 1999 WO
9957233 Nov 1999 WO
0012553 Mar 2000 WO
0032601 Jun 2000 WO
0119949 Mar 2001 WO
0142409 Jun 2001 WO
0148021 Jul 2001 WO
2001076552 Oct 2001 WO
2003051319 Jun 2003 WO
03096998 Nov 2003 WO
2004078901 Sep 2004 WO
2005023975 Mar 2005 WO
2008017540 Feb 2008 WO
2008128826 Oct 2008 WO
2008145582 Dec 2008 WO
2009016555 Feb 2009 WO
2009030594 Mar 2009 WO
2009053931 Apr 2009 WO
2010026009 Mar 2010 WO
2010052147 May 2010 WO
2012017091 Feb 2012 WO
2012052536 Apr 2012 WO
2012055587 May 2012 WO
2012055812 May 2012 WO
2012084970 Jun 2012 WO
2012127009 Sep 2012 WO
2012136651 Oct 2012 WO
2013010706 Jan 2013 WO
2013018805 Feb 2013 WO
2013119908 Aug 2013 WO
2014073245 May 2014 WO
2014073456 May 2014 WO
2014111667 Jul 2014 WO
2014111668 Jul 2014 WO
2014148245 Sep 2014 WO
2015067779 May 2015 WO
2015085376 Jun 2015 WO
2015122371 Aug 2015 WO
2015141787 Sep 2015 WO
2016049389 Mar 2016 WO
2016147196 Sep 2016 WO
2017052161 Mar 2017 WO
2017140798 Aug 2017 WO
2017140802 Aug 2017 WO
2017207685 Dec 2017 WO
2018023180 Feb 2018 WO
2018109148 Jun 2018 WO
2019030458 Feb 2019 WO
2019074990 Apr 2019 WO
2019074992 Apr 2019 WO
2019200027 Oct 2019 WO
2020005309 Jan 2020 WO
2020030732 Feb 2020 WO
2021026572 Feb 2021 WO
2021099088 May 2021 WO
2021127318 Jun 2021 WO
2021231510 Nov 2021 WO
Non-Patent Literature Citations (71)
Entry
Anonymous: “Anti-Dandruff Scalp Care Shampoo”, MINTEL, Database accession No. 301924, Sep. 16, 2004, 2 pages.
PCT Search Report and Written Opinion for PCT/US2022/028255 dated Sep. 19, 2022, 16 pages.
“Personal care solutions Guide”, Solvay, Publication date: May 2018, 84 pages.
Product Data Record Tego®Betain F KB 5, dated Jul. 1, 2015, 4 pages.
“Anti-Dandruff Shampoo”, Mintel Database, Record No. 752198, dated Aug. 2007; pp. 1-3.
“Dandruff Control Shampoo”, Mintel Database, Record No. 2300131, dated Jan. 2014; pp. 1-2.
“Foam & chemical contamination in waterways”, Retrieved From https://www.epa.nsw.gov.au/-/media/epa/corporate-site/resources/epa/foam-chemical-contamination-in-waterway.pdf, Dec. 2015, 2 Pages.
“Natural Detangling Shampoo”, Mintel Database, dated Sep. 13, 2017; 2 pages.
“Soda Shampoo”, Mintel Database, dated Apr. 2015; pp. 1-4.
“Treatment Foam for Recurrent Scaling Conditions”, Mintel Database, Aug. 2007; pp. 1-2.
Acne Foaming Cleanser, Database accession No. 4172863, Jul. 29, 2016, 3 pages.
Air Quality of the Iowa Department of Natural Resources. A Review of The Science and Technology of Odor Measurement, 2005, 51 pages (2005).
Anonymous: “MERQUAT Polyquaternium 47 Series, Water Soluble Polymers for Personal Care”, Jul. 30, 2017, URL: https://www.in-cosmetics.com/_novadocuments/2729, retrieved on Dec. 21, 2018; 1 page.
Anonymous: “Naturally Derived Body Wash”, Database GNPD [Online] MINTEL; Feb. 15, 2021, 2 pages.
Anonymous: “Peptide Shampoo”, Database GNPD [Online] MINTEL; Dec. 14, 2015, 3 pages.
Anonymous: “Replenishing Moisture Shampoo”, Database GNPD [Online] MINTEL, Mar. 10, 2015br.
Anonymous: “Shampoo”, Database GNPD [Online] MINTEL, Jan. 26, 2021, 3 pages.
ANONYMOUS: “Shampooing au Phytolait d'abricot—Formule N°102-MP06-MI3-AA03”, Internet Citation, Feb. 19, 2005, Retrieved from the Internet:URL: http://web.archive.org/web/20050219040350/www.albanmuller.com/francais/catalogue/formules/formul10.asp, 1 page.
ASTM D3954-94, Reapproved 2010, vol. 15.04, Standard Test Method for Dropping Point of Waxes.
BASF, “Practical Guide to Rheology Modifiers”, download from https://insights.basf.com/flles/BASF_ED_RheologyModifiers_download.pdf on Nov. 1, 2022. (Year: 2022).
Brattoli et al. Odour Detection Methods: Offactometry and Chemical Sensors. Sensors (Basel), 2011; 11(5); 5290-5322 (2011).
Carbopol Aqua SF-1 Polymer Technical Data Sheet, TDS-294, dated Dec. 2000; pp. 1-9.
Chemical Book (Chemical Book, Isolongifolone, available at http://www.chemicalbook.com/ProductChemicalPropertiesCB5318980_EN.htm), no date available.
Christensen et al., “Experimental Determination of Bubble Size Distribution in a Water Column by Interferometric Particle Imaging and Telecentric Direct Image Method”, Student Report, Aalborg University; dated Jun. 3, 2014; 123 pages.
Crepaldi, E.L., et al., Chemical, Structural, and Thermal Properties of Zn(II)—Cr(III) Layered Double Hydroxides Intercalated with Sulfated and Sulfonated Surfactants, Journal of Colloid and Interface Science, 2002, pp. 429-442, vol. 248.
D'Souza et al., Shampoo and Conditioners: What a Dermatologist Should Know? Indian J Dermatol, dated May-Jun. 2015; pp. 60(3), 248-254 (2015).
Database GNPD [Online] MINTEL;Mar. 28, 2018 (Mar. 28, 2018),anonymous: Dandruff Control Shampoo 11,XP055787038,Database accession No. 5556267abstract.
Database GNPD [Online] MINTEL;Apr. 5, 2005 (Apr. 5, 2005),anonymous: “Anticaspa-Graso Anti-DandruffShampoo”,XPC:155787029,Database accession No. 351776paragraph [ingredients].
Database GNPD [Online] MINTEL; Jan. 6, 2020 (Jan. 6, 2020),anonymous: 11 Shampoo 11, 3 pages.
Database WPI; Week 201459; Thomson scientific, London, GB; AN 2014-P66521; XP002752638.
Datasheet: Empigen Total Active TC/U, Datasheet, dated Jan. 31, 2017 (Innospec); 2 pages.
Dehyquart Guar: Published dated Nov. 2010; pp. 1-34.
Fevola, Michael J. “Guar Hydroxypropyltrimonium Chloride.” Cosmetics and toiletries; vol. 127.1; Jan. 2012; pp. 16-21.
Grillet et al., “Polymer Gel Rheology and Adhesion”, Rheology, 2012, pp. 59-80.
Hair Care/Conditioning Polymers Differentiation, Anonymous, Feb. 1, 2017, URL: http://www.biochim.it./assets/site/media/allegati/cosmetica/hair-care/tab-merquat-hair-care.pdf, retrieved on Dec. 20, 2018; p. 1.
Happi: “Sulfate-Free Surfactants Conditioning Shampoo”, Retrieved from the Internet:URL:https://www.happi.com/contents/view_formulary/2009-10-01/sulfate-free-surfactants-conditioning-shampoo/, XP002804301, Jan. 10, 2019, 1 page.
Inspection certificate for Hostapon® CCG, Clariant Ibérica Production, S.A., May 6, 2019; p. 1-2.
McGinley et al. American Association of Textile Chemists and Colorists, 2017, 17 pages, (2017).
McGinley et al. Performance Verification of Air Freshener Products and Other Odour Control Devices for Indoor Air Quality Malodours. Presented at the 8th Workshop on Odour and Emissions of Plastic Materials Universitat Kassel Institut for Wesrkstofftechnik Kassel, Germany, Mar. 27-28, 2006, 13 pages.
Medvedev, Diffusion Coefficients in Multicomponent Mixtures, PhD Thesis from Technical University of Denmark, dated 2005, 181 pages.
Mintel GNPD Base, Bright Blonde Shampoo Record No. 3412889 Feb. 29, 2016; 2 pages.
Mintel GNPD Base, Mineral Conquer Blonde Silver Shampoo Record No. 3953107 Apr. 30, 2016; 2 pages.
Mintel GNPD Base, Royal Treatment Collection, Record No. 1946223 dated Dec. 31, 2011, 3 pages.
Morioka, H et al. “Effects of Zinc on the New Preparation Method of Hydroxy Double Salts” Inorg. Chem. 1999, 38, 4211-6.
Musazzi, “Emulsion versus nonoemulsion: how much is the formulative shift critical for a cosmetic product?” (Drug Deliv. and Trans. Res. (2018) 8: pp. 414-421 (Year: 2018).
Natural oils: why specific carbon chains are chosen for certain surfactant properties, Chemlink, URL Link: https://www.chemlink.co.uk/natural-oils-why-specific-carbon-chains-are-chosen-for-certain-surfactant-properties/a (Year: 2022), 4 pgs.
Naturally Rich Moisturizing Shampoo, Database accession No. 6421011, Mar. 27, 2019, 3 pages.
Noritomi H. Formation and Solubilization Property of Water-in-Oil Microemulsions of Alkyl Glucoisdes. Advances in Nanoparticles, 2013, 2, 366-371 (Year: 2013).
Parchem fine & specialty chemicals. MIPA-laureth sulfate supplier distributor—CAS 83016-76-6; dated 2021; pp. 1-7.
PERM Inc,, Diffusion Coefficient: Measurement Techiques, https://perminc.com/resources/fundamentals-of-fluid-flow-in-porous-media/chapter-3-molecular-diffusion/diffusion-coefficient/measurement-techniques, dated Oct. 2020; p. 1-4.
Polyquaternium: “Final Report on the Safety Assessment of the Polyquaternium-10”, Journal of the American College of Toxicology, Jan. 1, 1988, URL: http://www.beauty-review.nl/wp-content/uploads/2015/02/Final-Report-on-the Safety-Assessment-of-Polyquaternium-10.pdf, retrieved on Dec. 20, 2018; 9 pages.
Practical Modern Hair Science, Published 2012; 43 pages.
Product Bulletin, Amphosol® CG, Cocamidopropyl Betaine, Stepan Company, Jun. 2011; 1-2 pages.
Product Data Sheet for Chemory™ LS Surfactant, Sodium Lauroyl Sarcosinate, Lubrizol Advanced Materials, Inc., Mar. 24, 2020; 1-2 pages.
Product Data Sheet, Eversoft™ UCS-40S, Disodium Cocoyl Glutamate (Sodium Cocoyl Glutamate*), Sino Lion USA, Jul. 2018; 2 pages.
Product Fact Sheet—Hostapon® CCG, mild anionic surfactant for the cosmetic industry, Clariant International Ltd., Aug. 2014; 1-3 pages.
Product Fact Sheet, Hostapon® CGN, Mild anionic surfactant for the cosmetic industry, Clariant International Ltd., Jan. 2016; 1-2 pages.
Rajendran A. et al: “Study on the Analysis of Trace Elements in Aloe veraand Its Biological Importance Study on the Analysis of Trace Elements in Aloe vera and Its Biological Importance”, Journal of Applied Sciences Research, Jan. 1, 2007 (Jan. 1, 2007), XP055799133, pp. 1476-1478.
Robinson et al., Final Report of the Amended Safety Assessment of Sodium Laureth Sulfate and Related Salts of SulfatedEthoxylated Alcohols, International Journal of Toxicology 29 (Supplement 3); dated 2010; pp. 151S-161S.
S. Herrwerth et al.: “Highly Concentrated Cocamidopropyl Betaine—The Latest Developments for Improved Sustainability and Enhanced Skin Care”, Tenside, Surfactants, Detergents, vol. 45, No. 6, dated Nov. 1, 2008, pp. 304-308, p. 305—left-hand column; 3 pages.
Safety assessment of amino acid alkyl amides used in cosmetics, dated Sep. 20, 2013, 46 pages.
Schaefer, Katie, “Eco-friendly, Non-flammable Liquified Gas Propellant”, https://www.cosmeticsandtoiletries.com/formulating/function/aids/13848589.html#close-olytics.modal. Published Jan. 30, 2012; 1-2 pages.
Sensory.,“A Review of the Science and Technology of Odor Measurement”, Prepared for the Air Quality Bureau of the Iowa Department of Natural Resources, Dec. 30, 2005 51 pages.
Shampoo C, Database accession No. 1632217, Sep. 29, 2011, 3 pages.
Softazoline CL-R, Kawaken Singapore PTE Ltd. Website printout from http://kawaken.com.kg/softazoline-ch-r//a, accessed on Nov. 30, 2022.
Todd et al., Volatile Silicone Fluids for Cosmetics, Cosmetics and Toiletries, vol. 91, pp. 27-32 (Jan. 1976).
UL Prospector® Product Data Sheet, Plantacare® 818 UP, C8-16 fatty alcohol glucoside, BASF, dated May 21, 2015; 1-3 pages.
Unhale Shrikrushna Subhash et al: Formulation and Development of Sulphate Free Shampoo About an Updates andGuidelines of Corona Virus View project health and beauty science View project Rohit Bhavsar Reliance Industries Limited; International Journal for Research inApplied Science & Engineering Technology,Apr. 1, 2020 (Apr. 1, 2020)t XP055842327, DOI: 10.22214, 14 pages.
“Deep Image Matting”, Ning Xu et al, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Adobe Research, dated Mar. 10, 2017; 10 pages.
“Comparative Study on the Chemical constituents of Aloe Vera and Aloe Kula in China ”, Zhang Xiaohua et al., Flavor Cosmetics, No. 63, dated Dec. 31, 2000, pp. 7-11.
PubChem CID 3033856 for decyl glucoside. downloaded Jun. 22, 2023, 32 pages. (Year: 2023).
Related Publications (1)
Number Date Country
20220378680 A1 Dec 2022 US
Provisional Applications (2)
Number Date Country
63276108 Nov 2021 US
63188517 May 2021 US