The present invention relates to rock splitters, and, more particularly, to a non-explosive process for fracturing planetary rocklike materials and minerals.
Solar system exploration has been reliant on state-of-the-art space technologies ranging from navigation systems to propulsion systems, and also, to scientific instruments. These missions often require close contact with planetary bodies, such as the moon, planet Mars, asteroids and comets, where in-situ environmental sampling is sought. In these cases, scientific instruments are built to detect, collect, and characterize samples from the atmosphere, dust particles, soil, rock samples, or aeolian deposits, for example. This provides researchers with geologic and climate history for a better understanding of near-Earth planets, asteroids, and the evolution of the objects as a whole.
Based on revolutionary discoveries by previous missions, it is of interest not only to analyze matter on the planetary bodies, but also to return the soil and rock samples to Earth for more detailed studies and investigations. However, limitations exist preventing large rocks, such as ledges and boulders, from being sampled. For example, limited tools allowed onboard a space vehicle or restrictions in physical space and weight or safety reasons prevent these rock formations from being sampled. In many cases, it would be beneficial to break the rock formation in the region of interest to examine the internal structures or compositions, and determine whether the region of interest is appropriate to transfer the sample back to Earth.
While rock breaking and splitting is a common task here on Earth, and is accomplished using many different methods, breaking and splitting rock outside of Earth is difficult. On Earth, dynamically, explosive and blasting methods are being used to break large rock formations in mines and drilling operations. Static methods, such as fluid pressure cells, agents, and hydraulic wedges, are also being employed. Most of these methods, however, are not suitable for space applications due to the large size and weight of the equipment used. Moreover, demolition techniques generate dust, noise, vibrations and flying debris that can interfere with the space vehicle components, such as sensors, detectors, and cameras, and pose safety concerns. Even in the case when agents and pressure fluids are used, these methods are time consuming, carry the risk of contaminating the environment, and do not guarantee chemical reactions with certain rocks, especially unknown rock structures on foreign planets. Furthermore, simply transporting the active agents for these last two processes (i.e., explosive agents and corrosive fluids) poses significant ricks for crews and spacecraft.
Thus, an alternative approach for rock splitting on foreign planets and objects may be beneficial.
Certain embodiments of the present invention may provide solutions to the problems and needs in the art that have not yet been fully identified, appreciated, or solved by current rock splitting techniques. For example, a compact, reliable, non-explosive, and cost effective technique for static rock splitting using shape memory alloys (SMAs) is provided. This is demonstrated through the capability of SMAs as high-energy multifunctional materials, which have a unique ability to recover large deformations and generate high stresses in response to thermal loads. This may allow SMA rock splitter (SMARS) to become part of a basic multifunctional scientific package (e.g., robotic sampling, propping, and structure reinforcement) onboard rovers or spacecraft.
In one embodiment, an apparatus for splitting rocks includes one or more SMA expanding elements, which include nickel titanium hafnium (NiTiHf), nickel titanium zirconium (NiTiZr), or nickel titanium hafnium zirconium (NiTiHfZr). When the one or more SMA expanding elements reach a predefined temperature within a predefined borehole of the rock, the one or more SMA expanding elements may exert force on walls of the borehole for splitting the rock.
In another embodiment, a process includes determining a deformation mode of the SMA material. The process also includes based on the deformation mode, isothermally training the SMA material to a predefined strain level required to obtain a desired stress and displacement, isobaric training the SMA material to the predefined stress level, or cyclic training the SMA material to the predefined stress levels.
In order that the advantages of certain embodiments of the invention will be readily understood, a more particular description of the invention briefly described above will be rendered by reference to specific embodiments that are illustrated in the appended drawings. While it should be understood that these drawings depict only typical embodiments of the invention and are not therefore to be considered to be limiting of its scope, the invention will be described and explained with additional specificity and detail through the use of the accompanying drawings, in which:
Embodiments of the present invention pertain to the implementation of SMAs as a driving member of a non-explosive, static rock splitter device for space exploration with an extension to ground-based applications. The actuating member fabricated from SMA compositions, such as NiTiHf, NiTiZr, and other alloys with ternary and quaternary additions and specialized aging and heat treatments, may generate stresses in excess of 800 MPa, and in some embodiments, in excess of 1000 MPa. The SMAs may also have temperature capabilities of 100 degrees Celsius or more. These stresses are much higher than the stress that the commercial binary nickel titanium (NiTi) alloys generate. These high stresses allow construction of instruments based on SMA technology that are reliable for flight missions with reduced cost from launch to operation costs.
It should be appreciated that SMAs have the ability to recover large deformations and generate high stresses in response to thermal or mechanical loads. This behavior may occur by virtue of a crystallographically reversible martensitic phase transformation between a high symmetry parent austenite phase and a low symmetry martensite phase. In general, when the SMA is deformed in the martensitic condition, the induced deformation can be recovered by applying heat above certain temperature. However, as long as the critical temperature is not reached, the SMA retains the deformed condition indefinitely until actuated, i.e., heated. When the SMA is heated above the transformation temperature, but is constrained from moving, the SMA may generate extremely large forces. This high power and weight ratio characteristic makes this technology suitable for large force applications, hence SMARS.
SMARS may include SMA material that acts as the actuating member, a casing heater placed around the SMA material, and a power source to provide a current through the heaters. In some embodiments, end caps may be used for acute penetration into rocks, and in further embodiments, a hand-press may be used to reset the SMA material after each usage.
Also, in some embodiments, the SMA material may include nickel-rich (Ni-rich) compositions of ternary NiTiHf and NiTiZr. The SMA material are precipitation strengthened through metallurgical techniques involving a solution anneal or hot working above the solvus temperature. This is then followed by an aging treatment used to form the precipitate structure. The aging treatment provides strength and dimensional stability to the SMA material, while still allowing the transformation to occur. The SMA material may span from Ni-rich, heat treatable precipitation strengthened Ni—Ti—Hf and Ni—Ti—Zr alloys with 3 to 30 atomic percent hafnium (Hf) or Zirconium (Zr), or some combination thereof, in some embodiments.
The SMA material in certain embodiments may be produced by vacuum induction melting, followed by casting into ingots. The ingots may then be homogenized, i.e., heat treated at high temperature to ensure uniform composition throughout the ingot. Finally, the homogenized SMA material may then be sealed into steel cans and extruded into a rod. In some embodiments, the SMA material may be heat treated between 400° C. and 550° C. for various times to form the precipitate structure and strengthen the SMA material.
Returning to
In order to achieve the anticipated forces and displacements necessary, several training processes may be used. The training process described herein may produce a desirable material response after performing selected mechanical, thermal, and/or thermomechanical loading. In the case of SMARS, training may attain the highest possible blocking forces (i.e., the forces generated during the constrained heating, also known as recovery forces) with the highest possible displacements. For purpose of explanation, the following training methods may be used, e.g., isothermal, isobaric, and cyclic training routines.
Turning to
The effect of this training procedure on the blocking stress, which simulates the operation of the SMARS device after isothermal training, is determined by thermal cycling once the strain imposed at room temperature is held constant. At 825, for thermal cycling purposes, a lower cycle and upper cycle temperature is selected, e.g., 30° C. and 300° C. At 830, the SMA material is thermal cycled under the constant strain level between the lower and upper cycle temperatures. In some embodiments, the constant-strain thermal cycling portion may be repeated for multiple cycles. At 835, the stress generated with temperature is recorded, as shown, for example, in graph 1200 of
This process depends on the strain level reached in step 815 in order to achieve the desired microstructure (e.g., reoriented martensite phase) that yields optimum stresses when thermally cycled under constant-strain conditions. The strain levels also dictate the amount of displacement generated when the material is used in the SMARS application.
The effect of this training procedure on the blocking stress, which simulates the operation of the SMARS device after isobaric training, is determined by thermal cycling once the SMA material is fixed in strain at its new shape. At 925, the remnant strain on the SMA material is held constant while thermal cycling under constant strain condition. At 930, the SMA material is thermally cycled under a constant strain between a selected lower cycle temperature and upper cycle temperature, e.g., 30° C. and 300° C. At 935, the stress generation and the temperature are recorded, as shown in, for example, graph 1400 of
This process serves to texture the material at much lower training stresses when compared to the isothermal training. This is advantageous in cases where resetting or retraining the SMA material in the field of operations where large force equipment cannot be used.
The effect of this training procedure on the blocking stress, which simulates the operation of the SMARS device after cyclic training, is determined by thermal cycling once the SMA material is fixed in strain. At 1025, the remnant strain may be held constant, and at 1030, the SMA material is thermally cycled under the constant strain. At 1035, the stress generation and the temperature are recorded, as shown in, for example, graph 1600 of
It should be appreciated that the training process may be applied not only to NiTiHf or NiTiZr alloys, but also apply to other SMA material and other compounds and formulations.
Upon completion of the training or conditioning of SMA material, the SMA material may exist in a low temperature martensite phase. Returning back to
SMARS system 100 may also include a heater 115 that includes one or more expanding elements 105. Heater 115 may include one or more sleeves 120 allowing one or more SMA expanding element 105 to be inserted within each sleeve 120. In some embodiments, sleeve 120 may be made of metal. An adhesive cement 125 may surround sleeve 120 to prevent heater 115 from degradation. Power, such as direct current (DC) or alternating current (AC), may be connected to a heater 130, which are wrapped around metal sleeve 120. When heater 115 is inserted into a pre-drilled hole within a rock or a crack, theheater 130 in some embodiments may supply heat to expanding elements 105 causing expanding elements 105 to expand after reaching certain temperatures.
It should be appreciated that various types of heating systems may be used for SMARS system 100. As discussed above, in one embodiment, a metallic sleeve 120, adhesive cement 125, and conductive wires 130 may be housed within in heater 115. This may provide a compact heater capable of heating to temperatures exceeding 400° C. in a relatively short period of time. In some embodiments, this may be seconds to one minute. In another embodiment, heaters may be wrapped around and bonded to the expanding elements 105. In a further embodiment, induction heating may be used to heat expanding elements 105. This may be used for large, dry boreholes. Induction heating may yield fast heating rates, but may require a much higher power consumption (e.g., 120 VAC) and footprint (a separate power supply is needed to power the induction unit).
In some embodiments, a control box 135 may deliver a power signal to the heater 115. During operation, expanding elements 105 may undergo a phase transformation to the high temperature austenite phase. In this phase, expanding element may go to an unconstrained condition, i.e., expansion in this case. However, since expanding elements 105 are confined by the wall constraints within the borehole, expanding elements 105 may not initially expand, and instead exert forces at the contact area resulting in rock fracture. After the rock is split, expanding elements 105 may be retrained to the constrained condition. Expanding elements 105 may be reused for successive employments in some embodiments given that new expanding elements 105 may be used, or in other embodiments, same expanding elements 105 may be retrained.
It should be appreciated that control box 135 in this embodiment may include a temperature indicator with retransmission, a power supply, selector switches to trigger the individual heaters either simultaneously or sequentially, connectivity for type-K thermocouples, and a main power switch to activate the chosen heaters. See, for example,
The control box includes a power input 705 to energize a temperature controller 710 that monitors the temperature of heaters 730. The control box also includes a direct current (DC) power supply 715 to energize the main power switch 720, and to provide heating to the SMA elements. The control box in some embodiments includes heater selecting switches 725 that activates one or more heaters 730.
Temperature controller 710 and thermocouples 740 may monitor the temperature of heaters 730. Solid-state relay 735 may be used to modulate or regulate the power coming out of power supply 715.
Turning to
The flat ends may be utilized for plane borehole walls or pre-existing cracks in the vicinity of the rock of interest. The conical ends may be used for acute penetration into the rocks to help with the crack initiation and ultimately propagation to fracture. Both the spherical and cylindrical ends may be used for maximizing the contact surface area within the borehole. In these cases, the end tip forms may be machined to match the borehole diameter.
Pusher 600 may have a predefined length L, and include an inner hole 610 to allow an end cap (not shown) to be inserted within pusher 600. See, for example,
Pusher 600 provides additional displacement, but at generally lower stresses than the expanding elements. Its purpose is to finish fracturing the rock once the expanding elements have initiated fracture. Thus, if the displacements (or strains) imparted by the training methods are not sufficient to completely split the rock, SMA pushers 600, which can also be trained using the aforementioned methods, may provide additional controlled displacement for a compete rock splitting.
SMARS, in one or more embodiments, is a static device that provides controllable motion without any demolition damage to the surrounding environment, compared to the alternative dynamic explosive, blasting approaches, or high impact approaches. This characteristic makes the SMARS ideal for critical planetary rock breaking and/or sampling operations, where flying debris from blasts/explosion methods can destruct the rock formation of interest, pose safety concerns to the crew, and cause damage to the costly nearby equipment, e.g., rover mirrors and sensors. In addition, static SMARS may require little setup and activation time compared to other static methods, such as chemical agents, that can take up to days to react with some hard rocks. Mission reliability is another benefiting factor since SMARS operate based on a material response and may only require heat input to activate without the need for complex valve systems and hydraulic fluids. This makes SMARS extremely simple and essentially user friendly during operation. The small volume and extremely low weight of the SMARS reduces payload launch costs and transportation hazards when compared to heavy hydraulic wedges and dangerous explosive materials and chemicals. SMARS may also be dust and vibration free during operation, and further does not disturb nearby instruments conducting simultaneous tasks.
Although the SMARS device is targeted for static rock breaking in space related explorations, it is readily understood that SMARS can also be used in non-rock related applications such as a proppant or spacers to unjam a trapped component. The SMARS device development can also be extended in some embodiments to the applicability of ground-based systems such as oil drilling, mining, fossil collecting and retrieval of other fragile geologic samples, proppants, civil engineering and other fields requiring compact but large static forces. The SMARS device can also be used for structure reinforcement and corrective force applications to structural members and other engineering components. The SMARS device is also envisioned for applications requiring smooth and controlled cracking and/or splitting such as in the military applications where quiet and explosive free operation is generally sought.
It will be readily understood that the components of various embodiments of the present invention, as generally described and illustrated in the figures herein, may be arranged and designed in a wide variety of different configurations. Thus, the detailed description of the embodiments, as represented in the attached figures, is not intended to limit the scope of the invention as claimed, but is merely representative of selected embodiments of the invention.
The features, structures, or characteristics of the invention described throughout this specification may be combined in any suitable manner in one or more embodiments. For example, reference throughout this specification to “certain embodiments,” “some embodiments,” or similar language means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the present invention. Thus, appearances of the phrases “in certain embodiments,” “in some embodiment,” “in other embodiments,” or similar language throughout this specification do not necessarily all refer to the same group of embodiments and the described features, structures, or characteristics may be combined in any suitable manner in one or more embodiments.
It should be noted that reference throughout this specification to features, advantages, or similar language does not imply that all of the features and advantages that may be realized with the present invention should be or are in any single embodiment of the invention. Rather, language referring to the features and advantages is understood to mean that a specific feature, advantage, or characteristic described in connection with an embodiment is included in at least one embodiment of the present invention. Thus, discussion of the features and advantages, and similar language, throughout this specification may, but do not necessarily, refer to the same embodiment.
Furthermore, the described features, advantages, and characteristics of the invention may be combined in any suitable manner in one or more embodiments. One skilled in the relevant art will recognize that the invention can be practiced without one or more of the specific features or advantages of a particular embodiment. In other instances, additional features and advantages may be recognized in certain embodiments that may not be present in all embodiments of the invention.
One having ordinary skill in the art will readily understand that the invention as discussed above may be practiced with steps in a different order, and/or with hardware elements in configurations which are different than those which are disclosed. Therefore, although the invention has been described based upon these preferred embodiments, it would be apparent to those of skill in the art that certain modifications, variations, and alternative constructions would be apparent, while remaining within the spirit and scope of the invention. In order to determine the metes and bounds of the invention, therefore, reference should be made to the appended claims.
This application is a Continuation of U.S. patent application Ser. No. 14/709,907, entitled “Shape Memory Alloy Rock Splitters (SMARS)”, filed on May 12, 2015, and Issuance is U.S. Pat. No. 9,649,780. This application claims the benefit of U.S. Provisional Patent Application No. 61/993,622, filed on May 15, 2014. The subject matter thereof is hereby incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
1719257 | Booth et al. | Jul 1929 | A |
3580637 | Itoh et al. | May 1971 | A |
4740036 | Cerny | Apr 1988 | A |
5012649 | Chevakin et al. | May 1991 | A |
5024388 | Kaneko | Jun 1991 | A |
20110173969 | Vaidyanathan | Jul 2011 | A1 |
Number | Date | Country |
---|---|---|
101726223 | Jun 2010 | CN |
201520012 | Jul 2010 | CN |
04108993 | Apr 1992 | JP |
04319181 | Nov 1992 | JP |
20050075669 | Jul 2005 | KR |
1153061 | Apr 1985 | SU |
Entry |
---|
Coughlin, D.R. et al., Characterization of the microstructure and mechanical properties of a 50.3Ni-29.7Ti-20Hf shape memory alloy, 2012, Scripta Materialia, 67 (2012), 112-115. |
Number | Date | Country | |
---|---|---|---|
61993622 | May 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14709907 | May 2015 | US |
Child | 15478918 | US |