1. Technical Field
The present invention relates to shape memory alloy (“SMA”) material and, more particularly, to SMA material formed into SMA bundles and to actuators driven by the SMA material.
2. Background Art
Conventional shape memory alloy or “SMA” materials exhibit a shape memory effect and have a “parent” condition or shape and a “deformed” condition or shape. The SMA material can be deformed from the parent shape in its low temperature martensitic state. Once the shape memory alloy is heated above its phase transformation temperature for transformation to its austenitic state, the shape memory alloy attempts to regain its original or “parent” shape. SMA is typically manufactured from nickel-titanium (NiTi) alloy which can be modified with copper (Cu) and/or other various elements. Thus, one advantageous property of the SMA is that the material recovers when heated, thereby generating force output.
Currently, SMA is used in a variety of industries primarily for single actuation applications and/or in a passive capacity. In the automotive industry, SMA is placed in heat sensitive control valves which work passively when ambient temperature rises. Single or low cycle applications for SMA materials also exist in the medical industry for bone plates, artificial joints, and in dental applications. SMA materials are also used in anti-scalding shower valves. Super elastic forms of SMA materials are presently used in frames for eyeglasses and antennas for cellular telephones. Although SMA material is widely used, most of the current commercial utilization of SMA material involves passive or one time use.
In some existing applications of SMA materials, the alloy is shaped as a thin wire. Although use of SMA is highly beneficial, the SMA wires have a number of limitations. One of the major limitations of the SMA wires is the recovery stress. The recovery stress dictates the amount of force that can be generated by the SMA wire. Typically, it is recommended that this recovery stress be limited to twenty to fifty-five thousand pounds per square inch (20 to 55 kpsi) for durability considerations. This limits the force output of a single twenty thousands inch wire (0.020 in.) to a maximum of six to seventeen pounds (6-17 lbs.). For applications that require greater force output, SMA is used in straight rods or tubes. However, SMA material with cross-sectional areas large enough to yield significant work output cannot be bent around corners, thus limiting its application as a continuous member. Multiple segments of SMA rods or tubes result in packaging problems as well as in multiple mechanical and electrical terminations, which add significant complexity to the system, increase overall cost, and decrease reliability.
An additional drawback of existing SMA materials is fatigue failure. SMA material tends to fail catastrophically when it reaches its fatigue limit. Thus, in systems using either single wires or larger diameter rods, once the SMA material fails, the failure is typically a catastrophic one.
A suitable mechanical attachment method for existing SMA material is another shortcoming. SMA does not weld well, has a low friction surface, and its cross-section changes with conversion between martensitic and austenitic phases, thus decreasing the effectiveness of traditional techniques for crimping and swaging.
Therefore, it is highly desirable to maximize the beneficial qualities of SMA materials and minimize the limitations of SMA materials.
It is an object of the present invention to optimize use of shape memory alloy material (SMA).
It is another object of the present invention to increase force output of SMA material without sacrificing flexibility of the SMA material.
It is a further object of the present invention to minimize potential for catastrophic failure of systems using SMA materials.
It is a further object of the present invention to improve ability to terminate and attach SMA materials.
According to the present invention, individual SMA wires are formed into a SMA bundle for increased force output such that the SMA bundle has a parent shape and a deformed shape with the SMA bundle in the deformed shape resuming its parent shape once the SMA bundle is heated to generate the increased force output. The SMA wires forming the SMA bundles can be configured into strands, ropes, arrays or other shapes.
According to one aspect of the present invention, a method for making the SMA bundle comprises the steps of providing a plurality of individual SMA wires, each of the wires having a first end and a second end, forming the plurality of the SMA wires into the SMA bundle, and heat treating the SMA bundle. The resulting SMA bundle greatly increases the total force output over that of the individual SMA wire.
According to another aspect of the present invention, the SMA material is used in a variety of actuators for generating substantially continuous motion. The mechanisms according to the present invention include an output means engaged by a SMA actuator and a return means. The SMA actuator, either a SMA bundle or a rigid SMA member, is heated to transform the SMA actuator from a deformed state to a parent state, thereby generating a force output. The output force is used to drive the output means. The return means deforms the SMA actuator from its parent state to the deformed state. Thus, the mechanisms generate substantially continuous motion as the SMA actuator is repeatedly cycled between the parent shape and the deformed shape.
In one embodiment of the present invention, the return means is another SMA actuator that is also heated, alternatingly with the first SMA actuator, to generate force output and to deform the first SMA actuator. Additionally, the SMA actuator(s) can be actively cooled to accelerate the actuation cycle. Various embodiments of the mechanisms include ratchet mechanisms, an opposite motion mechanism, a cam mechanism, and self-contained mechanisms. The mechanisms of the present invention are actively controlled and are used in multi-cycle applications to generate significant force output.
One advantage of the SMA bundles of the present invention is that the SMA bundles will not fail catastrophically under normal fatigue or overload situations. Since the SMA bundles include multiple smaller diameter wires, when one or more wires fail, such failure will be apparent during visual, electrical or other type of nondestructive inspection. Thus, when failure in one or several wires is detected, repair or replacement of the entire SMA bundle can be scheduled to avoid subsequent catastrophic failure.
Another advantage of the SMA bundle is flexibility. The SMA bundle can be bent around corners or any other configuration without incurring damaging strain. Flexibility of the SMA bundles also eliminates the need for multiple segments of the SMA material.
A further major advantage of the present invention is that the flexible SMA bundles can be formed into mechanical terminations capable of withstanding great forces.
The foregoing and other advantages of the present invention become more apparent in light of the following detailed description of the exemplary embodiments thereof, as illustrated in the accompanying drawings.
FIGS. 2A-D are schematic representations of cross-sections of various configurations of the SMA bundle of
FIGS. 8A-F are schematic representations of various terminations of the SMA bundle of
Referring to
Referring to
As is well known in the conventional wire rope art, the wire ropes 18 can be fabricated to have various configurations and cross-sections. The SMA ropes 18, according to the present invention, can also be formed having various cross-sectional geometries, as shown in FIGS. 2A-D, and can be formed with or without the core 20. In the preferred embodiment of the present invention, the SMA bundle 10 is formed by the plurality of SMA wires 12 bundled into the strand 14 with each strand 14 having a total of nineteen (19) wires 12, as shown in
To fabricate the SMA bundle 10, a plurality of raw SMA wires 12 having first and second ends 24, 26, are formed into strands 14 and then ropes 18. As the individual raw SMA wires 12 are formed into strands 14 and then ropes 18, the first and second ends 28, 30 of each strand 14 and rope 18 are seized with seizing ties 34 to maintain rope shape and prevent unraveling, as known in wire rope art and as shown in
Subsequent to forming the SMA bundle 10, the bundle must be placed in tension and be kept taut to prevent unraveling and relative rotation of the wires 12 in the strand 14 and/or strands 14 in the rope 18 during the subsequent procedure. In the preferred embodiment, the SMA bundle 10 is placed into a heat treating fixture 36, shown in
Once the heat treatment of the SMA bundle 10 is completed, the SMA bundle 10 is cycled to eliminate the initial creep in the bundle, wherein the SMA bundle is alternatingly deformed and then heated to recover its parent shape. Although for some applications the cycling process may not be necessary, for the best mode embodiment it is preferable to cycle the SMA bundle to obtain more reliable performance. The cycling process for the SMA bundle 10 is substantially similar to one used for individual SMA wires or SMA material.
Referring to
In operation, once the SMA bundle 10 is formed, heat treated, and, in some instances cycled, the SMA bundle 10 has an original shape or a “parent condition” of a rope or other type of a bundle. The SMA bundle can then be deformed in its low temperature martensitic condition. When the SMA bundle is heated above its phase transformation temperature to its austenitic state, the SMA bundle attempts to return to its unstrained, low temperature state with significant force which is used to perform useful work. The phase transformation temperature for the SMA bundle is substantially the same as the phase transformation temperature for each individual SMA wire. The amount of work the SMA bundle performs depends on a particular number of individual SMA wires forming the SMA bundle. For example, if each individual wire outputs X force and the SMA includes nineteen (19) wires, then the total output from the SMA bundle is approximately 19× or nineteen times the force output of the individual SMA wire. Thus, according to the present invention, various configurations of SMA bundles can be formed to obtain the desired amount of force.
In order to effect change from the martensitic to austenitic phase, the SMA bundles can be heated by many alternative devices and methods. For example, the SMA bundles can be heated with hot air or hot water, conduction, convection or radiation heat, electrically, and/or by other means. However, in the preferred embodiment of the present invention, voltage is applied across the SMA bundle to heat the SMA material and cause the transformation of the SMA bundles from the martensitic phase to the austenitic phase. The amount of power to be applied to the SMA bundle to reach phase transformation temperature depends on various factors, such as how fast the SMA bundle must be actuated, overall size of the SMA bundle, and base temperature of the SMA bundle. Additionally, the SMA bundle can be actively cooled to expedite the transformation process from the austenitic phase to the martensitic phase.
Referring to
In operation, with the SMA actuator 56 in a martensitic state, the spring 58 of the mechanism 50 stretches the SMA actuator 56. When the SMA actuator 56 is heated to achieve its austenitic state, the force of the SMA actuator overcomes the force of the spring and pulls the anchors 52, 54, as indicated by arrows 62, thereby actuating at least one of the anchors 52, 54.
One major benefit of the mechanisms 50 is the ability to repeatably generate high active force in a compact package.
Referring to
In operation, when the SMA actuator 70 of the ratchet mechanism 66 is in its martensitic state, the engagement member 83, disposed at the actuation end 82 of the SMA actuator 70, engages one of the teeth 76 of the output gear 68, as shown in
Referring to
The ratchet mechanisms 66, 92 provide substantially continuous incremental motion using the SMA material and generating a significant force output. In the preferred embodiment of the present invention, the SMA actuator 70 is a SMA bundle 10, as described above. However, the SMA actuator 70 can also be a tube or a rod.
Referring to
In operation, the first and second SMA actuators 122, 124 of the opposing motion mechanism 100 are alternatingly heated and, potentially, cooled. In the preferred embodiment of the present invention, the parent condition of each SMA actuator 122, 124 is extended, whereas the deformed condition of each SMA actuator is compressed. As the first SMA actuator 122 is heated, it extends, pushing the first bearing 116 upward toward the tip 108 of the corresponding tooth 104, eventually clearing the tip 108 of the tooth 104. While the first SMA actuator 122 is extended, the second SMA actuator 124 is compressed, pushing the second bearing 118 toward the root 110 of the corresponding tooth 104 and thereby rotating the gear 102, as indicated by arrow 126. Subsequently, the second SMA actuator 124 is heated. Upon heating, the second SMA actuator 124 extends, pushing the second bearing 118 upwards toward the tip 108 of the corresponding tooth 104, eventually clearing the tip 108 of the tooth 104. While the second SMA actuator 124 is extended, the first SMA actuator 122 is contracted, pushing the first bearing 116 toward the root 110 of the following tooth 104 and thereby continuing to rotate the gear 102, as indicated by arrow 126.
Thus, the mechanism 100 with two SMA actuators 122, 124 results in step continuous motion of the gear 102. Additionally, the gear motion can be reversed by biasing the spring 125 in the reverse direction. In the preferred embodiment of the present invention, the SMA actuators 122, 124 are SMA bundles 10, as described above. However, the SMA actuators 122, 124 can also be tubes or rods. Furthermore, the parent shape of the SMA actuators can be either extended or contracted. Additionally, in the preferred embodiment of the present invention, the SMA actuators 122, 124 are heated to return from a deformed condition to its parent condition. However, the SMA actuators 122, 124 also can be cooled to expedite the actuation cycle.
Referring to
In operation, the SMA actuator 136 of the cam mechanism 130 has a deformed condition and a parent condition. In the deformed condition, the SMA actuator 136 is extended, as shown in
The mechanisms 50, 66, 92, 100, 130 are actively controlled and are used in multi-cycle applications to generate significant force output. One advantage of these mechanisms is the relative simplicity and compactness. Another advantage of these mechanism is low maintenance.
One advantage of the SMA bundles 10 of the present invention is that the SMA bundles will not fail catastrophically under normal fatigue or overload situations. Since the SMA bundles include multiple smaller diameter wires, when one or more wires fail, such failure will be apparent during visual, electrical or other types of nondestructive inspection. Thus, when failure in one or several wires is detected, repair or replacement of the entire SMA bundle can be scheduled to avoid subsequent catastrophic failure.
Another advantage of the SMA bundle is flexibility. The SMA bundle 10 can be bent around corners or any other configuration without incurring damaging strain. Flexibility of the SMA bundles also eliminates the need for multiple segments of the SMA material.
A further major advantage of the present invention is that the flexible SMA bundles can be formed into mechanical terminations capable of withstanding great forces.
While the present invention has been illustrated and described with respect to a particular embodiment thereof, it should be appreciated by those of ordinary skill in the art, that various modifications to this invention may be made without departing from the spirit and scope of the present invention. For example, the core 20 of the SMA rope 18 or a center wire 16 of strands 14 can be fabricated from material different than the SMA material. Additionally, although certain embodiments describe a particular parent shape and a particular deformed shape, the parent and deformed shapes are interchangeable. Furthermore, the SMA wire can have either a round cross-section or any other shape of a cross-section.
This application relates to an application entitled “A Variable Area Nozzle for Gas Turbine Engines Driven by Shape Memory Alloy Actuators”, having an Attorney Docket No. EH-10350/4/3309P-115, filed on the same date herewith and assigned to a common assignee.
Number | Date | Country | |
---|---|---|---|
Parent | 09517938 | Mar 2000 | US |
Child | 11049920 | Feb 2005 | US |