The invention relates to a playing piece for use in a board game, and comprising an input for receiving an input signal from an outside control unit and means for changing an appearance of the playing piece based on the input signal.
The invention further relates to a system for playing board games.
Such a playing piece is known from a not yet published patent application, with application number EP05103952.7 (attorney docket PH 000431 EP1). In said patent application a computer-controlled pawn is described. A game board comprises a horizontal display surface to support the pawn. The bottom surface of the pawn comprises an image detector for detecting a control image on the display surface, underneath the bottom surface. The pawn further comprises control means, coupled to the image detector for controlling an appearance or position of the pawn in dependence of the control image. Light emitting diodes (LEDs) or a small LCD display screen are used for changing the pawn's appearance. One or more wheels are used for moving the pawn relative to the game board.
In traditional board games, one is used to have playing pieces of different shapes and sizes for different games. Often within a game, playing pieces of different shapes and sizes have different functions. With the pawn according to above-mentioned patent application these different functions may be represented by showing different images on the LCD display screen.
The playing piece according to the invention differs from the known playing piece in that the input signal represents a particular shape and/or size of the playing piece, and in that the playing piece comprises at least one shapeable segment and shaping means for coupling the input to the at least one shapeable segment to deform the shapeable segment in dependence of the input signal for obtaining the particular shape of the playing piece.
When the outside control unit sends an input signal to the playing piece, the shaping means instruct the shapeable segment to deform in dependence of the input signal. The shaping means may simply pass on the input signal to the shapeable segment, may redirect the input signal to different shapeable segments or may analyze the input signal and create instructions for changing the shape and/or size of the shapeable segment, based on said input signal. By coordinately altering the shape of individual segments or small groups of segments, a large variety of forms can be obtained. Relatively small local shape changes of the segments may result in a complete metamorphose of the playing piece. The shapeable playing piece as provided by the invention can fulfill different functions during a game, or can adapt its shape depending on the game that is being played or on its function in a game. This does not only allow for having a limited set of ‘electronically augmented’ playing pieces for use with a plurality of games, but also enhances the gaming experience by providing playing pieces with a look and feel that matches its function or the actual playing state. It is an advantage of the playing piece according to the invention that the players no longer have to sort the playing pieces and put them on their starting location on the game board. The playing pieces can be placed on any starting location on the game board, where after each piece is shaped to the shape corresponding with the starting location.
In a preferred embodiment the playing piece further comprises an output for sending playing piece information to the outside control unit, the playing piece information comprising at least one out of the group: identification for indicating the playing piece, location for indicating a position of the playing piece and, sensor output for indicating information sensed by the playing piece. The outside control unit may reshape the playing piece in dependence of the playing piece information and/or game rules. The sensor output may, for example, originate from a touch sensor, sound sensor, temperature sensor, or light sensor. The shape of the playing piece may, for example, be influenced by touching the playing piece or talking to the playing piece. The providing of playing piece information to the outside control unit makes it possible to adapt a playing piece's shape to external or player induced triggers during a game.
In a special embodiment, the shaping means is constructed for sequentially transforming neighboring groups of shapeable segments of the playing piece for moving the playing piece. Such a playing piece may move in a worm-like manner.
In an exemplary embodiment the shapeable segment comprises a skeleton of nodes and edges, each node joining at least two edges, at least part of the edges being a controlled actuator edge, and wherein the shaping means is constructed for adjusting a length of the controllable actuator edge. For example, the skeleton may be a collection of stacked polyhedrons, such as prisms or tetrahedrons. By coordinately stretching and contracting actuator edges, a large variety of forms can be obtained.
Preferably, the playing piece further comprises a stretchable material for covering the outer faces of the skeleton. The stretchable material, e.g. rubber, smoothens the surface of the playing piece. The uneven skeleton comprises a lot of edges and nodes and does therefore not look or feel like a traditional playing piece. The stretchable material shrinks and expands together with the skeleton and gives the playing piece a more smooth and natural look and feel.
In an embodiment, the skeleton encloses a cavity. Polyhedrons can be assembled to form a shell. Since the polyhedrons are structurally stable, they can be assembled in a single thickness, leaving a cavity inside the object. The cavity may comprise the shaping means, power elements, a light, a speaker, sensor elements or any other element needed for performing and supporting the tasks of the playing piece.
In another exemplary embodiment the shapeable segment comprises at least one channel, walls of at least part of the channel comprising a pair of electrodes, the shaping means comprising a voltage source for applying a voltage difference between the electrodes of at least one pair of electrodes for contraction or stretching of the corresponding channel.
When the voltage difference is applied to all pairs of electrodes, all channels will contract due to an electrostatic force and the playing piece will become smaller. When the voltage difference is applied to only part of the channels, only part of the channels will contract, while other parts remain expanded. As a result, the shape of the playing piece will change. By coordinately contracting specific channels, a desired shape can be obtained.
In an embodiment, the walls comprise elastic material for recovering the corresponding channel to its original shape after removal of the applied voltage difference.
Alternatively, the walls comprise electrically isolating material for preventing electrical contact between the electrodes of the at least one pair. In a contracted state, equal voltages may be applied to both electrodes of the pair. In that event, an electrostatic force will result in expansion of the channel. Without the isolating material, the electrodes would make an electrical contact when the channel is contracted and applying different voltages to both electrodes would not be possible.
In a preferred embodiment, the shapeable segment comprises a plurality of the channels, walls of each channel of the plurality of channels comprising a corresponding pair of electrodes and wherein the shaping means is constructed for applying the voltage difference between the electrodes of each pair of electrodes independently.
When the contraction of each channel is controlled independently, a large variety of forms can be obtained.
These and other aspects of the invention are apparent from and will be elucidated with reference to the embodiments described hereinafter.
In the drawings:
a-d show a front view of a playing piece 20 in two different shapes,
a-b shows contraction of a honeycomb like structure,
a-c shows an exemplary playing piece according to the invention in three different shapes, and
a-d shows a playing piece which is able to move in a worm like manner.
The playing piece 10 comprises an input 12 and an output 14 for communication with the control unit 17. Shaping means 13 instruct a shapeable segment 11 to deform in dependence of the input signal. The shaping means 13 may simply pass on the input signal to the shapeable segment 11 or may redirect the input signal to different shapeable segments 11. Preferably the shaping means 13 comprises a processor 13 for processing the input signal from the control unit 17 and for providing instructions for the shapeable segment 11 of the playing piece 10 to deform.
In an embodiment, the processor is programmed to sequentially transform neighboring groups of shapeable segments of the playing piece for moving the playing piece. Such a playing piece may move in a worm-like manner.
In an embodiment the shapeable segment comprises a skeleton of nodes and edges, each node joining at least two edges, at least part of the edges being a controlled actuator edge. Herein, the processor is programmed to adjust a length of the controllable actuator edge. For example, the skeleton may be a collection of stacked polyhedrons, such as prisms or tetrahedrons. By coordinately stretching and contracting actuator edges, a large variety of forms can be obtained.
In a most simple embodiment of the invention, the playing piece 10 only comprises one shapeable segment 11, which can shrink or grow. Preferably, the playing piece 10 comprises a plurality of shapeable segments 11, of which not only the size, but also the shape is adjustable. If, furthermore, each shapeable segment 11 can be reshaped individually, then a large variety of shapes may be taken by the playing piece 10.
Optionally, the playing piece 10 comprises sensing elements 15 for sensing touch, sound, acceleration, position, temperature, light or any other measurable quantity relevant to the game system. Signals from the sensing elements 15 are also processed by the processor 13 and may influence the shape of the playing piece 10. Signals from the sensing elements 15, may also be communicated to the control unit 17 via the output 14 of the playing piece 10 and the input 19 of the control unit 17. In this event, signals from the sensing elements 15 may influence the course of the game.
The shapeable segments 11 may be made of inflatable or deflatable units, the filling or emptying of which from gas or liquid in a micro fluidic or otherwise controlled manner determines the relative size and shape. Other techniques for controlling the shape of the shapeable segments 11 are described below.
a-d show a front view of a playing piece 20 in two different shapes. In
When a voltage difference is applied between the electrodes 113, 114, an electrostatic force will pull the sheets 111, 112 towards each other and the channel height will shrink. When the voltage difference is removed, the channel 110 can recover its original shape, for example, due to elastic properties of the sheets 111, 112. Alternatively, applying different voltages to the electrodes 113, 114 may result in a repelling electrostatic force for recovering the original shape of the channel 110. In a preferred embodiment the sheets 111, 112 are characterized by an initial tensile stress, also called pre-strain stress, in the range between 0 and 50 mPa. Negative values of compressive pre-stress would result in wrinkling of the sheets, which is unwanted. It is to be noted that it will only be possible to apply a voltage difference to the electrodes 113 and 114 in a completely contracted channel if they are separated by an insulating layer. When the electrodes 113 and 114 would make an electrical contact, they can not be brought to different potentials. Preferably, the walls of each channel comprise a pair of electrodes and the voltage source is constructed for applying the voltage difference between the electrodes 113, 114 of each pair of electrodes 113, 114 independently. When the contraction of each channel 110 is controlled independently, a large variety of forms can be obtained. Alternatively, small groups of channels 110 are contracted and stretched simultaneously by a pair of common electrodes.
It should be noted that the above-mentioned embodiments illustrate rather than limit the invention, and that those skilled in the art will be able to design many alternative embodiments without departing from the scope of the appended claims. In the claims, any reference signs placed between parentheses shall not be construed as limiting the claim. Use of the verb “comprise” and its conjugations does not exclude the presence of elements or steps other than those stated in a claim. The article “a” or “an” preceding an element does not exclude the presence of a plurality of such elements. The invention may be implemented by means of hardware comprising several distinct elements, and by means of a suitably programmed computer. In the claims enumerating several means, several of these means may be embodied by one and the same item of hardware. The mere fact that certain measures are recited in mutually different dependent claims does not indicate that a combination of these measures cannot be used to advantage. For example, elements described as a part of a playing piece made of a skeleton of polyhedrons, may also be used in playing pieces made of a honeycomb like structure and vice versa.
Number | Date | Country | Kind |
---|---|---|---|
05110065.9 | Oct 2005 | EP | regional |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB06/53957 | 10/27/2006 | WO | 00 | 4/23/2008 |