The present invention relates generally to heat sinks and, more specifically, to a heat dissipating structure that conforms to an irregular surface to which heat is to be transferred.
Light emitting diodes (LEDs) provide an energy-efficient light source and are increasingly being used instead of fluorescent and halogen gas lamps for high capacity lighting needs, such as street lamps. In order to increase the amount of light generated, LEDs are often incorporated into street lamps, which can lead to significant problems of overheating. The performance and lifetime of the LEDs is degraded if the operating temperature exceeds a threshold level. For example, the useful life of an LED street lamp is sometimes specified as the number hours of operation before which the luminous output of the lamp drops to half of its initial output. Empirical data suggests that there is an inverse exponential relationship between the useful life of an LED lamp and the amount by which the average operating temperature exceeds a threshold level, such as 25 degrees Celsius. Thus, dissipating the heat generated by the LEDs in the street lamp is a problem that must be solved.
The LEDs of a street lamp are enclosed by a covering. The covering typically has openings to allow the heat generated by the LEDs to escape the covering. However, the openings allow dust, moisture and insects to enter the covering and to block much of the light that is generated.
This prior art method of dissipating heat from an LED street light has multiple disadvantages. First, although dust, moisture and insects are prevented from entering the lower compartment, they will nevertheless enter the upper compartment through the venting slots 16. The dust, moisture and insects will likely clog the spaces between the fins 13 and reduce the ability of the fins to dissipate heat. Second, the fans 15 have moving parts and will likely malfunction, especially if they are subjected to the dust, moisture and insects that enter through the venting slots 16. Moreover, the fans 15 also require a power supply, which might not be able to be shared with the LEDs. Finally, the fins 13 through which the heat guiding piece 14 extends and the fans 15 add to the cost of the street lamp.
A method is sought for dissipating heat from an LED street lamp that does not subject the inner compartments of the street lamp to dust, moisture and insects and that does not require fans or fins.
A conforming heat dissipating structure transfers heat to a non-planar surface from a heat source mounted to the planar bottom surface of the heat dissipating structure. The heat dissipating structure includes an open container over-filled with metal balls that are interspersed among metallic shavings. The shavings and balls are made of a heat-conductive material, such as copper or aluminum. The upper surface of the shavings and balls is disposed above the upper rim of the open container. A flexible retainer with a copper screen covers the upper surface of the shavings and balls. The shavings and balls are pressed against the non-planar surface and are compressed so as to conform to the shape of the irregular surface. In an embodiment, the heat source is an array of light emitting diodes (LEDs) mounted to the bottom surface of the open container. And the heat sink is a dome-shaped concave surface of the upper cover of a street light. Fasteners attach the open container to the non-planar surface of the street light such that the upper surface of the metallic shavings is pressed against the non-planar surface. The fasteners can be bolts, screws, clamps, rivets or cables. The street light originally configured for gas bulbs can be retrofitted with LEDs by using the non-planar cover of the street light as a heat sink to dissipate the heat generated by the LEDs that are mounted to the bottom of the novel conforming heat dissipating structure.
A method of manufacturing the conforming heat dissipating structure involves the steps of filling an open container with metallic shavings and metal balls, covering the upper surface of the shavings and balls with a flexible retainer, and fastening a frame gasket to the open container in order to hold the flexible retainer in place over the shavings. The metal balls are interspersed among the metallic shavings. The open container is filled with copper shavings and balls beyond the upper rim of the open container to form an upper surface of the shavings. The frame gasket is fastened to the upper rim of the open container so as to hold the flexible retainer in place between the upper rim and the frame gasket. A heat source such as an array of LEDs is attached to the planar bottom surface of the open container. The open container is then attached to a non-planar surface such that the upper surface of the metallic shavings is pressed against the non-planar surface and assumes the irregular shape of the non-planar surface.
A novel conforming heat dissipating structure includes an open container and a heat source attached to the planar bottom surface of the structure. In addition, the heat dissipating structure includes a means for transmitting heat generated by the heat source to a non-planar surface above the upper rim of the open container. The means is disposed inside the open container as well as above the upper rim of the open container, and the means is adapted to be compressed between the open container and the non-planar surface. The means acquires the shape of the non-planar surface when the means is compressed.
A novel flexible heat rod enables heat to be transferred over a flexible path from a heat source to a heat sink. The flexible heat rod is made from a cable with many strands. One end of the flexible heat rod passes through a hole in the bottom of an open container, and the strands are spread out inside the open container. The open container is filled with metallic shavings and metal balls both above and below the strands. The open container, the metallic shavings, the metal balls and the flexible heat rod are made of copper. As the mixture of shavings and balls is compressed, the strands are pressed between the metallic shavings forming a good thermal contact between the flexible heat rod and the shavings. A retaining cover is fastened to the upper rim of the open container and retains the shavings and balls inside the open container.
In an embodiment, the other end of the flexible heat rod passes through a hole in the bottom of a second open container. Strands from the other end of the flexible heat rod are spread out inside the second open container. The second open container is filled with additional shavings and balls around the strands as well as above the upper rim of the second open container. A flexible retainer covers the upper surface of the additional metallic shavings. The shavings and balls are pressed against a non-planar surface so as to conform to the shape of the surface. Fasteners attach the second open container to the non-planar surface such that the upper surface of the additional metallic shavings is pressed against the non-planar surface.
In one application, the heat source is LEDs mounted to the bottom surface of the first open container. The second open container is pressed against the inside cover of a street light such that the upper surface of the metallic shavings conforms to the shape of the street light cover. The flexible heat rod provides a means for transmitting heat generated by the LEDs on a first heat dissipating structure to the irregular-shaped street light cover that is pressed against the over-filled shavings in a second conforming heat dissipating structure. The flexible heat rod can easily bend to avoid obstacles in the path between the heat source and the heat sink. In another application, the flexible heat rod is used to conduct the heat generated by a field programmable gate array (FPGA) chip out from between cramped computer components to a location where a fan can blow air through fins attached to a second heat dissipating structure. The flexible heat rod can also be used to conduct heat away from other electronic components, such as a complex programmable logic device (CPLD), a central processing unit (CPU) or a stacked memory device.
Further details and embodiments and techniques are described in the detailed description below. This summary does not purport to define the invention. The invention is defined by the claims.
The accompanying drawings, where like numerals indicate like components, illustrate embodiments of the invention.
Reference will now be made in detail to some embodiments of the invention, examples of which are illustrated in the accompanying drawings.
Interspersed among the metal shavings 30 are metal balls 33. The metal balls add mass and thereby make the heat sink of structure 19 more efficient. The metal shavings 30 hold the metal balls 33 in place and form a malleable compress. In an embodiment, both metal shavings 30 and metal balls 33 are made of copper. The metal shavings 30 can be purchased from recycling companies that obtain the shavings from machine shops. Balls intended for bead blasting can be used as the metal balls 33. For example, copper balls are used for bead blasting where a blasting medium that is softer than steel is required. Copper balls with a diameter of 3/16 inch can be dispersed among the copper shavings 30. Balls of other sizes can also be used, for example, balls with a diameter of 1/16 inch (small), 5/64 inch (medium) or 3/32 inch (large). Flexible retainer 21 is then fastened down over upper rim 25 and holds the metal shavings 30 and metal balls 33 in place in open container 20.
In another embodiment, a graphite powder is mixed in with the shavings 30 and balls 33. The graphite powder fills in some of the air pockets between the shavings and balls and enhances the ability of the mixture to transfer heat. A graphite powder with good thermal conductivity is used, such as Primary Synthetic Graphite Powder GP55-B manufactured by GrafTech International of Clarksburg, W. Va. The graphite powder fills in more of the air pockets as the mixture of shavings, balls and powder is later compressed. In yet another embodiment, graphite balls are mixed into graphite powder instead of using metal shavings and balls. The graphite powder and ball mixture is then covered with a graphite sheet and compressed into open container 20 in a later step.
Conforming heat dissipating structure 19 can be used as a heat transfer element to retrofit street lights by replacing halogen lights with LEDs. Typically, the retrofitted street lights do not have adequate vents or heat sinks to dissipate the heat produced by the LEDs. If the heat generated by the LEDs is to be transferred to the housing of the street light, there should be a large area of contact between the structure holding the LEDs and the housing in order to convey the heat generated by the LEDs to the outside surface of the street light housing. It is difficult to obtain the exact measurements of the concave surface of the street light housing in order to construct a solid metal heat sink that fits up against the inside of the upper cover of the street light housing. Constructing the solid metal heat sink would typically require a solid model to be made. In addition, a different solid metal heat sink to have to be constructed to match the specific shape of each type of street light. Alternatively, a malleable thermal compound could be molded like putty to an irregular surface. But with time and heat, thermal compounds tend to dry out, turn into powder and lose their thermal conductivity. Conforming heat dissipating structure 19 is the solution to making a tight, long-term contact between a heat dissipating structure and a large area of a non-planar surface that can absorb heat from the dissipating structure. For example, the pillow top of conforming heat dissipating structure 19 molds against any shape of the inside upper cover of a street light housing. Even though the mixture of shavings 30 and balls 33 has already been compressed once into open container 20 by the arbor press, the remaining air pockets between the shavings and balls are compressed further and permit the compress of shavings and balls to conform to the shape of the non-planar surface of the street light housing. Thereafter, the compress of copper shavings and balls maintains its shape when exposed to extreme heat over time.
After conforming heat dissipating structure 19 is pressed against upper cover 36, structure 19 is fastened to upper cover 36 by bolts 38 that pass through structure 19 and screw into holes in upper cover 36. Either the holes in upper cover 36 are threaded, or nuts on used to secure bolts 38 on the outside of upper cover 36. Bolts 38 act as fasteners to attach open container 20 to the non-planar surface 35 such that upper surface 34 of the metallic shavings 30 remains pressed against non-planar surface 35. By maintaining a large area of contact between structure 19 and upper cover 36, the heat generated by the LEDs 32 is dissipated out of the body of street light 37 without using fins, fans or venting slots. The LEDs 32 are able to achieve a longer service life because the heat they generated is dissipated out of the street light 37 through the upper cover 36.
In addition to retrofitting street lights, conforming heat dissipating structure 19 can be used to dissipate heat from a heat source to a non-planar cover of other lamps, such as traffic lights, yard lamps, bay lights and spot lights.
In a first step 39, open container 20 made of metal is machined. For example, open container 20 is machined from a solid rectangular piece of copper. Four threaded holes 29 are drilled into open container 20 to accept the four fasteners 28, such as bolts.
In step 40, metal balls 33 are mixed in with metal shavings 30. Larger metal balls 33 are used for larger dimensioned open containers.
In step 41, open container 20 is filled with the mixture of metal shavings 30 and metal balls 33. Optionally, a final layer of just metal shavings is added on top of the mixture. Open container 20 is filled beyond upper rim 25 to form upper surface 34 of a mound of metallic shavings.
In step 42, the shavings 30 and balls 33 are compressed into open container 20 using an arbor press such that the air pockets between the shavings and balls comprise less than 50% of the volume of the mixture of shavings and balls. Nevertheless, upper surface 34 of the compress of shavings and balls still protrudes well above upper rim 25 of open container 20.
In step 43, upper surface 34 of metallic shavings 30 is covered with flexible retainer 21. Copper screen 26 is pulled down over the mound of metal shavings 30 and metal balls 33 and forms a pillow top.
In step 44, frame gasket 27 is fastened to upper rim 25 of open container 20 so as to hold copper screen 26 in place between upper rim 25 and frame gasket 27. Frame gasket 27 is fastened to upper rim 25 by screwing the bolts 28 into the threaded holes 29. Performing steps 39-43 produces conforming heat dissipating structure 19.
In step 45, an array of LEDs 32 is attached to the planar bottom surface 24 of open container 20. An aluminum platform 31 upon which the LEDs 32 are mounted is attached using thermal glue to bottom surface 24. Power wires used to provide the LEDs 32 with current are then attached to platform 31.
In step 46, heat dissipating structure 19 and the mounted LEDs 32 are attached to a non-planar surface to which the heat generated by the LEDs is to be transferred. For example, open container 20 is pressed against the inside dome-shaped concave surface 35 of the upper cover 36 of street light 37 (as shown in
Flexible heat rod 48 is a thick copper wire made of many strands 49. Flexible heat rod 48 can be made using a high-power transmission cable or the wire used to ground the lightning rod on a building. In the embodiment of
The second end 52 of flexible heat rod 48 passes through a hole in the bottom 22 of an open container 20 of a heat dissipating structure of the type shown in
Flexible heat rod 48 is used in other applications besides retrofitting street light 37. For example, flexible heat rod 48 is used to lower the location of the LEDs in a bay light such that light is generated at the optimal position in the parabolic curve of the bay light. Yet the heat generated by the LEDs can be transmitted to the covering of the bay light, where it is dissipated into the atmosphere.
Although certain specific embodiments are described above for instructional purposes, the teachings of this patent document have general applicability and are not limited to the specific embodiments described above. Although open container 20 of the heat dissipating structures is described above as having a rectangular box shape, open container 20 can have other shapes, such as an open oval box shape or a circular open box shape. Moreover, bottom 22 of open container 20 is described above as having one hole 50 through which one flexible heat rod 48 passes. In order to transfer more heat from each heat dissipating structure 47, multiple heat rods can be attached to the structure 47 through multiple holes. Accordingly, various modifications, adaptations, and combinations of various features of the described embodiments can be practiced without departing from the scope of the invention as set forth in the claims.
Number | Name | Date | Kind |
---|---|---|---|
4419719 | Boer et al. | Dec 1983 | A |
4974119 | Martin | Nov 1990 | A |
5782555 | Hochstein | Jul 1998 | A |
7278761 | Kuan | Oct 2007 | B2 |
7641363 | Chang et al. | Jan 2010 | B1 |
7755282 | Sun et al. | Jul 2010 | B2 |
7784970 | Sun | Aug 2010 | B2 |
7800909 | Sun | Sep 2010 | B2 |
Number | Date | Country | |
---|---|---|---|
20110069503 A1 | Mar 2011 | US |