The present invention relates to a shape memory alloy actuator comprising a body arranged displaceable between a first and a second position, releasable holding means adapted for holding said body in said first position, and at least one first and at least one second wire made of a shape memory alloy such as nitinol, said first wire being at one end connected to said body such that shortening of the length of said first wire exerts a force on said body for moving said body from said second to said first position.
It is an object of the invention to provide a shape memory alloy actuator that is cheap to manufacture and efficient in use and this object is achieved by the actuator further comprising a biasing means, such as a tension spring, a compression spring, a straight or arcuate flat spring or a piston and cylinder mechanism, arranged and adapted for biasing said body for moving said body from said first to said second position, said second wire having one end connected to said holding means such that shortening of the length of said second wire releases said holding means for allowing said biasing means to move said body from said first position to said second position.
So as to obtain an actuator which is mechanically efficient and is protected against damage of the shape memory alloy wire said body is displaceably attached to a frame, one end of each of said first and second wires is attached to said frame and connected at the other end thereof with said body and said pawl, respectively, such that shortening of the length of said first wire exerts a displacing force on said body in a first direction and shortening of the length of said second wire exerts a pivoting force on said pawl in the direction from said holding position towards said release position, and said biasing means is attached to said frame and arranged for exerting a displacing force on said body in a second direction opposite said first direction and wherein said biasing means is arranged and adapted to exert a rotation force on a rotatably arranged intermediate member such as a lever or a disc for rotating said intermediate member around an axis of rotation in a first direction of rotation from a first angular position to a second angular position, said intermediate member being connected to said body at a force transmission point such that rotation of said intermediate member in said first direction of rotation displaces said body in said second direction, said biasing means and said intermediate member being arranged and adapted such that the lever or moment arm of said rotation force with respect to said axis of rotation is larger when said intermediate member is in said second angular position than when said intermediate member is in said first angular position such that said lever or moment arm of said rotation force increases when said intermediate member rotates in said first direction of rotation, and/or said intermediate member and said body being arranged and adapted such that said rotation force is transmitted to said body as a displacement force applied at said force transmission point for moving said body from said first to said second position, and such that the lever or moment arm of said displacement force with respect to said axis of rotation is larger when said intermediate member is in said first angular position than when said intermediate member is in said second angular position such that said lever or moment arm of said displacement force with respect to said axis of rotation decreases when said intermediate member rotates in said first direction of rotation.
The present invention furthermore relates to a shape memory alloy actuator comprising a body arranged displaceable between a first and a second position, at least one first wire made of a shape memory alloy such as nitinol, said first wire being at one end connected to said body such that shortening of the length of said first wire exerts a force on said body for moving said body from said second to said first position, a biasing means, such as a tension spring, a compression spring, a straight or arcuate flat spring or a piston and cylinder mechanism, and a rotatably arranged intermediate member such as a lever or a disc connected to said body and to said biasing means, said biasing means being adapted for exerting a rotation force on said intermediate member for rotating said intermediate member around an axis of rotation in a first direction of rotation from a first angular position to a second angular position, said intermediate member being connected to said body such that rotation of said intermediate member in said first direction of rotation displaces said body from said first position to said second position, and said biasing means and said intermediate member being arranged and adapted such that the lever or moment arm of said rotation force with respect to said axis of rotation is larger when said intermediate member is in said second angular position than when said intermediate member is in said first angular position such that said lever or moment arm of said rotation force increases when said intermediate member rotates in said first direction of rotation.
Hereby a variable leveraging of the contraction force of the shape memory alloy wire is obtained as well as a variable leveraging of the activating displacement force of the biasing means such that an efficient utilization of the SMA wire is obtained, the SMA wire is protected against damage or snapping if the activated object is blocked, and an activating force is applied that increases as the activation proceeds while the force exerted by the SMA wire is decreases as the SMA shortens when heated to the transformation temperature of the shape memory alloy.
These advantages may alternatively or additionally be achieved by means of a memory alloy actuator comprising a body arranged displaceable between a first and a second position, at least one first wire made of a shape memory alloy such as nitinol, said first wire being at one end connected to said body such that shortening of the length of said first wire exerts a force on said body for moving said body from said second to said first position, a biasing means, such as a tension spring, a compression spring, a straight or arcuate flat spring or a piston and cylinder mechanism, and a rotatably arranged intermediate member such as a lever or an arm connected to said body at a force transmission point on said body and connected to or integral with said biasing means, said biasing means being adapted for exerting a rotation force on said intermediate member for rotating said intermediate member around an axis of rotation in a first direction of rotation from a first angular position to a second angular position, said intermediate member being connected to said body such that rotation of said intermediate member in said first direction of rotation displaces said body from said first position to said second position, and said intermediate member and said body being arranged and adapted such that said rotation force is transmitted to said body as a displacement force applied at said force transmission point for moving said body from said first to said second position, and such that the lever or moment arm of said displacement force with respect to said axis of rotation is larger when said intermediate member is in said first angular position than when said intermediate member is in said second angular position such that said lever or moment arm of said displacement force with respect to said axis of rotation decreases when said intermediate member rotates in said first direction of rotation.
In another aspect, the present invention relates to a shape memory alloy motor comprising a shape memory alloy actuator, preferably according to any of the previous claims, having a body arranged displaceable between a first and a second position, at least one first wire made of a shape memory alloy such as nitinol, said first wire being at one end connected to said body such that shortening of the length of said first wire exerts a first displacement force on said body for moving said body from said second to said first position, a biasing means, such as a tension spring, a compression spring, a straight or arcuate flat spring or a piston and cylinder mechanism arranged and adapted for exerting a second displacement force on said body for moving said body from said first to said second position, a gear having a first and second rotation direction, said body having a portion adapted to fit between two adjacent teeth of said gear, and said body and said gear being adapted and arranged such that in said first position said portion is located between a pair of teeth of said gear and in said second position said portion is located between the adjacent pair of teeth of said gear reckoned in said second rotation direction of said gear such that said second displacement force will cause said body to rotate said gear in said first direction.
In a final aspect the present invention relates to a shape memory alloy motor comprising a shape memory alloy actuator, preferably according to any of the previous claims, having a body arranged displaceable between a first and a second position, at least one first wire made of a shape memory alloy such as nitinol, said first wire being at one end connected to said body such that shortening of the length of said first wire exerts a first displacement force on said body for moving said body from said second to said first position, a biasing means, such as a tension spring, a compression spring, a straight or arcuate flat spring or a piston and cylinder mechanism arranged and adapted for exerting a second displacement force on said body for moving said body from said first to said second position, a rack having a first and second displacement direction, said body having a portion adapted to fit between two adjacent teeth of said rack, and said body and said rack being adapted and arranged such that in said first position said portion is located between a pair of teeth of said rack and in said second position said portion is located between the adjacent pair of teeth of said gear reckoned in said second displacement direction of said rack such that said second displacement force will cause said body to displace said rack in said first direction.
The various aspects of the invention will be described more in detail in the following with reference to various embodiments of a shape memory alloy actuator according to the invention shown, solely by way of example, in the accompanying drawings, where
Referring now to
The other end of each of the wires 9 and 10 is attached to an electrically conductive terminal 13 fixedly attached to the periphery of the disc 1. The wires 9 and 10 extend along the periphery of the disc 1 such that the wires 9 and 10 when tensioned extend along and are supported by said periphery. In the drawings the wires 9 and 10 are shown spaced from said periphery for the sake of clarity.
A sliding body 14 having two arms 15 and 16 is arranged for sliding movement between two stop pins 17 and 18 attached to the frame. A pin 19 attached to the sliding body 14 is received in the fork 5a of the yoke-like extension 5 such that the pin 19 may slide and rotate freely in the fork when the disc 1 pivots from the position shown in
A proximity sensor 20 is attached to the frame and connected to not shown electrical conductors for transmitting a signal from the sensor to a not shown receiver. The terminals 11 and 12 are likewise each connected to an electrical conductor, not shown, connected to a not shown power source for supplying electrical power to the wires 9 and 10 for resistance heating thereof, the terminal 13 being likewise connected to the not shown power source through a not shown electrical conductor for closing the resistance heating circuit.
In use, the wires 9 and 10 are intermittently heated to the transformation or transition temperature (from martensitic to austenitic state) of the shape memory alloy which temperature for nitinol is approximately 90° C. Thereby the length of the wire is shortened. When the wire cools to below 90° C. the length thereof reverts to normal, i.e. the wire lengthens. The speed at which the shortening takes place, i.e. the contraction time, is directly related to the current input. i.e. the voltage applied over the terminals 11 or 12 and 13.
In the position depicted in
In the next step, the wire 10 is cooled to below 90° C. and thereby lengthens to the shape indicated by the dotted line 10a in
Thereafter or simultaneously, the wire 9 is heated to above 90° C. whereby it contracts and exerts a clock-wise force on the disc 1 pivoting it clock-wise around the pivot 2 past the balance position of the disc 1 and spring 6 in which the attachment pins 7 and 8 of the spring 6 are aligned with the pivot 2.
When the disc 1 has rotated clock-wise past said balance point, the tension force exerted by the spring 7 will continue the clock-wise rotation of the disc 1 to the position shown in
For many applications where the force necessary to perform the function of the actuator, for instance depress a pump piston, increases during the activating stroke, said increase of the spring force moment arm as the disc 1 rotates is a very advantageous feature as will be explained more in detail in connection with
An increase of the activating force of the actuator during the activating stroke is also achieved or enhanced by decreasing the distance of the pin 19 from the pivot 2 or axis of rotation of the disc 1 during the activating stroke whereby the moment arm or lever of force of the displacement force exerted on the pin 19 by the yoke-like extension 5 with respect to the pivot 2 is decreased and thereby the displacement force is increased during the activating stroke. This shortening of said distance can be seen from the situation in
Finally, the wire 10 is heated above 90° C. so that it contracts and pivots the disc 1 back to the position shown in
The length of the wire 10 is larger than the length of the wire 9 because the contraction or shortening of the wire 10 must be large enough to pivot the disc 1 from the position shown in
Nitinol wires will typically contract about 3%-6% when heated past the transition temperature. The uncontracted length of the wire 10 should be enough to ensure that the uncontracted wire is fully extended in the position shown in
The necessary contraction force to be exerted by wires 9 and 10 are rather different because the contraction force of wire 9 only has to counteract the torque or moment of the spring force of spring 6 with the relatively small torque arm in
The latter possibility is chosen if it is necessary that the cooling-off time for the wires 10 is as short of possible so that the interval between the activating cycles may be as short as possible. Several small diameter wires with a certain total cross sectional area will cool more rapidly than a single larger diameter wire with the same cross sectional area.
The signal emitted by the proximity sensor 20 each time the extension 3 is in the position shown in
Referring now to
The activating member may be a sliding body similar to body 14 in
The disc 1 may alternatively be provided with a central torsion shaft projecting at right angles to the plane of the disc 1 as a prolongation of the pivot 2 such that the torsion shaft functions as the activating member by for instance rotating a lever to and fro. Many different types of activating members connected to the disc 1 will be obvious to those skilled in the art.
In the position shown in
Referring now to
The piston and cylinder mechanism 24-25 functions like a compression spring and could in fact be substituted by a compression spring. In
The tension spring 6 in
Referring now to
One end of the wire 31 is attached to the body 30 at 33 and the other end is attached to a fixed portion 37a of a not shown frame of the actuator, the wire 31 extending around a pulley 34 pivotably arranged on a slide 35 displaceable in the directions of the arrows R1 and R2. A compression spring 36 is arranged between the body 30 and the slide 35 and extends through a passage through a fixed portion 37 of said frame.
The two-armed lever 32 is arranged pivotable around a pivot 38, one arm 39 of the lever abutting a pin 40 on the body 30 and the other arm 41 of the lever being attached at 42 to one end of a tension spring 43, the other end being attached to a fixed portion 44 of said frame such that displacement of the body 30 in the direction of arrow R1 tensions the spring 43 via rotation of the intermediate lever 32.
A pawl or hook element 45 is arranged pivotable around a pivot 46 such that a hook or projection 47 of the hook element 45 may be received in a matching recess 48 in the body 30. A shape memory alloy wire 49 is at one end attached to the hook element 45 and at the other end attached to a fixed portion 50 of said frame. A compression spring 51 is arranged between the fixed portion 50 and the hook element 45
In use, the body 30 is moved to and fro in the direction of the arrows R1 and R2 to actuate a plunger, lever, button, contact and the like during the activating stroke of the body in the direction R1.
In
When the activating stroke is to be initiated, the wire 49 is heated to the transformation temperature and shortens or contracts, thereby pivoting the hook element 45 against the biasing force of the spring 51 such that the hook 47 is pulled out of the recess 48 to the release position shown in
During the activating stroke of body 30 in direction R1 the lever or moment arm of the force exerted by the spring 43 relative to the pivot 38 or the axis of rotation of the lever 32 increases such that the displacement force exerted on the pin 40 by the arm 39 increases as the body 30 is displaced in the direction R1.
Likewise, during the activating stroke by the body 30 in direction R1, the lever or moment arm of the displacement force exerted by the arm 39 on the pin 40 relative to the pivot 38 decreases whereby said displacement force increases as the body 30 is displaced in the direction R1.
When the slide 35 abuts the fixed frame portion 37, the activating stroke in direction R1 will be stopped as shown in
So as to cock the actuator again, the wire 49 is cooled to allow the spring 51 to pivot the hook element 45 towards the holding position thereof while the wire 31 is heated until it shortens and thereby causes the slide 35 to abut the fixed frame portion 37 and the pulley 34 to rotate clock-wise while the body 30 is displaced in the direction R2 against the force of the spring 43 that thereby is lengthened while the lever 32 pivots counter clock-wise. When the body 30 has reached the position shown in
During the tensioning of the spring 43, the force exerted by the wire 31 necessary for this tensioning is largest at the beginning of the displacement of the body 30 in the direction R2 because of the large moment arm of the force of the spring 43 and the small moment arm of the rotation force of the pin 40 on the arm 39, and the force exerted by the wire 31 decreases as the body 30 is displaced in the direction R2. This is an advantageous development of the force in the wire 31 during the cocking of the actuator as will be explained more in detail in the following in connection with
By adapting the actuator according to the invention such that the activating stroke is performed by a force exerted by a biasing means, a further advantage is obtained in that any blocking of the activating stroke of the activating body, for instance because the activated object such as a pump plunger is blocked, will only entail that the activation stroke is stopped with no damage to the SMA wire. If the activating stroke were carried out under the influence of a shortening of a shape memory alloy wire, said wire would probably be damaged or snapped if the activating stroke were blocked.
The extra length of the wire 31 obtained by means of the pulley 34 is advantageous for giving a longer activating stroke with a compact construction of the actuator.
The heating of the wires 31 and 49 is preferably carried out in a manner similar to the heating of the wires 9 and 10 in
Referring now to
A shape memory alloy wire 60 is at one end attached to the body 57 and at the other end to a fixed portion 61 of said frame. A coiled flat or wire spring 62 integral with or connected to an arm 63 is attached to said frame such that said arm 63 may pivot around one end thereof opposite the free end thereof. The arm 63 abuts a pin 64 on the body 57.
A pawl 65 is pivotably arranged on a pivot 66 and is biased by a tension spring 67 so as to constantly abut the rim of the gear 55.
In use, the gear 55 is turned clock-wise by the body 57 being displaced from the full line position to the dotted line position thereof by the force of the spring 62 acting through the intermediate arm 63 on the pin 64, whereby the gear advances the width of one tooth 59 and the pawl 65 moves from locking engagement between one pair of teeth 59 to a locking position between the next pair of teeth in the counter clock-wise direction.
When the gear is locked against rotating counter clock-wise by the pawl 65, the SMA wire 60 is heated and shortens whereby the body is displaced from the dotted line position to the full line position against the force of the intermediate arm 63 on the pin 64 thereby cocking the spring 62.
The lever or moment arm of the displacement force exerted by the intermediate arm in the clock-wise direction with respect to the pivoting point of the arm decreases as the body is displaced in the activating direction from the full line position to the dotted line position whereby the displacement force exerted by the intermediate arm 63 on the pin 64 increases.
Referring now to
The operation of the motor of
Referring now to
The rack 70 advances the distance of the width of one tooth 78 thereof in the direction R4 for every cycle of heating and cooling of the SMA wire 72 in the same way as gear 55 in
The rack 70 may be used to push an object by means of front end 77, for instance a piston in a cylinder to empty said cylinder of liquid or paste through an aperture in said cylinder.
Means to displace the body 71 transversely to the rack 70 may be provided for allowing the rack to be displaced in the direction R3 for repeating the pushing travel of the rack 70 in the direction R4.
Referring now to
The line or curve 81 is symbolic of the curves corresponding to the relationship between contraction and force exerted for the embodiments of
In this manner, a high coefficient of mechanical efficiency is obtained because the longer contraction distance for a given input of energy to heat the SMA wires gives an increased input of energy into the activating system.
The actual curves 81 will not be linear but will reflect the varying rate of change of the moment arm or moment arms during the activating stroke.
Referring now to
The pump piston plunger and body 30 travel from 0.2 mm to 3.4 mm during the activating stroke of the body 30. The force required to displace the plunger increases substantially proportionally from approx. 0.5 N to approx. 2N where the force increases steeply because the plunger has reached the end of its path.
The force exerted by the spring 43 on the body 30 and thus the plunger develops as an increasing parable-like curve corresponding to the curve for the tension or force in the SMA wire 31 necessary to retract the body 30 against the leveraged force of the spring 43.
It is clear that the curves show that the actuator according to the invention can produce an increasing force as the displacement increases which is very advantageous in many applications such as pumping with piston pumps where the force required increases with the distance travelled by the plunger.
Number | Date | Country | Kind |
---|---|---|---|
PA 2002 01134 | Jul 2002 | DK | national |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/DK03/00508 | Jul 2003 | US |
Child | 11041188 | Jan 2005 | US |