This application claims the benefit of U.S. Provisional Application Ser. No. 61/472,898 filed Apr. 7, 2011.
The present invention relates to shampoo compositions containing polyacrylate microcapsules, wherein the polyacrylate microcapsules have increased deposition onto hair.
Many of the shampoo products in the market today work to deliver benefits to hair by depositing benefit agents such as perfumes, silicones, dyes, and anti-dandruff agents onto the hair during washing. As a result, there is a desire to maximize the effectiveness of such benefit agents by increasing their delivery and retention onto hair. One method of achieving this objective is to encapsulate such benefit agents in microcapsules. While these microcapsules are able to encapsulate a wide variety of benefit agents and deliver them to hair, they are still often washed off of the hair before their benefit can be fully realized. Consumers today desire shampoo compositions that deposit and retain encapsulated benefit agents on the hair and the scalp, even after the rinsing process is complete.
However, obtaining good deposition of microcapsules onto hair during cleansing is further complicated by the action of detersive surfactants in shampoo. Detersive surfactants are designed to carry away oil, grease, and dirt from the hair and scalp, but can also interfere with the deposition of the encapsulated benefit agents. When microcapsules are washed away, relatively high levels of encapsulated benefit agents may be needed in the shampoo composition to deliver the consumer desired benefit.
Accordingly, there is a need for a shampoo composition that provides an increased deposition of encapsulated benefit agents onto the hair. In addition, there is a need for a polymer system that associates with microcapsule surfaces, and that when sheared, allows the encapsulated benefit agents to be released. Furthermore, there is a need for a shampoo composition that provides an increased retention of encapsulated benefit agents onto the hair during the rinse-off process.
A shampoo composition for cleansing a substrate, comprising: from about 0.001% to about 10% of an anionic charged polyacrylate microcapsule; from about 0.01% to about 2% of a cationic deposition polymer; from about 2% to about 25% of a detersive surfactant; and a carrier.
A method of making a shampoo composition, wherein the composition is formed by a process comprising the steps of: coating a polyacrylate microcapsule with an anionic emulsifier to form an anionic polyacrylate microcapsule; combining the anionic polyacrylate microcapsule with a cationic deposition polymer to form a premix; adding the premix to a detersive composition comprising surfactant and a carrier.
A method of making a shampoo composition, wherein the composition is formed by a process comprising the steps of: coating a polyacrylate microcapsule with an anionic emulsifier to form an anionic polyacrylate microcapsule; combining the anionic polyacrylate microcapsule with a cationic deposition polymer to form a premix; adding the premix to an anionic surfactant; adding the resulting composition of step (c) to a detersive composition comprising surfactant and a carrier.
In all embodiments of the present invention, all percentages are by weight of the total composition, unless specifically stated otherwise. All ratios are weight ratios, unless specifically stated otherwise. All ranges are inclusive and combinable. The number of significant digits conveys neither a limitation on the indicated amounts nor on the accuracy of the measurements. All numerical amounts are understood to be modified by the word “about” unless otherwise specifically indicated. Unless otherwise indicated, all measurements are understood to be made at 25° C. and at ambient conditions, where “ambient conditions” means conditions under about one atmosphere of pressure and at about 50% relative humidity. All such weights as they pertain to listed ingredients are based on the active level and do not include carriers or by-products that may be included in commercially available materials, unless otherwise specified.
As used herein, the term “personal care composition” includes, unless otherwise indicated, any personal care composition that can be applied to the keratinaceous surfaces of the body including the skin and/or hair. The personal cleansing compositions can be, for example, formulated as shampoos, hair tonics, hair colorants, sprays, mousses and/or other styling products.
As used herein, the term “fluid” includes liquids and gels.
As used herein, the terms “microcapsule,” “encapsulated benefit agents,” and “solid particulates,” refers to polyacrylate microcapsules.
As used herein, the term “premix” refers to the combination of anionic polyacrylate microcapsules with cationic deposition polymers.
As used herein, the term “shampoo composition” refers to the combination of detersive surfactant and carrier.
As used herein, the articles including “a” and “an” when used in a claim, are understood to mean one or more of what is claimed or described.
As used herein, the terms “include,” “includes,” and “including,” are meant to be non-limiting.
The test methods disclosed in the Test Methods Section of the present application should be used to determine the respective values of the parameters of Applicants' inventions.
Unless otherwise noted, all component or composition levels are in reference to the active portion of that component or composition, and are exclusive of impurities, for example, residual solvents or by-products, which may be present in commercially available sources of such components or compositions.
All percentages and ratios are calculated by weight unless otherwise indicated. All percentages and ratios are calculated based on the total composition unless otherwise indicated.
It should be understood that every maximum numerical limitation given throughout this specification includes every lower numerical limitation, as if such lower numerical limitations were expressly written herein. Every minimum numerical limitation given throughout this specification will include every higher numerical limitation, as if such higher numerical limitations were expressly written herein. Every numerical range given throughout this specification will include every narrower numerical range that falls within such broader numerical range, as if such narrower numerical ranges were all expressly written herein.
Benefits of Anionic Polyacrylate Microcapsules
Consumers desire a shampoo that deposits and retains encapsulated benefit agents onto their hair and scalp during the cleansing process. Traditionally, a variety of approaches have been employed to improve deposition of microcapsules, including (1) using specific block copolymers to covalently bind to the microcapsules, and (2) using cationic water soluble polymers to coat the microcapsules in order to increase the affinity of the microcapsules to the substrate of interest. However, it is desired to have improved deposition over the traditional approaches.
It has been surprisingly found that a synergy exists between anionic emulsifiers and polyacrylate microcapsules, resulting in anionic polyacrylate microcapsules. When such anionic microcapsules are mixed with certain cationic deposition polymers, microstructures are formed at the surface of the anionic polyacrylate. Such anionic microstructures display high viscoelasticity, remain in tact even upon dilution during cleansing, and display strong adhesion to keratinaceous hair surfaces. Combined with shampoo, these properties result in improved delivery efficiency of the encapsulated benefit agents to hair.
It is believed that the shampoo compositions comprising anionic polyacrylate microcapsules, along with specific cationic deposition polymers, delivers a higher deposition rate than shampoos containing non-anionic polyacrylates. In addition, anionic polyacrylate microcapsules with specific cationic deposition polymers also have a higher retention rate on hair even in the presence of detersive surfactants and carriers found in shampoo compositions. Applicants surprising discovery of adding anionic emulsifier to microcapsules to form anionic microcapsules can be accomplished by either: (1) adding the anionic emulsifier to an already formed microcapsule or (2) allowing the anionic emulsifier to associate with the microcapsule surface during the microcapsule making process. Once formed, the anionic polyacrylate microcapsules are combined with the specific cationic polymer(s) chosen to form a premix for addition to an anionic surfactant containing shampoo composition.
Anionic Emulsifier
The addition of an anionic emulsifier forms a microstructure with a specified cationic deposition polymer at the external surface of the microcapsules, i.e., the anionic emulsifier is at least a part of the external surface of the microcapsules, or is physically or chemically bound to the external surface of the microcapsules. Such physical bindings include, for example, hydrogen bonding, ionic interactions, hydrophobic interactions, and electron transfer interactions. Such chemical bindings include, for example, covalent bindings such as covalent grafting and crosslinking.
The anionic emulsifier is present at a level by weight of from about 0.1% to about 40%, from about 0.5% to about 10%, or from about 0.5% to about 5%, by weight of the polyacrylate microcapsule.
A variety of anionic emulsifiers can be used in the shampoo composition of the present invention as described below. The anionic emulsifiers include, by way of illustrating and not limitation, water-soluble salts of alkyl sulfates, alkyl ether sulfates, alkyl isothionates, alkyl carboxylates, alkyl sulfosuccinates, alkyl succinamates, alkyl sulfate salts such as sodium dodecyl sulfate, alkyl sarcosinates, alkyl derivatives of protein hydrolyzates, acyl aspartates, alkyl or alkyl ether or alkylaryl ether phosphate esters, sodium dodecyl sulphate, phospholipids or lecithin, or soaps, sodium, potassium or ammonium stearate, oleate or palmitate, alkylarylsulfonic acid salts such as sodium dodecylbenzenesulfonate, sodium dialkylsulfosuccinates, dioctyl sulfosuccinate, sodium dilaurylsulfosuccinate, poly(styrene sulfonate) sodium salt, isobutylene-maleic anhydride copolymer, gum arabic, sodium alginate, carboxymethylcellulose, cellulose sulfate and pectin, poly(styrene sulfonate), isobutylene-maleic anhydride copolymer, gum arabic, carrageenan, sodium alginate, pectic acid, tragacanth gum, almond gum and agar; semi-synthetic polymers such as carboxymethyl cellulose, sulfated cellulose, sulfated methylcellulose, carboxymethyl starch, phosphated starch, lignin sulfonic acid; and synthetic polymers such as maleic anhydride copolymers (including hydrolyzates thereof), polyacrylic acid, polymethacrylic acid, acrylic acid butyl acrylate copolymer or crotonic acid homopolymers and copolymers, vinylbenzenesulfonic acid or 2-acrylamido-2-methylpropanesulfonic acid homopolymers and copolymers, and partial amide or partial ester of such polymers and copolymers, carboxymodified polyvinyl alcohol, sulfonic acid-modified polyvinyl alcohol and phosphoric acid-modified polyvinyl alcohol, phosphated or sulfated tristyrylphenol ethoxylates.
In addition, it is desirable to use anionic emulsifiers that have acrylate functionality since these can be covalently linked to the shell portion of the polyacrylate microcapsules during the microcapsule making process. Anionic emulsifiers useful herein include, but aren't limited to: poly(meth)acrylic acid; copolymers of (meth)acrylic acids and its (meth)acrylates with C1-22 alkyl, C1-C8 alkyl, butyl; copolymers of (meth)acrylic acids and (meth)acrylamide; Carboxyvinylpolymer; acrylate copolymers such as Acrylate/C10-30 alkyl acrylate crosspolymer, Acrylic acid/vinyl ester copolymer/Acrylates/Vinyl Isodecanoate crosspolymer, Acrylates/Palmeth-25 Acrylate copolymer, Acrylate/Steareth-20 Itaconate copolymer, and Acrylate/Celeth-20 Itaconate copolymer; Polystyrene sulphonate, copolymers of methacrylic acid and acrylamidomethylpropane sulfonic acid, and copolymers of acrylic acid and acrylamidomethylpropane sulfonic acid; carboxymethycellulose; carboxy guar; copolymers of ethylene and maleic acid; and acrylate silicone polymer. Neutralizing agents may be included to neutralize the anionic emulsifiers herein. Non-limiting examples of such neutralizing agents include sodium hydroxide, potassium hydroxide, ammonium hydroxide, monoethanolamine, diethanolamine, triethanolamine, diisopropanolamine, aminomethylpropanol, tromethamine, tetrahydroxypropyl ethylenediamine, and mixtures thereof. Commercially available anionic emulsifiers include, for example, Carbomer supplied from Noveon under the tradename Carbopol 981 and Carbopol 980; Acrylates/C10-30 Alkyl Acrylate Crosspolymer having tradenames Pemulen TR-1, Pemulen TR-2, Carbopol 1342, Carbopol 1382, and Carbopol ETD 2020, all available from Noveon; sodium carboxymethylcellulose supplied from Hercules as CMC series; and Acrylate copolymer having a tradename Capigel supplied from Seppic. In another embodiment, anionic emulsifiers are carboxymethylcelluloses.
Polyacrylate Microcapsules
Various processes for microencapsulation, and exemplary methods and materials, are set forth in U.S. Pat. No. 6,592,990; U.S. Pat. No. 2,730,456; U.S. Pat. No. 2,800,457; U.S. Pat. No. 2,800,458; and U.S. Pat. No. 4,552,811. Each patent described throughout this application is incorporated herein by reference to the extent each provides guidance regarding microencapsulation processes and materials.
The present invention teaches a low permeability microcapsule comprising a core material and a wall material at least partially surrounding, and in another embodiment, completely surrounding, a core material. In the present invention, the polyacrylate microcapsules are benefit agent microcapsule particulates which encapsulate benefit agents by capsule wall materials comprised of polymers.
Capsule wall materials useful herein include, for example, those formed from melamine-formaldehyde or urea-formaldehyde condensates, melamine-resorcinol or urea-resorcinol condensates, as well as similar types of aminoplasts, gelatin, polyurethane, polyamide, polyolefin, polysaccaharide, protein, silicone, lipid, modified cellulose, gums, polyacrylate, polyphosphate, polystyrene, and polyesters, or combinations of these materials. In another embodiment, a wall material that provides low permeability is polyacrylate.
The benefit agents of said core may comprise a material selected from the group consisting of perfumes; brighteners; enzymes; perfumes; sensates in one aspect a cooling agent; attractants, anti-bacterial agents; dyes; pigments; bleaches; and mixtures thereof.
In one aspect of said polyacrylate microcapsules, said benefit agent may comprise an anti-dandruff agent. Suitable, non-limiting examples of anti-dandruff agents include: pyridinethione salts, azoles, selenium sulfide, particulate sulfur, and mixtures thereof. Other embodiments include pyridinethione salts, specifically the zinc salt of 1-hydroxy-2-pyridinethione (known as “zinc pyridinethione” or “ZPT”). Such anti-dandruff particulate should be physically and chemically compatible with the essential components of the composition, and should not otherwise unduly impair product stability, aesthetics or performance.
In addition to the anti-dandruff actives selected from polyvalent metal salts of pyrithione, the present invention may further comprise one or more anti-fungal or anti-microbial actives. Suitable anti-microbial actives include coal tar, sulfur, whitfield's ointment, castellani's paint, aluminum chloride, gentian violet, octopirox (piroctone olamine), ciclopirox olamine, undecylenic acid and it's metal salts, potassium permanganate, selenium sulphide, sodium thiosulfate, propylene glycol, oil of bitter orange, urea preparations, griseofulvin, 8-Hydroxyquinoline ciloquinol, thiobendazole, thiocarbamates, haloprogin, polyenes, hydroxypyridone, morpholine, benzylamine, allylamines (such as terbinafine), tea tree oil, clove leaf oil, coriander, palmarosa, berberine, thyme red, cinnamon oil, cinnamic aldehyde, citronellic acid, hinokitol, ichthyol pale, Sensiva SC-50, Elestab HP-100, azelaic acid, lyticase, iodopropynyl butylcarbamate (IPBC), isothiazalinones such as octyl isothiazalinone and azoles, and combinations thereof. Examples of anti-microbials include itraconazole, ketoconazole, selenium sulphide and coal tar.
The polyacrylate microcapsules useful herein are those releasing the benefit agents for a period of time after initial application. Potential trigger mechanisms for release of the encapsulated benefit agents may include, but are not limited to, mechanical forces, dehydration, light, pH, temperature, or even changes in ionic strength.
Process of Making Anionic Polyacrylate Microcapsules
An anionic polyacrylate microcapsule can be formed by either: (1) coating an already formed microcapsule with an anionic emulsifier; or (2) adding the anionic emulsifier to the microcapsule during the microcapsule making process. Any known method for generating a microcapsule is useful herein. Example methods for making polyacrylate microcapsules are disclosed in U.S. Patent Application 61/328,949; U.S. Patent Application 61/328,954; U.S. Patent Application 61/328,962; and U.S. Patent Application 61/328,967.
In one embodiment, polyacrlyate microcapsules are formed from water in oil, or oil in water emulsifications. During the polyacrylate microcapsule making process, a first composition is prepared as an oil phase. The oil phase may comprise oil; an oil soluble or dispersible primary, secondary, or tertiary amine; a multifunctional acrylate or methacrylate monomer or oligomer; an oil soluble acid; an initiator, and combinations thereof. In one embodiment, a nitrogen blanket is employed while the solution is mixed. Gradually, the temperature is increased to create a first composition reaction product. After the first composition reaction product is formed, a second composition is added to the reaction product.
The second composition is prepared as a water phase. The water phase may comprise water; an emulsifier that may be water soluble or water dispersible polymer or copolymer; at least one water phase initiator; one or more of an alkali or alkali salt, and combinations thereof. By water phase initiator, it is meant that the initiator is soluble or dispersible in water.
The second composition is then added to the oil solution of the first composition reaction product. This addition creates an oil-in-water emulsion. The reaction of the first composition in the presence of the second composition results in the formation of a low permeability microcapsule wall. The emulsion is further heated for a time and temperature sufficient to decompose the free radicals which are present in either one or both of the oil and water phases.
Furthermore, the polymerization of the monomers and oligomers in the oil phase causes a precipitation of the polymerized material. The precipitation of microcapsule wall material forms at the interface of the water and oil phases.
The anionic polyacrylate microcapsule is contained in the composition at a level by weight of from about 0.01% to about 50%, from about 0.05% to about 10%, from about 0.1% to about 8%, or from about 0.25% to 3%.
The anionic polyacrylate microcapsules useful herein are those having a particle size of from about 1 micron to about 80 microns, from about 2 microns to about 50 microns, and from about 5 microns to about 30 microns.
A. Coating a Microcapsule
In one embodiment of the invention, the anionic emulsifier is added to an already formed polyacrylate microcapsule. The anionic emulsifier attaches to the surface of the microcapsule through hydrogen bonding, van der Waals forces, ionic interactions, hydrophobic interactions, or chemical reactions. In one aspect, the anionic emulsifier surrounds at least a part of the external surface of the polyacrylate microcapsule, or is physically or chemically bound to the external surface of the polyacrylate microcapsule.
B. Adding Anionic Emulsifier to a Microcapsule
In another embodiment, the anionic emulsifier associates with the microcapsule surface during the microcapsule making process. When making the microcapsule, the anionic emulsifier is solubilized in an aqueous phase, which may optionally contain a free radical initiator, prior to emulsification of the oil. The excess aqueous phase is then added to the oil phase to form an oil-in-water emulsion. The emulsion is then heated for a time and at a temperature sufficient to decompose the free radicals which are positioned in one or both of the oil and aqueous phases. Microcapsule wall material is thereby formed at the interface of the water and oil phases. In one embodiment, when the emulsifier is comprised of acrylate moieties, the emulsifier may become chemically bound to the interfacial wall material.
C. Forming the Premix
Once the anionic polyacrlyate microcapsule is formed by either formation step, the anionic polyacrylate microcapsule is added to a cationic deposition polymer to form a premix. It has been surprisingly found that the anionic charge on the polyacrylate microcapsule leads to the formation of a microstructure on the shell of the microcapsule when combined with a cationic deposition polymer in the premix. This premix exhibits anionic polyacrylate microcapsules that have a higher viscoelasticity to the hair than microcapsules without an anionic charge and specific cationic deposition polymer thus giving a benefit to the hair.
Slurry/Aggolmerate
In one embodiment, the anionic polyacrylate microcapsules are contained in a slurry. The slurry may be combined with an adjunct ingredient to form a composition, for example, a shampoo consumer product.
In one aspect, the slurry may comprise one or more processing aids, selected from the group consisting of water, aggregate inhibiting materials such as divalent salts; particle suspending polymers such as xanthan gum, guar gum, and caboxy methyl cellulose. In another embodiment, said processing aids may be selected from the group consisting of amphoteric surfactants such as cocamidopropyl betaine (CAPB), zwitterionic surfactants, cationic swellable polymers, latex particles such as acrylic based ester Rheovis CDE, and mixtures thereof.
In one aspect, the slurry may comprise a carrier selected from the group consisting of polar solvents, including but not limited to, water, ethylene glycol, propylene glycol, polyethylene glycol, glycerol; nonpolar solvents, including but not limited to, mineral oil, perfume raw materials, silicone oils, hydrocarbon paraffin oils, and mixtures thereof.
In another embodiment, the anionic polyacrylate microcapsules are contained in an agglomerate with a second material. In one aspect, said second materials may comprise a material selected from the group consisting of silicas, citric acid, sodium carbonate, sodium sulfate, sodium chloride, and binders such as sodium silicates, modified celluloses, polyethylene glycols, polyacrylates, polyacrylic acids, zeolites and mixtures thereof.
Cationic Deposition Polymer
The shampoo composition of the present invention comprises a cationic deposition polymer that forms a premix when added to the anionic polyacrylate microcapsules. Any known natural or synthetic cationic deposition polymer can be used herein. Examples include those polymers disclosed in U.S. Pat. No. 6,649,155; U.S. patent application Ser. No. 12/103,902; U.S. Patent Publication 2008/0206355; and U.S. Patent Publication No. 2006/0099167A1.
The cationic deposition polymer is included in the composition at a level from about 0.01% to about 2%, in one embodiment from about 1.5% to about 1.9%, in another embodiment from about 1.8% to about 2.0%, in view of providing the benefits of the present invention.
The cationic deposition polymer is a water soluble polymer with a charge density from about 0.5 milliequivalents per gram to about 12 milliequivalents per gram. The cationic deposition polymer used in the composition has a molecular weight of about 100,000 Daltons to about 5,000,000 Daltons. The cationic deposition polymer is a low charge density cationic polymer.
In one embodiment, the cationic deposition polymer is a synthetic cationic deposition polymer. A variety of synthetic cationic deposition polymers can be used including mono- and di-alkyl chain cationic surfactants. In one embodiment, mono-alkyl chain cationic surfactants are chosen including, for example, mono-alkyl quaternary ammonium salts and mono-alkyl amines. In another embodiment, di-alkyl chain cationic surfactants are used and include, for example, dialkyl (14-18) dimethyl ammonium chloride, ditallow alkyl dimethyl ammonium chloride, dihydrogenated tallow alkyl dimethyl ammonium chloride, distearyl dimethyl ammonium chloride, dicetyl dimethyl ammonium chloride, and mixtures thereof.
In another embodiment, the cationic deposition polymer is a naturally derived cationic polymer. The term, “naturally derived cationic polymer” as used herein, refers to cationic deposition polymers which are obtained from natural sources. The natural sources may be polysaccharide polymers. Therefore, the naturally derived cationic polymer may be selected from the group comprising starches, guar, cellulose, Cassia, locust bean, Konjac, Tara, galactomannan, tapioca, and synthetic polymers. In a further embodiment, cationic deposition polymers are selected from Mirapol 100S (Rhodia), Jaguar C17, polyDADMAC, Tapioca starch (Akzo), polyTriquat, and mixtures thereof.
Forming a Premix
The cationic deposition polymer and the anionic polyacrylate microcapsule are mixed to form a premix before addition to the detersive composition comprising a detersive surfactant and a carrier.
The weight ratio of the anionic polyacrylate microcapsule to the cationic deposition polymer (based on the dry weight of the anionic microcapsules and the dry weight of the cationic deposition polymer) is from about 0.5:30 to about 20:1, from about 5:15 to about 15:1, and from about 5:1 to about 12:1. It is believed that too much cationic polymer may not provide enhanced and/or prolonged benefits to the benefit agent microcapsules due to the formation of excess cationic polymer coating on the capsule wall. This excess coating may prevent the microcapsule wall from breaking and releasing the benefit agents.
Microcapsules and anionic emulsifiers may be dispersed in solvents such as water while mixing with the cationic deposition polymer. In one embodiment, the amount of water present is from about 90% to about 50%, in another embodiment from about 70% to about 50%, and in another embodiment from about 60% to about 50%. In another embodiment of the invention, the anionic emulsifiers associate with the microcapsule walls to form anionic polyacrylate microcapsules prior to their mixing with cationic deposition polymers.
Detersive Composition
The detersive composition can be all aqueous phase or may comprise both an oil phase and an aqueous phase. In one embodiment, the detersive composition has both an oil phase and an aqueous phase. After being added to the detersive composition, the polyacrylate microcapsules reside in the aqueous phase of such embodiments.
The detersive composition may comprise any combination of the following components:
A. Detersive Surfactant
The shampoo composition of the present invention includes a detersive surfactant. The detersive surfactant provides cleaning performance to the composition. The detersive surfactant in turn comprises anionic detersive surfactant, zwitterionic or amphoteric detersive surfactant, or combinations thereof. Various examples and descriptions of detersive surfactants are set forth in U.S. Pat. No. 6,649,155; U.S. patent application Ser. No. 12/103,902; and U.S. Patent Publication 2008/0206355, and are incorporated herein for reference.
The concentration of the anionic surfactant component in the shampoo should be sufficient to provide the desired cleaning and lather performance, and generally ranges from about 2% to about 50%, from about 8% to about 30%, from about 10% to about 25%, or from about 12% to about 22%.
Anionic surfactants suitable for use in the compositions are the alkyl and alkyl ether sulfates. Other suitable anionic detersive surfactants are the water-soluble salts of organic, sulfuric acid reaction products. Still other suitable anionic detersive surfactants are the reaction products of fatty acids esterified with isethionic acid and neutralized with sodium hydroxide. Other similar anionic surfactants are described in U.S. Pat. Nos. 2,486,921; 2,486,922; and 2,396,278.
Anionic detersive surfactants for use in the shampoo composition include ammonium lauryl sulfate, ammonium laureth sulfate, triethylamine lauryl sulfate, triethylamine laureth sulfate, triethanolamine lauryl sulfate, triethanolamine laureth sulfate, monoethanolamine lauryl sulfate, monoethanolamine laureth sulfate, diethanolamine lauryl sulfate, diethanolamine laureth sulfate, lauric monoglyceride sodium sulfate, sodium lauryl sulfate, sodium laureth sulfate, potassium lauryl sulfate, potassium laureth sulfate, sodium lauryl sarcosinate, sodium lauroyl sarcosinate, lauryl sarcosine, cocoyl sarcosine, ammonium cocoyl sulfate, ammonium lauroyl sulfate, sodium cocoyl sulfate, sodium lauroyl sulfate, potassium cocoyl sulfate, potassium lauryl sulfate, triethanolamine lauryl sulfate, triethanolamine lauryl sulfate, monoethanolamine cocoyl sulfate, monoethanolamine lauryl sulfate, sodium tridecyl benzene sulfonate, sodium dodecyl benzene sulfonate, sodium cocoyl isethionate and combinations thereof. In a further embodiment of the present invention, the anionic surfactant is sodium lauryl sulfate or sodium laureth sulfate.
Suitable amphoteric or zwitterionic detersive surfactants for use in the shampoo composition herein include those which are known for use in hair care or other personal care cleansing. Concentrations of such amphoteric detersive surfactants range from about 0.5% to about 20%, and from about 1% to about 10%. Non limiting examples of suitable zwitterionic or amphoteric surfactants are described in U.S. Pat. No. 5,104,646 (Bolich Jr. et al.), U.S. Pat. No. 5,106,609 (Bolich Jr. et al.).
Amphoteric detersive surfactants suitable for use in the shampoo composition include those surfactants broadly described as derivatives of aliphatic secondary and tertiary amines in which the aliphatic radical can be straight or branched chain and wherein one of the aliphatic substituents contains from about 8 to about 18 carbon atoms and one contains an anionic group such as carboxy, sulfonate, sulfate, phosphate, or phosphonate. Amphoteric detersive surfactants for use in the present invention include cocoamphoacetate, cocoamphodiacetate, lauroamphoacetate, lauroamphodiacetate, and mixtures thereof.
Zwitterionic detersive surfactants suitable for use in the composition include those surfactants broadly described as derivatives of aliphatic quaternaryammonium, phosphonium, and sulfonium compounds, in which the aliphatic radicals can be straight or branched chain, and wherein one of the aliphatic substituents contains from about 8 to about 18 carbon atoms and one contains an anionic group such as carboxy, sulfonate, sulfate, phosphate or phosphonate. In another embodiment, zwitterionics such as betaines are selected.
Non limiting examples of other anionic, zwitterionic, amphoteric or optional additional surfactants suitable for use in the compositions are described in McCutcheon's, Emulsifiers and Detergents, 1989 Annual, published by M. C. Publishing Co., and U.S. Pat. Nos. 3,929,678, 2,658,072; 2,438,091; 2,528,378.
B. Anti-Dandruff Actives
The shampoo compositions of the present invention may also contain an anti-dandruff agent. Suitable, non-limiting examples of anti-dandruff agents include: antimicrobial actives, pyridinethione salts, azoles, selenium sulfide, particulate sulfur, keratolytic acid, salicylic acid, octopirox (piroctone olamine), coal tar, and combinations thereof. In one aspect, the anti-dandruff agents typically are pyridinethione salts. Such anti-dandruff agents should be physically and chemically compatible with the essential components of the composition, and should not otherwise unduly impair product stability, aesthetics or performance.
Pyridinethione anti-dandruff agents are described, for example, in U.S. Pat. No. 2,809,971; U.S. Pat. No. 3,236,733; U.S. Pat. No. 3,753,196; U.S. Pat. No. 3,761,418; U.S. Pat. No. 4,345,080; U.S. Pat. No. 4,323,683; U.S. Pat. No. 4,379,753; and U.S. Pat. No. 4,470,982. It is contemplated that when ZPT is used as the anti-dandruff particulate in the compositions herein, that the growth or re-growth of hair may be stimulated or regulated, or both, or that hair loss may be reduced or inhibited, or that hair may appear thicker or fuller.
C. Aqueous Carrier
The formulations of the present invention can be in the form of pourable liquids (under ambient conditions). Such compositions will therefore typically comprise an aqueous carrier, which is present at a level of from about 20% to about 95%, or even from about 60% to about 85%. The aqueous carrier may comprise water, or a miscible mixture of water and organic solvent, and in one aspect may comprise water with minimal or no significant concentrations of organic solvent, except as otherwise incidentally incorporated into the composition as minor ingredients of other essential or optional components.
The carrier useful in the present invention includes water and water solutions of lower alkyl alcohols and polyhydric alcohols. The lower alkyl alcohols useful herein are monohydric alcohols having 1 to 6 carbons, in one aspect, ethanol and isopropanol. The polyhydric alcohols useful herein include propylene glycol, hexylene glycol, glycerin, and propane diol.
D. Other Optional Components
The shampoo composition may further comprise other optional ingredients that are known for use or otherwise useful in compositions. Such optional ingredients are most typically those described in reference books such as the CTFA Cosmetic Ingredient Handbook, Second Edition, The Cosmetic, Toiletries, and Fragrance Association, Inc. 1988, 1992.
Further non-limiting examples of such optional ingredients include perfumes or fragrances, coloring agents or dyes, hair bleaching agents, thickeners, moisturizers, emollients, pharmaceutical actives, vitamins or nutrients, anti-dandruff agents, perfumes, hair colorants, hair perming agents, hair growth or restorer agents, and similar other materials.
Method of Manufacture
The shampoo compositions of the present invention can be prepared by the process comprising: 1) coating a polyacrylate microcapsule with an anionic emulsifier to form an anionic polyacrylate microcapsule; 2) combining the anionic polyacrylate microcapsule with a cationic deposition polymer to form a premix; and 3) adding the premix to a detersive composition comprising surfactant and a carrier.
In another embodiment, the shampoo compositions of the present invention can be prepared by the process comprising: 1) coating a polyacrylate microcapsule with an anionic emulsifier to form an anionic polyacrylate microcapsule; 2) combining the anionic polyacrylate microcapsule with a cationic deposition polymer to form a premix; 3) adding the premix to a anionic surfactant; and 4) adding the resulting composition of step (3) to a detersive composition comprising surfactant and a carrier.
It has been unexpectedly found that the association of anionic polyacrylate microcapsules combined with cationic deposition polymers has a higher viscoelasticity than in the absence of the mixed components thus giving a better adhesion of the anionic microcapsules to the hair.
For example, when an anionic emulsifier comprising a copolymer of acrylic acid and butyl acrylate (molecular weight of 40,000 g/mol), is mixed with various cationic polymers to form a polymer premix, the result is a significant increase in viscoelasticity. This increase indicates a strong polyelectrolyte interaction which is exemplified in the increase in viscoelastic component G′ as the quantity of cationic polymer increases (See Table 1)
Furthermore, when an anionic surfactant is added to the polymer premix, a substantial increase in viscoelasticity is also noted. Such an increase in viscoelasticity is influenced by the strength of the association between the cationic deposition polymer and the anionic surfactant. This is exemplified in the increase in viscoelastic component G′ upon addition of anionic surfactant to the premix (See Table 2).
In one embodiment of the invention, an anionic emulsifier is covalently bonded to the outer wall of the polyacrylate microcapsule by incorporating the anionic emulsifier during the microcapsule making process. In another embodiment, the anionic emulsifier is added to the slurry comprising a fully formed polyacrylate microcapsule. After forming the anionic polyacrylate microcapsule through either step, a cationic deposition polymer is then added to the anionic microcapsule to form a viscoelastic premix. When this premix is then combined with an anionic surfactant, an association of polymers forms a microstructure on the anionic polyacrylate microcapsule wall. The microstructure forms upon dilution of the shampoo composition. Once formed, the high viscosity of the polymer association microstructure results in an anionic polyacrylate microcapsule that maintains its microcapsule structure even upon dilution of the shampoo during washing. In addition, the microcapsule structure provides multiple points of contact to the substrate which works to resist rinse-off of the microcapsules during the use of the shampoo composition.
The polyacrylate microcapsules of the present invention can be formulated into any suitable form and prepared by any process chosen by the formulator, non-limiting examples of which are described in U.S. Pat. No. 5,879,584; U.S. Pat. No. 5,691,297; U.S. Pat. No. 5,574,005; U.S. Pat. No. 5,569,645; U.S. Pat. No. 5,565,422; U.S. Pat. No. 5,516,448; U.S. Pat. No. 5,489,392; U.S. Pat. No. 5,486,303 all of which are incorporated herein by reference.
Any suitable method of making the shampoo of the present invention may be used non-limiting examples of which are described in U.S. Pat. No. 5,879,584; U.S. Pat. No. 5,691,297; U.S. Pat. No. 5,574,005; U.S. Pat. No. 5,569,645; U.S. Pat. No. 5,565,422; U.S. Pat. No. 5,516,448; U.S. Pat. No. 5,489,392; U.S. Pat. No. 5,486,303 all of which are incorporated herein by reference.
Product Forms
The shampoo compositions of the present invention can be in the form of rinse-off products or leave-on products, and can be formulated in a wide variety of product forms, including but not limited to creams, gels, emulsions, mousses and sprays.
In one embodiment, the shampoo composition is in the form of a gel comprising less than about 45% water. In such embodiment, the gel may have a neat viscosity of about 1,000 cps to about 10,000 cps. The neat viscosity of a gel can be defined as the viscosity of the fluid at a shear rate of 1/sec. Scientifically, viscosity is the ratio of shear stress to shear rate. In some embodiments, the range of shear rates for gels is from 0.01/sec to 10/sec.
Neat viscosity of the gel product form can be measured with a rheometer according to the following method:
It is understood that the test methods that are disclosed in the Test Methods Section of the present application should be used to determine the respective values of the parameters of Applicants' invention as such invention is described and claimed herein.
A. ClogP
The “calculated logP” (ClogP) is determined by the fragment approach of Hansch and Leo (cf., A. Leo, in Comprehensive Medicinal Chemistry, Vol. 4, C. Hansch, P. G. Sammens, J. B. Taylor, and C. A. Ramsden, Eds. P. 295, Pergamon Press, 1990, incorporated herein by reference). ClogP values may be calculated by using the “CLOGP” program available from Daylight Chemical Information Systems Inc. of Irvine, Calif. U.S.A.
B. Boiling Point
Boiling point is measured by ASTM method D2887-04a, “Standard Test Method for Boiling Range Distribution of Petroleum Fractions by Gas Chromatography,” ASTM International.
C. Median Particle Size
Particle size is measured using an Accusizer 780A, made by Particle Sizing Systems, Santa Barbara Calif. The instrument is calibrated from 0 to 300μ using Duke particle size standards. Samples for particle size evaluation are prepared by diluting about 1 g of capsule slurry in about 5 g of de-ionized water and further diluting about 1 g of this solution in about 25 g of water.
About 1 g of the most dilute sample is added to the Accusizer and the testing initiated, using the autodilution feature. The Accusizer should be reading in excess of 9200 counts/second. If the counts are less than 9200 additional sample should be added. The accusizer will dilute the test sample until 9200 counts/second and initiate the evaluation. After 2 minutes of testing the Accusizer will display the results, including volume-weighted median size.
The broadness index can be calculated by determining the particle size at which 95% of the cumulative particle volume is exceeded (95% size), the particle size at which 5% of the cumulative particle volume is exceeded (5% size), and the median volume-weighted particle size (50% size-50% of the particle volume both above and below this size). Broadness Index (5)=((95% size)-(5% size)/50% size).
D. Olfactive Analysis of Shampoo Product
Analysis steps include:
Analysis steps include:
a.) Place 1 gram of particles in 1 liter of distilled deionized (DI) water.
b.) Permit the particles to remain in the DI water for 10 minutes and then recover the particles by filtration, using a 60 mL syringe filter, 1.2 micron nitrocellulose filter (Millipore, 25 mm diameter).
c.) Determine the rupture force of 50 individual particles. The rupture force of a particle is determined using the procedure given in Zhang, Z.; Sun, G; “Mechanical Properties of Melamine-Formaldehyde microcapsules,” J. Microencapsulation, vol 18, no. 5, pages 593-602, 2001. Then calculate the fracture strength of each particle by dividing the rupture force (in Newtons) by the cross-sectional area of the respective spherical particle (πr2, where r is the radius of the particle before compression), said cross-sectional area being determined as follows: measuring the particle size of each individual particle using the experimental apparatus and method of Zhang, Z.; Sun, G; “Mechanical Properties of Melamine-Formaldehyde microcapsules,” J. Microencapsulation, vol 18, no. 5, pages 593-602, 2001.
d.) Use the 50 independent measurements from c.) above, and calculate the percentage of particles having a fracture strength within the claimed range fracture strength range.
F. Zeta Potential
While particular embodiments of the present invention have been illustrated and described, it would be obvious to those skilled in the art that various other changes and modifications can be made without departing from the spirit and scope of the invention. It is therefore intended to cover in the appended claims all such changes and modifications that are within the scope of this invention.
A perfume composition, called Scent A, is utilized to prepare the examples of the invention. The table below lists the ingredients, and their properties. Table 2 provides the ClogP breakdown of the perfume oil composition.
An oil solution, consisting of 75 g Fragrance Oil scenta, 75 g of Isopropyl Myristate, 0.6 g DuPont Vazo-52, and 0.4 g DuPont Vazo-67, is added to a 35° C. temperature controlled steel jacketed reactor, with mixing at 1000 rpm (4 tip, 2″ diameter, flat mill blade) and a nitrogen blanket applied at 100 cc/min. The oil solution is heated to 75° C. in 45 minutes, held at 75° C. for 45 minutes, and cooled to 60° C. in 75 minutes.
A second oil solution, consisting of 37.5 g Fragrance Oil, 0.5 g tertiarybutylaminoethyl methacrylate, 0.4 g 2-carboxyethyl acrylate, and 20 g Sartomer CN975 (hexafunctional urethane-acrylate oligomer) is added when the first oil solution reached 60° C. The combined oils are held at 60° C. for an additional 10 minutes.
Mixing is stopped and a water solution, consisting of 56 g of 5% active polyvinyl alcohol Celvol 540 solution in water, 244 g water, 1.1 g 20% NaOH, and 1.2 g DuPont Vazo-68WSP, is added to the bottom of the oil solution, using a funnel.
Mixing is again started, at 2500 rpm, for 60 minutes to emulsify the oil phase into the water solution. After milling is completed, mixing is continued with a 3″ propeller at 350 rpm. The batch is held at 60° C. for 45 minutes, the temperature is increased to 75° C. in 30 minutes, held at 75° C. for 4 hours, heated to 90° C. in 30 minutes and held at 90° C. for 8 hours. The batch is then allowed to cool to room temperature. The finished microcapsules have a median particle size of 6.4 microns, a broadness index of 1.3, and a zeta potential of negative 0.5 millivolts.
Capsules are made using identical materials, compositions, and process conditions as in Example 1 with the following exceptions: 1 gram of Vazo-52, 0.8 grams of Vazo-67, 0.3 grams of tertiarybutylaminoethyl methacrylate, 0.25 grams of 2-carboxyethyl acrylate, and 12 grams of Sartomer CN975 as compositional differences in the oil phase; and 22 grams of 25% active Colloid 351, and 308 grams of water as compositional differences in the water phase. All other mixing and process conditioner remains the same. The finished microcapsules have a median particle size of 10.7 microns, a broadness index of 1.5, and a zeta potential of negative 60 millivolts.
Capsules are made using identical materials, compositions, and process conditions as in Example 1 with the following exceptions: 1 gram of Vazo-52, 0.8 grams of Vazo-67, 1.5 grams of tertiarybutylaminoethyl methacrylate, 1.2 grams of 2-carboxyethyl acrylate, and 60 grams of Sartomer CN975 as compositional differences in the oil phase; and 68 grams of 25% active Colloid 351, and 282 grams of water as compositional differences in the water phase. All other mixing and process conditioner remains the same. The finished microcapsules have a median particle size of 1.4 microns, a broadness index of 1.2, and a zeta potential of negative 60 milivolts.
An oil solution, consisting of 112.5 g Fragrance Oil Scent A, 37.5 g of Isopropyl Myristate, 0.6 g DuPont Vazo-52, and 0.4 g DuPont Vazo-67, is added to a 35° C. temperature controlled steel jacketed reactor, with mixing at 1000 rpm (4 tip, 2″ diameter, flat mill blade) and a nitrogen blanket applied at 100 cc/min. The oil solution is heated to 75° C. in 45 minutes, held at 75° C. for 45 minutes, and cooled to 60° C. in 75 minutes.
A second oil solution, consisting of 37.5 g Fragrance Oil, 0.5 g tertiarybutylaminoethyl methacrylate, 0.4 g 2-carboxyethyl acrylate, and 20 g Sartomer CN975 (hexafunctional urethane-acrylate oligomer) is added when the first oil solution reached 60° C. The combined oils are held at 60° C. for an additional 10 minutes.
Mixing is stopped and a water solution, consisting of 5.6 g of poly(dimethylamine-co-epichlorohydrin-co-ethylenediamine) and 360 grams of water, 2.8 g 20% NaOH, and 1.2 g DuPont Vazo-68WSP, is added to the bottom of the oil solution, using a funnel.
Mixing is again started, at 2500 rpm, for 60 minutes to emulsify the oil phase into the water solution. After milling is completed, mixing is continued with a 3″ propeller at 350 rpm. The batch is held at 60° C. for 45 minutes, the temperature is increased to 75° C. in 30 minutes, held at 75° C. for 4 hours, heated to 90° C. in 30 minutes and held at 90° C. for 8 hours. The batch is then allowed to cool to room temperature. The finished microcapsules have a median particle size of 10.5 microns, a broadness index of 1.3, and a zeta potential of 25 millivolts.
Capsules are made using identical materials, compositions, and process conditions as in Example 2 with the following exceptions: 1 gram of tertiarybutylaminoethyl methacrylate, 0.8 grams of 2-carboxyethyl acrylate, and 40 grams of Sartomer CN975 as compositional differences in the oil phase; and 22 grams of 25% active Colloid 351, and 282 grams of water as compositional differences in the water phase. All other mixing and process conditioner remains the same. The finished microcapsules have a median particle size of 4.8 microns, a broadness index of 1.3, and a zeta potential of negative 60 milivolts.
Capsules are made using identical materials, compositions, and process conditions as in Example 1 with the following exceptions: 20 grams of 32% active poly(diallyl dimethyl ammonium chloride) added to the water phase, along with 236 grams of water. All other mixing and process conditioner remains the same. The finished microcapsules have a median particle size of 9 microns, and a broadness index of 1.3, and a zeta potential of 38 millivolts.
1 Mirapol AT-1, Copolymer of Acrylamide(AM) and TRIQUAT, MW = 1,000,000; CD = 1.6 meq./gram; 10% active; Supplier Rhodia
2 Jaguar C500, MW—500,000, CD = 0.7, supplier Rhodia
3 Mirapol 100S, 31.5% active, supplier Rhodia
4 Sodium Laureth Sulfate, 28% active, supplier: P&G
5 Sodium Lauryl Sulfate, 29% active supplier: P&G
6 Glycidol Silicone VC2231-193C
7 Tegobetaine F-B, 30% active supplier: Goldschmidt Chemicals
8 Monamid CMA, 85% active, supplier Goldschmidt Chemical
9 Ethylene Glycol Distearate, EGDS Pure, supplier Goldschmidt Chemical
10 Sodium Chloride USP (food grade), supplier Morton; note that salt is an adjustable ingredient, higher or lower levels may be added to achieve target viscosity.
Perfume and/or perfume microcapsules disclosed in the above examples are added on top of a pre-made shampoo formula with a 10 wt % formula hole (shampoo compositions of Example 7 II, formulations with 10% hole). The table below lists the masses of the various ingredients. The mixture is then speed mixed at 1900 RPM for 1 minute using a DAFC 400FVZ speed mixer. The Olfactive Analysis of Shampoo Product test method is utilized to grade hair treated with the prepared shampoo compositions. These results are presented below.
The perfume microcapsules of Examples 1 through 6 are first premixed with polyDADMAC (polydiallyl dimethyl ammonium chloride, Mirapol 100S from Rhodia) by preweighing the perfume microcapsules in a jar, then adding the Mirapol 100S, followed by the addition of water. The contents are then mixed at 1950 RPM for 1 minutes using a Hausfeld DAFC 400FVZ speed mixer to achieve a homogeneous suspension of microcapsules. The masses of materials that are premixed are recorded in the table below. The polymer to perfume ratio in the premix is maintained at 1:5 for all of the samples, and the amount of Mirapol 100S polymer is maintained at 0.10 wt % in the finished shampoo formulation.
The cationic polymer/microcapsule premixes are then formulated into a shampoo (example compositions provided in Example 7 II, a formulation with 10% hole was utilized) by preweighing the shampoo in a jar, then adding the premix, followed by addition of water, and then mixing at 1950 RPM for 1 minute using a Hausfeld DAFC 400FVZ Speed Mixer to achieve a homogeneous product.
The Olfactive Analysis of Shampoo Product test method is utilized to grade hair treated with the prepared shampoo compositions. These results are presented below.
Note that the anionic microcapsules provide the best olfactive results.
Anionic microcapsules of Example 5 are premixed with various amounts of polyDADMAC (Mirapol 100S, Rhodia), see table below. These premixes are agitated at 1950 RPM for 1 minute using a Hausfeld 400 FVZ Speed Mixer. The premixes are then added to shampoo of Example 7 II (formulation with 10% hole), and formulation balanced to 100% with the addition of water. The shampoo mixture is then agitated at 1950 RPM for 1 minute using a Hausfeld 400 FVZ Speed Mixer.
The Olfactive Analysis of Shampoo Product test method is utilized to grade hair treated with the prepared shampoo compositions. These results are presented below.
Notice that very low levels of polymer are required for premixing with the microcapsules to achieve the desired interaction and delivery efficiency.
Anionic microcapsules of Example 5 are premixed with a variety of cationic polymers, see table below. The powder polymers (100% active in the table below) are first mixed with water at 1950 RPM for 1 minute using a Hausfeld 400 FVZ Speed Mixer. In the case of Tapioca starch, the dispersion is also heated. Subsequently, anionic microcapsules of Example 5 are added to the polymer solutions in water, and these premixes are agitated at 1950 RPM for 1 minute using a Hausfeld 400 FVZ Speed Mixer. The premixes are then added to shampoo of Example 7 II, and formulation balanced to 100% with the addition of water. The shampoo mixture is then agitated at 1950 RPM for 1 minute using a Hausfeld 400 FVZ Speed Mixer.
The Olfactive Analysis of Shampoo Product test method is utilized to grade hair treated with the prepared shampoo compositions. These results are presented below.
Note that the choice of polymer is critical in achieving a favorable interaction between the microcapsule, cationic deposition polymer, and the shampoo formulation.
The dimensions and values disclosed herein are not to be understood as being strictly limited to the exact numerical values recited. Instead, unless otherwise specified, each such dimension is intended to mean both the recited value and a functionally equivalent range surrounding that value. For example, a dimension disclosed as “40 mm” is intended to mean “about 40 mm.”
Every document cited herein, including any cross referenced or related patent or application is hereby incorporated herein by reference in its entirety unless expressly excluded or otherwise limited. The citation of any document is not an admission that it is prior art with respect to any invention disclosed or claimed herein or that it alone, or in any combination with any other reference or references, teaches, suggests or discloses any such invention. Further, to the extent that any meaning or definition of a term in this document conflicts with any meaning or definition of the same term in a document incorporated by reference, the meaning or definition assigned to that term in this document shall govern.
While particular embodiments of the present invention have been illustrated and described, it would be obvious to those skilled in the art that various other changes and modifications can be made without departing from the spirit and scope of the invention. It is therefore intended to cover in the appended claims all such changes and modifications that are within the scope of this invention.
Number | Name | Date | Kind |
---|---|---|---|
2396278 | Lind | Mar 1946 | A |
2438091 | Lynch | Mar 1948 | A |
2486921 | Byerly | Nov 1949 | A |
2486922 | Strain | Nov 1949 | A |
2528378 | Mannheimer | Oct 1950 | A |
2658072 | Kosmin | Nov 1953 | A |
2730456 | Green et al. | Jan 1956 | A |
2730457 | Green et al. | Jan 1956 | A |
2800457 | Green et al. | Jul 1957 | A |
2800458 | Green | Jul 1957 | A |
2809971 | Bernstein et al. | Oct 1957 | A |
2826551 | Geen | Mar 1958 | A |
RE24899 | Green | Nov 1960 | E |
3236733 | Karsten et al. | Feb 1966 | A |
3332880 | Kessler et al. | Jul 1967 | A |
3429827 | Ruus | Feb 1969 | A |
3516941 | Matson | Jun 1970 | A |
3660304 | Matsukawa et al. | May 1972 | A |
3681248 | Gould et al. | Aug 1972 | A |
3691140 | Silver | Sep 1972 | A |
3753196 | Kurtz et al. | Aug 1973 | A |
3761418 | Parran, Jr. | Sep 1973 | A |
3772215 | Gould et al. | Nov 1973 | A |
3826756 | Bachmann et al. | Jul 1974 | A |
3886085 | Kiritani et al. | May 1975 | A |
3898039 | Lin | Aug 1975 | A |
3929678 | Laughlin et al. | Dec 1975 | A |
3958581 | Abegg et al. | May 1976 | A |
3962418 | Birkofer | Jun 1976 | A |
3964500 | Drakoff | Jun 1976 | A |
3965033 | Matsukawa et al. | Jun 1976 | A |
4001140 | Foris et al. | Jan 1977 | A |
4046750 | Rembaum | Sep 1977 | A |
4062799 | Matsukawa et al. | Dec 1977 | A |
4075134 | Morehouse, Jr. et al. | Feb 1978 | A |
4081376 | Strub | Mar 1978 | A |
4087376 | Foris et al. | May 1978 | A |
4089802 | Foris et al. | May 1978 | A |
4093556 | Wojciak | Jun 1978 | A |
4100103 | Foris et al. | Jul 1978 | A |
4105823 | Hasler et al. | Aug 1978 | A |
4145184 | Brain et al. | Mar 1979 | A |
4166152 | Baker et al. | Aug 1979 | A |
4183911 | Smithies et al. | Jan 1980 | A |
4197346 | Stevens | Apr 1980 | A |
4197865 | Jacquet et al. | Apr 1980 | A |
4217914 | Jacquet et al. | Aug 1980 | A |
4221710 | Hoshi et al. | Sep 1980 | A |
4234627 | Schilling | Nov 1980 | A |
4240450 | Grollier et al. | Dec 1980 | A |
4247411 | Vanierberghe et al. | Jan 1981 | A |
4251386 | Saeki et al. | Feb 1981 | A |
4275055 | Nachtigal et al. | Jun 1981 | A |
4285720 | Scher | Aug 1981 | A |
4323683 | Bolich, Jr. et al. | Apr 1982 | A |
4345080 | Bolich, Jr. | Aug 1982 | A |
4356109 | Saeki et al. | Oct 1982 | A |
4364837 | Pader | Dec 1982 | A |
4379753 | Bolich, Jr. | Apr 1983 | A |
4381919 | Jacquet et al. | May 1983 | A |
4422853 | Jacquet et al. | Dec 1983 | A |
4423099 | Mueller et al. | Dec 1983 | A |
4428869 | Munteanu et al. | Jan 1984 | A |
4430243 | Bragg | Feb 1984 | A |
4444699 | Hayford | Apr 1984 | A |
4446032 | Munteanu et al. | May 1984 | A |
4450123 | Egawa et al. | May 1984 | A |
4470982 | Winkler | Sep 1984 | A |
4507280 | Pohl et al. | Mar 1985 | A |
4515705 | Moeddel | May 1985 | A |
4529586 | De Marco et al. | Jul 1985 | A |
4537706 | Severson, Jr. | Aug 1985 | A |
4537707 | Severson, Jr. | Aug 1985 | A |
4547429 | Greiner et al. | Oct 1985 | A |
4550862 | Barker et al. | Nov 1985 | A |
4552811 | Brown et al. | Nov 1985 | A |
4561997 | Roehl | Dec 1985 | A |
4561998 | Wertz et al. | Dec 1985 | A |
4574110 | Asano et al. | Mar 1986 | A |
4588639 | Ozono | May 1986 | A |
4597898 | Vander Meer | Jul 1986 | A |
4601863 | Shioi et al. | Jul 1986 | A |
4608250 | Jacquet et al. | Aug 1986 | A |
4610927 | Igarashi et al. | Sep 1986 | A |
4622267 | Riecke | Nov 1986 | A |
4663158 | Wolfram et al. | May 1987 | A |
4708924 | Nagai et al. | Nov 1987 | A |
4719099 | Grollier et al. | Jan 1988 | A |
4722865 | Huizer | Feb 1988 | A |
4741855 | Grote et al. | May 1988 | A |
4746467 | Sakamoto et al. | May 1988 | A |
4775656 | Harada et al. | Oct 1988 | A |
4780370 | Pointier | Oct 1988 | A |
4798691 | Kasai et al. | Jan 1989 | A |
4803947 | Ueki et al. | Feb 1989 | A |
4824707 | Spector | Apr 1989 | A |
4863626 | Coyne et al. | Sep 1989 | A |
4865759 | Coyne et al. | Sep 1989 | A |
4882220 | Ono et al. | Nov 1989 | A |
4908271 | Kasai et al. | Mar 1990 | A |
4911851 | Ladd, Jr. et al. | Mar 1990 | A |
4917920 | Ono et al. | Apr 1990 | A |
4919841 | Kamel et al. | Apr 1990 | A |
4957666 | Kawamura et al. | Sep 1990 | A |
4968451 | Scheibel et al. | Nov 1990 | A |
4972000 | Kawashima et al. | Nov 1990 | A |
5009880 | Grollier et al. | Apr 1991 | A |
5061410 | Sakamoto et al. | Oct 1991 | A |
5066419 | Walley et al. | Nov 1991 | A |
5071706 | Soper | Dec 1991 | A |
5104646 | Bolich, Jr. et al. | Apr 1992 | A |
5105823 | Blum | Apr 1992 | A |
5106609 | Bolich, Jr. et al. | Apr 1992 | A |
5113585 | Rogers et al. | May 1992 | A |
5118756 | Asano et al. | Jun 1992 | A |
5120349 | Stewart et al. | Jun 1992 | A |
5137646 | Schmidt et al. | Aug 1992 | A |
5145675 | Won | Sep 1992 | A |
5176903 | Goldberg et al. | Jan 1993 | A |
5185155 | Behan et al. | Feb 1993 | A |
5188753 | Schmidt et al. | Feb 1993 | A |
5225278 | Kielbania, Jr. et al. | Jul 1993 | A |
5232613 | Bacon et al. | Aug 1993 | A |
5232769 | Yamato et al. | Aug 1993 | A |
5234611 | Trinh et al. | Aug 1993 | A |
5234682 | Macchio et al. | Aug 1993 | A |
5277979 | Kielbania, Jr. et al. | Jan 1994 | A |
5278106 | Nakashima et al. | Jan 1994 | A |
5292835 | Jahns et al. | Mar 1994 | A |
RE34584 | Grote et al. | Apr 1994 | E |
5324444 | Berry et al. | Jun 1994 | A |
5342556 | Traubel et al. | Aug 1994 | A |
5362565 | Murano et al. | Nov 1994 | A |
5366652 | Capeci et al. | Nov 1994 | A |
5370881 | Fuisz | Dec 1994 | A |
5380756 | Andrews et al. | Jan 1995 | A |
5407609 | Tice et al. | Apr 1995 | A |
5468473 | Mullen | Nov 1995 | A |
5486303 | Capeci et al. | Jan 1996 | A |
5487884 | Bissett et al. | Jan 1996 | A |
5489392 | Capeci et al. | Feb 1996 | A |
5516448 | Capeci et al. | May 1996 | A |
5565145 | Watson et al. | Oct 1996 | A |
5565422 | Del Greco et al. | Oct 1996 | A |
5569645 | Dinniwell et al. | Oct 1996 | A |
5574005 | Welch et al. | Nov 1996 | A |
5576282 | Miracle et al. | Nov 1996 | A |
5580578 | Oshlack et al. | Dec 1996 | A |
5595967 | Miracle et al. | Jan 1997 | A |
5596051 | Jahns et al. | Jan 1997 | A |
5597936 | Perkins et al. | Jan 1997 | A |
5607980 | McAtee et al. | Mar 1997 | A |
5611972 | Tararuj et al. | Mar 1997 | A |
5637401 | Berman et al. | Jun 1997 | A |
5648328 | Angell et al. | Jul 1997 | A |
5652228 | Bissett | Jul 1997 | A |
5656584 | Angell et al. | Aug 1997 | A |
5674478 | Dodd et al. | Oct 1997 | A |
5681852 | Bissett | Oct 1997 | A |
5691297 | Nassano et al. | Nov 1997 | A |
5702714 | Goss | Dec 1997 | A |
5716938 | Provitt | Feb 1998 | A |
5723420 | Wei et al. | Mar 1998 | A |
5725869 | Lo | Mar 1998 | A |
5750122 | Evans et al. | May 1998 | A |
5756436 | Royce et al. | May 1998 | A |
5759573 | Kim | Jun 1998 | A |
5782409 | Paul | Jul 1998 | A |
5783536 | Farrell et al. | Jul 1998 | A |
5800805 | Salas | Sep 1998 | A |
5807956 | Czech | Sep 1998 | A |
5827538 | Cussler et al. | Oct 1998 | A |
5833971 | Baldwin | Nov 1998 | A |
5856409 | Ziemelis et al. | Jan 1999 | A |
5876755 | Perring et al. | Mar 1999 | A |
5879584 | Bianchetti et al. | Mar 1999 | A |
5885701 | Berman et al. | Mar 1999 | A |
5929022 | Velazquez | Jul 1999 | A |
5945085 | Salas et al. | Aug 1999 | A |
5962018 | Curtis et al. | Oct 1999 | A |
5972859 | Farrell et al. | Oct 1999 | A |
5981681 | Czech | Nov 1999 | A |
6024943 | Ness et al. | Feb 2000 | A |
6075003 | Haq et al. | Jun 2000 | A |
6159485 | Yu et al. | Dec 2000 | A |
6182365 | Tseng et al. | Feb 2001 | B1 |
6185822 | Tseng et al. | Feb 2001 | B1 |
6194375 | Ness et al. | Feb 2001 | B1 |
6207782 | Czech et al. | Mar 2001 | B1 |
6221326 | Amiche | Apr 2001 | B1 |
6221826 | Surutzidis et al. | Apr 2001 | B1 |
6225464 | Hiler, II et al. | May 2001 | B1 |
6228398 | Devane et al. | May 2001 | B1 |
6235274 | Lou et al. | May 2001 | B1 |
6235773 | Bissett | May 2001 | B1 |
6245366 | Popplewell et al. | Jun 2001 | B1 |
6245733 | Mosbaugh | Jun 2001 | B1 |
6248364 | Sengupta et al. | Jun 2001 | B1 |
6258857 | Iijima et al. | Jul 2001 | B1 |
6294514 | Welling | Sep 2001 | B1 |
6298558 | Tseng et al. | Oct 2001 | B1 |
6306812 | Perkins et al. | Oct 2001 | B1 |
6325995 | El-Nokaly et al. | Dec 2001 | B1 |
6326348 | Vinson et al. | Dec 2001 | B1 |
6329057 | Dungworth et al. | Dec 2001 | B1 |
6348218 | Hed et al. | Feb 2002 | B1 |
6362159 | Aguadisch et al. | Mar 2002 | B1 |
6368633 | Lou et al. | Apr 2002 | B1 |
6375872 | Chao | Apr 2002 | B1 |
6375983 | Kantor et al. | Apr 2002 | B1 |
6399192 | Pinna et al. | Jun 2002 | B1 |
6428796 | Gers-Barlag et al. | Aug 2002 | B1 |
6451754 | Rowland et al. | Sep 2002 | B1 |
6482969 | Helmrick et al. | Nov 2002 | B1 |
6489047 | Mosbaugh | Dec 2002 | B2 |
6498135 | Angell et al. | Dec 2002 | B1 |
6503495 | Alwattari et al. | Jan 2003 | B1 |
6531156 | Clark et al. | Mar 2003 | B1 |
6558706 | Kantor et al. | May 2003 | B2 |
6592990 | Schwantes | Jul 2003 | B2 |
6594904 | Tseng | Jul 2003 | B1 |
6607717 | Johnson et al. | Aug 2003 | B1 |
6608017 | Dihora et al. | Aug 2003 | B1 |
6638591 | Bowen et al. | Oct 2003 | B2 |
6670311 | Aldcroft et al. | Dec 2003 | B1 |
6682749 | Potechin et al. | Jan 2004 | B1 |
6696049 | Vatter et al. | Feb 2004 | B2 |
6696400 | Puelle Andrade et al. | Feb 2004 | B2 |
6703032 | Gers-Barlag et al. | Mar 2004 | B2 |
6730325 | Devane et al. | May 2004 | B2 |
6733790 | Garces Garces | May 2004 | B1 |
6767880 | Foley et al. | Jul 2004 | B1 |
6769271 | Mosbaugh | Aug 2004 | B2 |
6770293 | Angel et al. | Aug 2004 | B2 |
6780507 | Toreki et al. | Aug 2004 | B2 |
6783770 | Angel et al. | Aug 2004 | B2 |
6790814 | Marin et al. | Sep 2004 | B1 |
6793936 | Devane et al. | Sep 2004 | B2 |
6797683 | Shana'a et al. | Sep 2004 | B2 |
6800598 | Waeschenbach et al. | Oct 2004 | B1 |
6806249 | Yang et al. | Oct 2004 | B2 |
6846785 | Patel | Jan 2005 | B2 |
6849584 | Geary et al. | Feb 2005 | B2 |
6849591 | Boeckh et al. | Feb 2005 | B1 |
6864223 | Smith et al. | Mar 2005 | B2 |
6869923 | Cunningham et al. | Mar 2005 | B1 |
6872853 | Van Der Schaaf et al. | Mar 2005 | B1 |
6881482 | Vasisht | Apr 2005 | B2 |
6902742 | Devane et al. | Jun 2005 | B2 |
6916481 | Prud'Homme et al. | Jul 2005 | B1 |
6939992 | Van Der Schaaf et al. | Sep 2005 | B2 |
6944952 | Tseng | Sep 2005 | B1 |
6951836 | Jahns et al. | Oct 2005 | B2 |
6955823 | Casson et al. | Oct 2005 | B2 |
6958313 | Caswell et al. | Oct 2005 | B2 |
6982256 | Votteler et al. | Jan 2006 | B2 |
7015186 | Aussant et al. | Mar 2006 | B2 |
7041767 | Lange et al. | May 2006 | B2 |
7053034 | Shefer et al. | May 2006 | B2 |
7069658 | Tseng | Jul 2006 | B2 |
7105064 | Popplewell et al. | Sep 2006 | B2 |
7119057 | Popplewell et al. | Oct 2006 | B2 |
7122512 | Brain et al. | Oct 2006 | B2 |
7125835 | Bennett et al. | Oct 2006 | B2 |
7137570 | Wheatley et al. | Nov 2006 | B2 |
7159792 | Wheatley et al. | Jan 2007 | B2 |
7186679 | Shepherd, Jr. | Mar 2007 | B2 |
7186680 | Caswell et al. | Mar 2007 | B2 |
7192599 | Mercier et al. | Mar 2007 | B2 |
7196049 | Brain et al. | Mar 2007 | B2 |
7204998 | Holzner et al. | Apr 2007 | B2 |
7208463 | Heltovics et al. | Apr 2007 | B2 |
7208465 | Heltovics et al. | Apr 2007 | B2 |
7211273 | Hsu | May 2007 | B2 |
7211556 | Heibel et | May 2007 | B2 |
7217777 | Lange et al. | May 2007 | B2 |
7226607 | Uchiyama et al. | Jun 2007 | B2 |
7229611 | Zamudio-Tena et al. | Jun 2007 | B2 |
7235261 | Smith et al. | Jun 2007 | B2 |
7241835 | O'Brien et al. | Jul 2007 | B2 |
7247374 | Haggquist | Jul 2007 | B2 |
7270828 | Masuda et al. | Sep 2007 | B2 |
7279542 | Ouali et al. | Oct 2007 | B2 |
7293719 | Wheatley et al. | Nov 2007 | B2 |
7294612 | Popplewell et al. | Nov 2007 | B2 |
7311900 | Conover | Dec 2007 | B2 |
7338928 | Lau et al. | Mar 2008 | B2 |
7375875 | Whitesides et al. | May 2008 | B2 |
7381417 | Gamez-Garcia | Jun 2008 | B2 |
7399324 | Roddenbery et al. | Jul 2008 | B2 |
7407650 | Heltovics et al. | Aug 2008 | B2 |
7413731 | Heltovics et al. | Aug 2008 | B2 |
7442838 | Van Der Schaaf et al. | Oct 2008 | B2 |
7452547 | Lambino et al. | Nov 2008 | B2 |
7465439 | Avery et al. | Dec 2008 | B2 |
7491687 | Popplewell et al. | Feb 2009 | B2 |
7521124 | Ahn et al. | Apr 2009 | B2 |
7524807 | Clapp et al. | Apr 2009 | B2 |
7532388 | Whitesides et al. | May 2009 | B2 |
7538077 | Sichmann et al. | May 2009 | B2 |
7538078 | Holzner et al. | May 2009 | B2 |
7569528 | Lant et al. | Aug 2009 | B2 |
7575633 | Romanin | Aug 2009 | B2 |
7575804 | Lang-Wittkowski et al. | Aug 2009 | B2 |
7585824 | Popplewell et al. | Sep 2009 | B2 |
7585825 | Artiga Gonzalez et al. | Sep 2009 | B2 |
7585832 | Smith et al. | Sep 2009 | B2 |
7736695 | Schwantes et al. | Jun 2010 | B2 |
7794836 | Vasishtha et al. | Sep 2010 | B2 |
7799421 | Goodson et al. | Sep 2010 | B2 |
7799752 | Ness et al. | Sep 2010 | B2 |
7803422 | Schwantes et al. | Sep 2010 | B2 |
7833960 | Lei et al. | Nov 2010 | B2 |
7871588 | Lindner et al. | Jan 2011 | B2 |
7985445 | Schwantes et al. | Jul 2011 | B2 |
8022029 | Broze et al. | Sep 2011 | B2 |
8026205 | Broze et al. | Sep 2011 | B2 |
8053405 | Narayanan et al. | Nov 2011 | B2 |
8067089 | Schwantes | Nov 2011 | B2 |
8071214 | Schwantes | Dec 2011 | B2 |
8093201 | Broze et al. | Jan 2012 | B2 |
8110284 | Naigertsik et al. | Feb 2012 | B2 |
8119163 | Devane et al. | Feb 2012 | B2 |
8129327 | Zhang et al. | Mar 2012 | B2 |
8147808 | Scavone et al. | Apr 2012 | B2 |
8158571 | Alonso et al. | Apr 2012 | B2 |
8163207 | Jung et al. | Apr 2012 | B2 |
8192838 | Goodson et al. | Jun 2012 | B2 |
8206820 | Bogaerts et al. | Jun 2012 | B2 |
8246869 | Stowell | Aug 2012 | B2 |
8252356 | Ogura et al. | Aug 2012 | B2 |
8304075 | Lang-Wittkowski et al. | Nov 2012 | B2 |
8329154 | Uchiyama et al. | Dec 2012 | B2 |
8349300 | Wells et al. | Jan 2013 | B2 |
8354369 | Beaussoubre et al. | Jan 2013 | B2 |
8426194 | Cao et al. | Apr 2013 | B2 |
8460791 | Hentze et al. | Jun 2013 | B2 |
8460864 | Cao et al. | Jun 2013 | B2 |
8470762 | Broze et al. | Jun 2013 | B2 |
20020016269 | Noda et al. | Feb 2002 | A1 |
20020102286 | Kantor et al. | Aug 2002 | A1 |
20020136773 | Scher et al. | Sep 2002 | A1 |
20020169233 | Schwantes | Nov 2002 | A1 |
20030017126 | Mahadeshwar et al. | Jan 2003 | A1 |
20030017959 | Baeck et al. | Jan 2003 | A1 |
20030024997 | Welch et al. | Feb 2003 | A1 |
20030031722 | Cao et al. | Feb 2003 | A1 |
20030077378 | Lou et al. | Apr 2003 | A1 |
20030108501 | Hofrichter et al. | Jun 2003 | A1 |
20030109391 | Midha et al. | Jun 2003 | A1 |
20030125222 | Jahns et al. | Jul 2003 | A1 |
20030139312 | Caswell et al. | Jul 2003 | A1 |
20030152542 | Decoster et al. | Aug 2003 | A1 |
20030170304 | Devane et al. | Sep 2003 | A1 |
20030194416 | Shefer et al. | Oct 2003 | A1 |
20030199412 | Gupta et al. | Oct 2003 | A1 |
20030203978 | O'Brien et al. | Oct 2003 | A1 |
20030215417 | Uchiyama et al. | Nov 2003 | A1 |
20030216488 | Uchiyama et al. | Nov 2003 | A1 |
20030220220 | Bach et al. | Nov 2003 | A1 |
20040043078 | Herault | Mar 2004 | A1 |
20040071742 | Popplewell et al. | Apr 2004 | A1 |
20040091445 | Dykstra et al. | May 2004 | A1 |
20040101577 | Ahn et al. | May 2004 | A1 |
20040109920 | Reuscher et al. | Jun 2004 | A1 |
20040110898 | Dreja et al. | Jun 2004 | A1 |
20040137028 | de la Poterie | Jul 2004 | A1 |
20040138088 | Pereira et al. | Jul 2004 | A1 |
20040175347 | Bissett | Sep 2004 | A1 |
20040175404 | Shefer et al. | Sep 2004 | A1 |
20040197405 | Devane et al. | Oct 2004 | A1 |
20040208902 | Gupta | Oct 2004 | A1 |
20040214742 | Meli et al. | Oct 2004 | A1 |
20040220062 | Pereira et al. | Nov 2004 | A1 |
20040229769 | Smith et al. | Nov 2004 | A1 |
20050014674 | Liechty et al. | Jan 2005 | A1 |
20050038188 | Ahn et al. | Feb 2005 | A1 |
20050043209 | Schmiedel et al. | Feb 2005 | A1 |
20050048549 | Cao et al. | Mar 2005 | A1 |
20050112152 | Popplewell et al. | May 2005 | A1 |
20050113282 | Parekh et al. | May 2005 | A1 |
20050119351 | Van Der Schaaf et al. | Jun 2005 | A1 |
20050129759 | Sojka | Jun 2005 | A1 |
20050169793 | Wheatley et al. | Aug 2005 | A1 |
20050226900 | Winton Brooks et al. | Oct 2005 | A1 |
20050227907 | Lee et al. | Oct 2005 | A1 |
20050276831 | Dihora et al. | Dec 2005 | A1 |
20060008646 | Haggquist | Jan 2006 | A1 |
20060099168 | Corzani et al. | May 2006 | A1 |
20060116304 | McRitchie et al. | Jun 2006 | A1 |
20060127430 | Gupta | Jun 2006 | A1 |
20060134154 | Giles et al. | Jun 2006 | A1 |
20060160711 | Frank | Jul 2006 | A1 |
20060165740 | Frank | Jul 2006 | A1 |
20060166855 | Murad | Jul 2006 | A1 |
20060240105 | Devane et al. | Oct 2006 | A1 |
20060248665 | Pluyter et al. | Nov 2006 | A1 |
20060258557 | Popplewell et al. | Nov 2006 | A1 |
20060263311 | Scavone et al. | Nov 2006 | A1 |
20060263312 | Scavone et al. | Nov 2006 | A1 |
20060263313 | Scavone et al. | Nov 2006 | A1 |
20060263518 | Schwantes et al. | Nov 2006 | A1 |
20060263519 | Schwantes et al. | Nov 2006 | A1 |
20060263898 | Paget et al. | Nov 2006 | A1 |
20060275237 | Bissett et al. | Dec 2006 | A1 |
20060292098 | Scavone et al. | Dec 2006 | A1 |
20070020205 | Blin et al. | Jan 2007 | A1 |
20070031463 | Fotinos et al. | Feb 2007 | A1 |
20070041929 | Torgerson et al. | Feb 2007 | A1 |
20070048339 | Popplewell et al. | Mar 2007 | A1 |
20070071781 | Louys, Jr. et al. | Mar 2007 | A1 |
20070071978 | Sojka et al. | Mar 2007 | A1 |
20070078071 | Lee et al. | Apr 2007 | A1 |
20070122481 | Liversidge et al. | May 2007 | A1 |
20070123442 | Holzner et al. | May 2007 | A1 |
20070134411 | Cont et al. | Jun 2007 | A1 |
20070138671 | Anastasiou et al. | Jun 2007 | A1 |
20070138672 | Lee et al. | Jun 2007 | A1 |
20070138673 | Lee et al. | Jun 2007 | A1 |
20070138674 | Anastasiou et al. | Jun 2007 | A1 |
20070160561 | Ouali et al. | Jul 2007 | A1 |
20070160675 | Devane et al. | Jul 2007 | A1 |
20070173433 | Heibel et al. | Jul 2007 | A1 |
20070202063 | Dihora et al. | Aug 2007 | A1 |
20070207109 | Peffly et al. | Sep 2007 | A1 |
20070207174 | Pluyter et al. | Sep 2007 | A1 |
20070224274 | Siol | Sep 2007 | A1 |
20070248553 | Scavone et al. | Oct 2007 | A1 |
20070286837 | Torgerson et al. | Dec 2007 | A1 |
20070286904 | Popplewell et al. | Dec 2007 | A1 |
20070292361 | Virgallito et al. | Dec 2007 | A1 |
20070298061 | Boghani et al. | Dec 2007 | A1 |
20080008750 | Tochio et al. | Jan 2008 | A1 |
20080040082 | Stanton et al. | Feb 2008 | A1 |
20080057021 | Dykstra et al. | Mar 2008 | A1 |
20080102121 | Devane et al. | May 2008 | A1 |
20080107615 | Keene et al. | May 2008 | A1 |
20080113025 | Devane et al. | May 2008 | A1 |
20080118556 | Devane et al. | May 2008 | A1 |
20080128941 | Lopez et al. | Jun 2008 | A1 |
20080187596 | Dihora et al. | Aug 2008 | A1 |
20080199503 | Camargo et al. | Aug 2008 | A1 |
20080200359 | Smets et al. | Aug 2008 | A1 |
20080200363 | Smets et al. | Aug 2008 | A1 |
20080213451 | Ogura et al. | Sep 2008 | A1 |
20080226684 | Peppas | Sep 2008 | A1 |
20080311064 | Lei et al. | Dec 2008 | A1 |
20080317788 | Louzan Garcia et al. | Dec 2008 | A1 |
20090022764 | Frater et al. | Jan 2009 | A1 |
20090029900 | Cetti et al. | Jan 2009 | A1 |
20090035365 | Popplewell et al. | Feb 2009 | A1 |
20090047434 | Trophardy | Feb 2009 | A1 |
20090053165 | Brown et al. | Feb 2009 | A1 |
20090081265 | Peppas | Mar 2009 | A1 |
20090118399 | Benbakoura et al. | May 2009 | A1 |
20090149479 | Jenkins et al. | Jun 2009 | A1 |
20090202465 | Mougin et al. | Aug 2009 | A1 |
20090209661 | Somerville Roberts et al. | Aug 2009 | A1 |
20090221463 | Kitko et al. | Sep 2009 | A1 |
20090232857 | Peppas | Sep 2009 | A1 |
20090232858 | Peppas et al. | Sep 2009 | A1 |
20090247449 | Burdis et al. | Oct 2009 | A1 |
20090252789 | Trophardy | Oct 2009 | A1 |
20090258042 | Anastasiou et al. | Oct 2009 | A1 |
20090274905 | Schwantes | Nov 2009 | A1 |
20090275494 | Ferguson et al. | Nov 2009 | A1 |
20090289216 | Jung et al. | Nov 2009 | A1 |
20090324660 | Cetti et al. | Dec 2009 | A1 |
20100003518 | Grey | Jan 2010 | A1 |
20100061954 | Adams et al. | Mar 2010 | A1 |
20100068163 | Lu | Mar 2010 | A1 |
20100104611 | Chan et al. | Apr 2010 | A1 |
20100104612 | Cropper et al. | Apr 2010 | A1 |
20100104613 | Chan et al. | Apr 2010 | A1 |
20100119679 | Dihora et al. | May 2010 | A1 |
20100216684 | Ferguson et al. | Aug 2010 | A1 |
20100275384 | Broze et al. | Nov 2010 | A1 |
20100286018 | Hentze et al. | Nov 2010 | A1 |
20110003152 | Grey | Jan 2011 | A1 |
20110008427 | Biggs et al. | Jan 2011 | A1 |
20110008435 | Devane et al. | Jan 2011 | A1 |
20110020416 | Pluyter et al. | Jan 2011 | A1 |
20110033513 | Lei et al. | Feb 2011 | A1 |
20110093246 | Stanton et al. | Apr 2011 | A1 |
20110267702 | Fujimoto et al. | Nov 2011 | A1 |
20110268778 | Dihora et al. | Nov 2011 | A1 |
20110268802 | Dihora et al. | Nov 2011 | A1 |
20110269657 | Dihora et al. | Nov 2011 | A1 |
20110269658 | Dihora et al. | Nov 2011 | A1 |
20120010120 | Somerville Roberts et al. | Jan 2012 | A1 |
20120076839 | Chan et al. | Mar 2012 | A1 |
20120121677 | Franklin | May 2012 | A1 |
20120177924 | Jung et al. | Jul 2012 | A1 |
20120276175 | Dihora et al. | Nov 2012 | A1 |
20120276210 | Dihora et al. | Nov 2012 | A1 |
20120282309 | Dihora et al. | Nov 2012 | A1 |
20120322709 | Li et al. | Dec 2012 | A1 |
20130137625 | Stowell | May 2013 | A1 |
Number | Date | Country |
---|---|---|
2306397 | Oct 2000 | CA |
101088567 | Dec 2007 | CN |
10062585 | Jun 2002 | DE |
102005029777 | Jan 2007 | DE |
102006058253 | Jun 2008 | DE |
102008044700 | Feb 2010 | DE |
0303461 | Feb 1989 | EP |
0462709 | Dec 1991 | EP |
0510761 | Oct 1992 | EP |
0523287 | Jan 1993 | EP |
0290223 | Dec 1994 | EP |
0820762 | Jan 1998 | EP |
0829259 | Mar 1998 | EP |
0535942 | Feb 1999 | EP |
1034705 | Sep 2000 | EP |
1201743 | May 2002 | EP |
1243318 | Sep 2002 | EP |
1243320 | Sep 2002 | EP |
1247568 | Oct 2002 | EP |
1024785 | Jan 2003 | EP |
1030734 | Aug 2003 | EP |
1023041 | Jan 2005 | EP |
1502646 | Feb 2005 | EP |
1637188 | Mar 2006 | EP |
1702674 | Sep 2006 | EP |
1850887 | Nov 2007 | EP |
1600151 | Aug 2008 | EP |
2090284 | Aug 2009 | EP |
2132294 | Dec 2009 | EP |
2702961 | Sep 1994 | FR |
2881048 | Jul 2006 | FR |
1451411 | Oct 1976 | GB |
1478788 | Jul 1977 | GB |
1546480 | May 1979 | GB |
2062570 | May 1981 | GB |
2217603 | Jan 1989 | GB |
2334724 | Jan 1999 | GB |
54-5051 | Jan 1979 | JP |
58-19261 | Feb 1983 | JP |
59-139268 | Aug 1984 | JP |
61-244366 | Oct 1986 | JP |
62116506 | May 1987 | JP |
01-256965 | Oct 1989 | JP |
02-036803 | Feb 1990 | JP |
02-052661 | Feb 1990 | JP |
04-021513 | Jan 1992 | JP |
04-082558 | Mar 1992 | JP |
04-156851 | May 1992 | JP |
05-017338 | Jan 1993 | JP |
06-000361 | Jan 1994 | JP |
06-041576 | Jun 1994 | JP |
07-075666 | Mar 1995 | JP |
07-305049 | Nov 1995 | JP |
10195478 | Jul 1998 | JP |
10231119 | Sep 1998 | JP |
2001049287 | Feb 2001 | JP |
2002326904 | Nov 2002 | JP |
2003099986 | Apr 2003 | JP |
2003161893 | Jun 2003 | JP |
2004099743 | Apr 2004 | JP |
2005194308 | Jul 2005 | JP |
2008156565 | Jul 2008 | JP |
2009035454 | Feb 2009 | JP |
2009290236 | Dec 2009 | JP |
20090082704 | Sep 2010 | KR |
8403630 | Sep 1984 | WO |
9220771 | Nov 1992 | WO |
9308600 | Apr 1993 | WO |
9747720 | Dec 1997 | WO |
9812298 | Mar 1998 | WO |
9826808 | Jun 1998 | WO |
0032601 | Jun 2000 | WO |
0041528 | Jul 2000 | WO |
00-65020 | Nov 2000 | WO |
0067718 | Nov 2000 | WO |
0141915 | Jun 2001 | WO |
0141915 | Jun 2001 | WO |
0174310 | Oct 2001 | WO |
03002248 | Jan 2003 | WO |
03020867 | Mar 2003 | WO |
2004006967 | Jan 2004 | WO |
2004060418 | Jul 2004 | WO |
2004096895 | Nov 2004 | WO |
2005041908 | May 2005 | WO |
2005047232 | May 2005 | WO |
2005055990 | Jun 2005 | WO |
2006027664 | Mar 2006 | WO |
2006127454 | Nov 2006 | WO |
2007040517 | Apr 2007 | WO |
2007128326 | Nov 2007 | WO |
2007137441 | Dec 2007 | WO |
2008005693 | Jan 2008 | WO |
2008058868 | May 2008 | WO |
2008129028 | Oct 2008 | WO |
2008145874 | Dec 2008 | WO |
2009047127 | Apr 2009 | WO |
2009047745 | Apr 2009 | WO |
2009080695 | Jul 2009 | WO |
2009083941 | Jul 2009 | WO |
2009093812 | Jul 2009 | WO |
2009106318 | Sep 2009 | WO |
2009134234 | Nov 2009 | WO |
2010079466 | Jul 2010 | WO |
Entry |
---|
U.S. Appl. No. 14/032,835, filed Sep. 20, 2013, Dihora et al. |
U.S. Appl. No. 14/032,859, filed Sep. 20, 2013, Dihora et al. |
U.S. Appl. No. 14/032,868, filed Sep. 20, 2013, Cetti et al. |
U.S. Appl. No. 14/032,888, filed Sep. 20, 2013, Li et al. |
U.S. Appl. No. 14/045,661, filed Oct. 3, 2013, Dihora et al. |
U.S. Appl. No. 14/045,670, filed Oct. 3, 2013, Dihora et al. |
Herbig—“Encapsulation” Kirk Othmer Encyclopedia of Chemical Technology, V.13, Second Edition, pp. 436-456. |
Zim's Crack Creme (R), 2003, Perfecta Products, Inc., Berlin Center, Ohio 44401. |
PCT International Search Report and Written Opinion dated Nov. 27, 2012, PCT/US2012/032076. |
PCT International Search Report and Written Opinion dated Nov. 27, 2012, PCT/US2012/032101. |
PCT International Search Report and Written Opinion dated Nov. 27, 2012, PCT/US2012/032065. |
International Search Report for PCT/US2005/020223, mailed May 10, 2005, 4 pages. |
International Search Report for PCT/IB2010/052127, mailed May 12, 2011, 5 pages. |
International Search Report for PCT/IB2010/052128, mailed Dec. 28, 2010, 3 pages. |
International Search Report for PCT/IB2010/052121 mailed Feb. 16, 2011, 3 pages. |
International Search Report for PCT/IB2010/052120 mailed Dec. 29, 2010, 4 pages. |
Huber et al.—“Capsular Adhesives”, TAPPI, vol. 49, No. 5, pp. 41A-44A, May 1966. |
Leo, Albert J., et al.—Methods of Calculating Partition Coefficients, Comprehensive Medicinal Chemistry, vol. 4, p. 295, 1990. |
Zhang, Z., et al.—“Mechanical Properties of Melamine-Formaldehyde Microcapsules”, J. Microencapsulation, vol. 18, No. 5, pp. 593-602, 2001. |
Brunauer, et al.—“Absorption of Gases in Multimolecular Layers”—Journal of the American Chemical Society, vol. 60, pp. 309-319, 1938. |
Washburn, E.W.—“The Dynamics of Capillary Flow”—Phys. Rev., 17 374-375, 1921. |
Fowkes, F.M.—“Attractive Forces at Interfaces”—Industrial and Engineering Chemistry, vol. 56, No. 12, pp. 40-52, 1964. |
Good, R.J., et al.—A Theory for Estimation of Surface and Interfacial Energies, III, Estimation of Surface Energies or Solids from Contact Angle Data, L.A.; Journal of Phys. Chem., vol. 64, pp. 561-565, 1960. |
Number | Date | Country | |
---|---|---|---|
20120276210 A1 | Nov 2012 | US |
Number | Date | Country | |
---|---|---|---|
61472898 | Apr 2011 | US |