At times, a tip of a peripherally inserted central catheter (“PICC”) or central venous catheter (“CVC”) can move becoming displaced from an ideal position in a patient's superior vena cava (“SVC”). A clinician believing such a PICC or CVC has displaced typically checks for displacement by chest X-ray and replaces the PICC or CVC if necessary. However, X-rays expose patients to ionizing radiation. Therefore, there is a need for clinicians to easily and safely check for displacement of PICCs and CVCs for replacement thereof if necessary.
Disclosed herein are shape-sensing systems and methods for medical devices that address the foregoing.
Disclosed herein is a shape-sensing system for medical devices including, in some embodiments, a medical device, an optical interrogator, a console, and a display screen. The medical device includes a body of implementation including an optical fiber, wherein the optical fiber is comprised of a number of fiber Bragg grating (“FBG”) sensors along at least a distal-end portion of the optical-fiber. One embodiment of the body of implementation, as will be discussed primarily throughout the disclosure, is an optical-fiber integrated stylet. However, other embodiments of body of implementation include, but are not limited to, an integrated optical-fiber guidewire, or an integrated optical-fiber catheter. The optical interrogator is configured to send input optical signals into the optical-fiber stylet and receive FBG sensor-reflected optical signals from the optical-fiber stylet. The console includes memory and one or more processors configured to convert the FBG sensor-reflected optical signals from the optical-fiber stylet into plottable data by way of a number of optical signal-converter logic, which may include one or more algorithms. The display screen is configured for displaying any plot of a number of plots of the plottable data. The number of plots include at least a plot of curvature vs. time for each FBG sensor of a selection of the FBG sensors in the distal-end portion of the optical-fiber stylet for identifying a distinctive change in strain of the optical-fiber stylet at a moment a tip of the medical device is advanced into an SVC of a patient.
In some embodiments, the shape-sensing system further includes an SVC-determiner algorithm configured to automatically determine the distinctive change in the strain of the optical-fiber stylet at the moment the tip of the medical device is advanced into the SVC of the patient. The distinctive change in the strain is an instantaneous increase in the strain followed by an instantaneous decrease in the strain.
In some embodiments, the SVC-determiner algorithm is configured to confirm the tip of the medical device is in the SVC by way of periodic changes in the strain of the optical-fiber stylet sensed by the selection of the FBG sensors. The periodic changes in the strain result from periodic changes in blood flow within the SVC as a heart of the patient beats.
In some embodiments, the shape-sensing system further includes an optical-fiber connector module configured to establish a first optical connection from the medical device to the optical-fiber connection module and a second optical connection from the optical-fiber connection module to the optical interrogator. The first optical connection is through a sterile drape with the medical device in a sterile field defined by the sterile drape and the optical-fiber connector module in a non-sterile field defined by the sterile drape.
In some embodiments, the optical-fiber connector module includes one or more sensors selected from a gyroscope, an accelerometer, and a magnetometer. The one or more sensors are configured to provide sensor data to the console over one or more data wires for algorithmically determining a reference plane for shape sensing with the optical-fiber stylet.
In some embodiments, the optical interrogator is an integrated optical interrogator integrated into the console.
In some embodiments, the display screen is an integrated display screen integrated into the console.
Also disclosed herein is a method for determining a tip of a medical device is located within an SVC of a patient. The method includes, in some embodiments, advancing the tip of the medical device through a vasculature of the patient toward the SVC. The medical device includes an integrated optical-fiber stylet having a number of FBG sensors along at least a distal-end portion of the optical-fiber stylet for shape sensing with a shape-sensing system including the medical device. The method also includes enabling input optical signals (e.g., broadband incident light) to be sent into the optical-fiber stylet while advancing the tip of the medical device through the vasculature of the patient. In one embodiment, the broadband incident light is provided by a light source which may be a tunable swept laser, although other suitable light sources can also be employed in addition to a laser, including semi-coherent light sources, LED light sources, etc. The method also includes enabling FBG sensor-reflected optical signals to be received from the optical-fiber stylet while advancing the tip of the medical device through the vasculature of the patient. The method also includes identifying on a display screen of the shape-sensing system a distinctive change in strain of the optical-fiber stylet sensed by a selection of the FBG sensors in the distal-end portion of the optical-fiber stylet at a moment the tip of the medical device is advanced into the SVC, thereby determining the tip of the medical device is located within the SVC.
In some embodiments, the method further includes enabling the FBG sensor-reflected optical signals received from the optical-fiber stylet to be algorithmically converted into a number of different plots for display on the display screen.
In some embodiments, each plot of the number of different plots is selected from a plot of curvature vs. arc length, a plot of torsion vs. arc length, a plot of angle vs. arc length, and a plot of position vs. time for at least the distal-end portion of the optical-fiber stylet.
In some embodiments, the number of different plots includes a plot of curvature vs. time for each FBG sensor selected from the FBG sensors of the optical-fiber stylet.
In some embodiments, the method further includes enabling the FBG sensor-reflected optical signals received from the optical-fiber stylet to be algorithmically converted into a displayable shape for the medical device for display on the display screen.
In some embodiments, the distinctive change in the strain of the optical-fiber stylet is an instantaneous increase in a plotted curvature of the optical-fiber stylet followed by an instantaneous decrease in the plotted curvature.
In some embodiments, a magnitude of the instantaneous decrease in the plotted curvature of the optical-fiber stylet is about twice that of the instantaneous increase in the plotted curvature.
In some embodiments, the selection of the FBG sensors is a last three FBG sensors in the distal-end portion of the optical-fiber stylet.
In some embodiments, the method further includes ceasing to advance the tip of the medical device through the vasculature of the patient after determining the tip of the medical device is located in the SVC. The method also includes confirming the tip of the medical device is in the SVC by way of periodic changes in the strain of the optical-fiber stylet sensed by the selection of the FBG sensors. The periodic changes in the strain result from periodic changes in blood flow within the SVC as a heart of the patient beats.
In some embodiments, advancing the tip of the medical device through the vasculature of the patient includes advancing the tip of the medical device through a right internal jugular vein, a right brachiocephalic vein, and into the SVC.
In some embodiments, the medical device is a CVC.
In some embodiments, advancing the tip of the medical device through the vasculature of the patient includes advancing the tip of the medical device through a right basilic vein, a right axillary vein, a right subclavian vein, a right brachiocephalic vein, and into the SVC.
In some embodiments, the medical device is a peripherally inserted central catheter (PICC).
Also disclosed herein is a method for determining a tip of a medical device is located within an SVC of a patient. The method includes, in some embodiments, advancing the tip of the medical device through a vasculature of the patient toward the SVC. The medical device includes an integrated optical-fiber stylet having a number of FBG sensors along at least a distal-end portion of the optical-fiber stylet for shape sensing with a shape-sensing system including the medical device. The method also includes enabling input optical signals to be sent into the optical-fiber stylet while advancing the tip of the medical device through the vasculature of the patient. The method also includes enabling FBG sensor-reflected optical signals to be received from the optical-fiber stylet while advancing the tip of the medical device through the vasculature of the patient. The method also includes enabling the FBG sensor-reflected optical signals received from the optical-fiber stylet to be algorithmically converted into a plot of curvature vs. time for each FBG sensor of the FBG sensors. The method also includes identifying on a display screen of the shape-sensing system an instantaneous increase in strain of the optical-fiber stylet followed by an instantaneous decrease in the strain as sensed by each FBG sensor of a last three FBG sensors in the distal-end portion of the optical-fiber stylet at a moment the tip of the medical device is advanced into the SVC, thereby determining the tip of the medical device is located within the SVC. The method also includes confirming the tip of the medical device is in the SVC by way of periodic changes in the strain of the optical-fiber stylet as sensed by the last three FBG sensors in the distal-end portion of the optical-fiber stylet. The periodic changes in the strain result from periodic changes in blood flow within the SVC as a heart of the patient beats.
These and other features of the concepts provided herein will become more apparent to those of skill in the art in view of the accompanying drawings and following description, which describe particular embodiments of such concepts in greater detail.
Before some particular embodiments are disclosed in greater detail, it should be understood that the particular embodiments disclosed herein do not limit the scope of the concepts provided herein. It should also be understood that a particular embodiment disclosed herein can have features that can be readily separated from the particular embodiment and optionally combined with or substituted for features of any of a number of other embodiments disclosed herein.
Regarding terms used herein, it should also be understood the terms are for the purpose of describing some particular embodiments, and the terms do not limit the scope of the concepts provided herein. Ordinal numbers (e.g., first, second, third, etc.) are generally used to distinguish or identify different features or steps in a group of features or steps, and do not supply a serial or numerical limitation. For example, “first,” “second,” and “third” features or steps need not necessarily appear in that order, and the particular embodiments including such features or steps need not necessarily be limited to the three features or steps. Labels such as “left,” “right,” “top,” “bottom,” “front,” “back,” and the like are used for convenience and are not intended to imply, for example, any particular fixed location, orientation, or direction. Instead, such labels are used to reflect, for example, relative location, orientation, or directions. Singular forms of “a,” “an,” and “the” include plural references unless the context clearly dictates otherwise.
With respect to “proximal,” a “proximal portion” or a “proximal end portion” of, for example, a catheter disclosed herein includes a portion of the catheter intended to be near a clinician when the catheter is used on a patient. Likewise, a “proximal length” of, for example, the catheter includes a length of the catheter intended to be near the clinician when the catheter is used on the patient. A “proximal end” of, for example, the catheter includes an end of the catheter intended to be near the clinician when the catheter is used on the patient. The proximal portion, the proximal end portion, or the proximal length of the catheter can include the proximal end of the catheter; however, the proximal portion, the proximal end portion, or the proximal length of the catheter need not include the proximal end of the catheter. That is, unless context suggests otherwise, the proximal portion, the proximal end portion, or the proximal length of the catheter is not a terminal portion or terminal length of the catheter.
With respect to “distal,” a “distal portion” or a “distal end portion” of, for example, a catheter disclosed herein includes a portion of the catheter intended to be near or in a patient when the catheter is used on the patient. Likewise, a “distal length” of, for example, the catheter includes a length of the catheter intended to be near or in the patient when the catheter is used on the patient. A “distal end” of, for example, the catheter includes an end of the catheter intended to be near or in the patient when the catheter is used on the patient. The distal portion, the distal end portion, or the distal length of the catheter can include the distal end of the catheter; however, the distal portion, the distal end portion, or the distal length of the catheter need not include the distal end of the catheter. That is, unless context suggests otherwise, the distal portion, the distal end portion, or the distal length of the catheter is not a terminal portion or terminal length of the catheter.
The term “logic” may be representative of hardware, firmware or software that is configured to perform one or more functions. As hardware, the term logic may refer to or include circuitry having data processing and/or storage functionality. Examples of such circuitry may include, but are not limited or restricted to a hardware processor (e.g., microprocessor, one or more processor cores, a digital signal processor, a programmable gate array, a microcontroller, an application specific integrated circuit “ASIC”, etc.), a semiconductor memory, or combinatorial elements.
Additionally, or in the alternative, the term logic may refer to or include software such as one or more processes, one or more instances, Application Programming Interface(s) (API), subroutine(s), function(s), applet(s), servlet(s), routine(s), source code, object code, shared library/dynamic link library (dll), or even one or more instructions. This software may be stored in any type of a suitable non-transitory storage medium, or transitory storage medium (e.g., electrical, optical, acoustical or other form of propagated signals such as carrier waves, infrared signals, or digital signals). Examples of a non-transitory storage medium may include, but are not limited or restricted to a programmable circuit; non-persistent storage such as volatile memory (e.g., any type of random access memory “RAM”); or persistent storage such as non-volatile memory (e.g., read-only memory “ROM”, power-backed RAM, flash memory, phase-change memory, etc.), a solid-state drive, hard disk drive, an optical disc drive, or a portable memory device. As firmware, the logic may be stored in persistent storage.
Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by those of ordinary skill in the art.
As set forth above, there is a need for clinicians to easily and safely check for displacement of PICCs and CVCs for replacement thereof if necessary. Disclosed herein are shape-sensing system and methods for medical devices that address the foregoing.
For example, a shape-sensing system can include a medical device, an optical interrogator, a console, and a display screen. In one embodiment, the medical device includes an integrated optical-fiber stylet having FBG sensors along at least a distal-end portion of the optical-fiber stylet. As noted above, alternatives to an optical-fiber stylet include, but are not limited or restricted to, an optical-fiber integrated guideway or an optical-fiber integrated guidewire. The optical interrogator is configured to send input optical signals (e.g., broadband incident light) into the optical-fiber stylet and receive FBG sensor-reflected optical signals therefrom.
In some embodiments, the optical-fiber stylet is configured to return information for use in identifying its physical state (e.g., shape length, shape, and/or form) of (i) a portion of the stylet (e.g., tip, segment of stylet, etc.) or a portion of a catheter inclusive of at least a portion of the stylet (e.g., tip, segment of catheter, etc.) or (ii) the entirety or a substantial portion of the stylet or catheter within the body of a patient (hereinafter, described as the “physical state of the stylet” or the “physical state of the catheter”). According to one embodiment of the disclosure, the returned information may be obtained from reflected light signals of different spectral widths, where each reflected light signal corresponds to a portion of broadband incident light propagating along a core of the optical fiber (hereinafter, “core fiber”) that is reflected back over the core fiber by a particular sensor located on the core fiber. One illustrative example of the returned information may pertain to a change in signal characteristics of the reflected light signal returned from the sensor, where wavelength shift is correlated to (mechanical) strain on the core fiber. It should be understood that the optical fiber may include or more cores, where an optical fiber including a plurality of cores is referred to as a “multi-core optical fiber.”
In some embodiments in which the stylet includes a multi-core optical fiber, each core fiber utilizes a plurality of sensors and each sensor is configured to reflect a different spectral range of the incident light (e.g., different light frequency range). Based on the type and degree of strain asserted on the each core fiber, the sensors associated with that core fiber may alter (shift) the wavelength of the reflected light to convey the type and degree of stain on that core fiber at those locations of the stylet occupied by the sensors. The sensors are spatially distributed at various locations of the core fiber between a proximal end and a distal end of the stylet so that shape sensing of the stylet may be conducted based on analytics of the wavelength shifts. In some embodiments, the shape sensing functionality is paired with the ability to simultaneously pass an electrical signal through the same member (stylet) through conductive medium included as part of the stylet.
More specifically, in some embodiments each core fiber of the multi-core optical fiber is configured with an array of sensors, which are spatially distributed over a prescribed length of the core fiber to generally sense external strain those regions of the core fiber occupied by the sensor. Given that each sensor positioned along the same core fiber is configured to reflect light of a different, specific spectral width, the array of sensors enable distributed measurements throughout the prescribed length of the multi-core optical fiber. These distributed measurements may include wavelength shifts having a correlation with strain experienced by the sensor.
During operation, multiple light reflections (also referred to as “reflected light signals”) are returned to the console from each of the plurality of core fibers of the multi-core optical fiber. Each reflected light signal may be uniquely associated with a different spectral width. Information associated with the reflected light signals may be used to determine a three-dimensional representation of the physical state of the stylet within the body of a patient. The core fibers may be spatially separated with the cladding of the optical fiber and each core fiber is configured to separately return light of different spectral widths (e.g., specific light wavelength or a range of light wavelengths) reflected from the distributed array of sensors fabricated in each of the core fibers. A comparison of detected shifts in wavelength of the reflected light returned by a center core fiber (operating as a reference) and the surrounding, periphery core fibers may be used to determine the physical state of the stylet.
During vasculature insertion and advancement of the catheter, the clinician may rely on the console to visualize a current physical state (e.g., shape) of a catheter guided by the stylet to avoid potential path deviations. As the periphery core fibers reside at spatially different locations within the cladding of the multi-mode optical fiber, changes in angular orientation (such as bending with respect to the center core fiber, etc.) of the stylet impose different types (e.g., compression or tension) and degrees of strain on each of the periphery core fibers as well as the center core fiber. The different types and/or degree of strain may cause the sensors of the core fibers to apply different wavelength shifts, which can be measured to extrapolate the physical state of the stylet (catheter).
The console is configured to convert the reflected optical signals into plottable data for displaying plots thereof on the display screen. The plots include a plot of curvature vs. time for each FBG sensor of a selection of the FBG sensors in the distal-end portion of the optical-fiber stylet for identifying a distinctive change in strain of the optical-fiber stylet as a tip of the medical device is advanced into a superior vena cava of a patient.
The console may further be configured to receive one or more electrical signals from the stylet, which as referenced above, may be configured to support both optical connectivity as well as electrical connectivity. The electrical signals may be processed by logic of the console, while being executed by the processor, to determine ECG waveforms for display.
These and other features of the shape-sensing systems and methods provided herein will become more apparent with reference to the accompanying drawings and the following description, which provide particular embodiments of the shape-sensing systems and methods thereof in greater detail.
Shape-Sensing Systems
As shown, the shape-sensing system 100 includes a medical device 110, a stand-alone optical interrogator 130, a console 140, and a display screen 150 such as that of a stand-alone monitor. The shape-sensing system 200 includes the medical device 110, an integrated optical interrogator 230, a console 240, and an integrated display screen 250, wherein both the integrated optical interrogator 230 and the integrated display screen 250 are integrated into the console 240. Each shape-sensing system of the shape-sensing systems 100 and 200 can further include an optical-fiber connector module 120 configured for connecting the medical device 110 to a remainder of the shape-sensing system 100 or 200 such as the optical interrogator 130 or the console 240, which includes the integrated optical interrogator 230.
As set forth in more detail below, the medical device 110 includes an integrated optical-fiber stylet having a number of FBG sensors along at least a distal-end portion of the optical-fiber stylet for shape sensing with the shape-sensing system 100 or 200. (See integrated the optical-fiber stylet 424 in
Certain features of the medical device 110 are set forth in more detail below with respect to particular embodiments of the medical device 110 such as the PICC 310. That said, some features set forth below with respect to one or more embodiments of the medical device 110 are shared among two or more embodiments of the medical device 110. As such, “the medical device 110” is used herein to generically refer to more than one embodiment of the medical device 110 when needed for expository expediency. This is despite certain features having been described with respect to particular embodiments of the medical device 110 such as the PICC 310.
While only shown for the console 240, each console of the consoles 140 and 240 includes one or more processors 242 and memory 244 including a number of algorithms 246 such as one or more optical signal-converter algorithms. The one or more optical signal-converter algorithms are configured to convert FBG sensor-reflected optical signals from the optical-fiber stylet of the medical device 110 into plottable data for displayable shapes corresponding to the medical device 110. The one or more optical signal-convertor algorithms are also configured to convert the reflected optical signals from the optical-fiber stylet of the medical device 110 into plottable data for a number of other plots of the plottable data. The display screen 150 or 250 is configured to display the displayable shapes for the medical device 110 over a 3-dimensional grid 1002 or any plot of the number of plots of the other plottable data.
More specifically, in some embodiments, the algorithms 246 may include shape sensing logic configured to compare wavelength shifts measured by sensors deployed in each outer core fiber at the same measurement region of the stylet, catheter or guidewire (or same spectral width) to the wavelength shift at the center core fiber positioned along central axis and operating as a neutral axis of bending. From these analytics, the shape sensing logic may determine the shape the core fibers have taken in 3D space and may further determine the current physical state of the stylet, catheter or guidewire in 3D space for rendering on the display 150 or 250.
Referring to
In addition to being able to use any one or more of the plots of curvature vs. time to manually identify the distinctive change in the strain of the optical-fiber stylet at the moment the tip of the medical device 110 is advanced into the SVC of the patient, any one or more of the plots of curvature vs. time 1012a, 1012b, 1012c, . . . , 1012n, for the selection of the FBG sensors in the distal-end portion of the optical-fiber stylet can be used to manually confirm the tip of the medical device 110 is in the SVC by way of periodic changes in the strain of the optical-fiber stylet. The periodic changes in the strain of the optical-fiber stylet are evidenced by periodic changes in the plotted curvature of the optical-fiber stylet sensed by the selection of the FBG sensors. (See the three plots of curvature vs. time 1012a, 1012b, and 1012c in
Each console of the consoles 140 and 240 can further include an SVC-determiner algorithm of the one or more algorithms 246 configured to automatically determine the distinctive change in the strain of the optical-fiber stylet by way of a distinctive change in plotted curvature of the optical-fiber stylet, or the plottable data therefor, at the moment the tip of the medical device 110 is advanced into the SVC of the patient. Again, the distinctive change in the plotted curvature is an instantaneous increase in the plotted curvature followed by an instantaneous decrease in the plotted curvature having a magnitude about twice that of the instantaneous increase in the plotted curvature. The SVC-determiner algorithm can also be configured to confirm the tip of the medical device 110 is in the SVC by way of automatically determining periodic changes in the plotted curvature of the optical-fiber stylet sensed by the selection of the FBG sensors. (See the three plots of curvature vs. time 1012a, 1012b, and 1012c in
The optical interrogator 130 or 230 is configured to send input optical signals into the optical-fiber stylet of the medical device 110 and receive the reflected optical signals from the optical-fiber stylet. When the optical-fiber connector module 120 is present in the shape-sensing system 100 or 200, the optical interrogator 130 or 230 is configured to send the input optical signals into the optical-fiber stylet of the medical device 110 by way of the optical-fiber connector module 120 and receive the reflected optical signals from the optical-fiber stylet by way of the optical-fiber connector module 120.
In some embodiments, the optical interrogator 130 or 230 may be a photodetector such as a positive-intrinsic-negative “PIN” photodiode, avalanche photodiode, etc. With respect to such embodiments, the optical interrogator 130 or 230 may be configured to: (i) receive returned optical signals, namely reflected light signals received from optical fiber-based reflective gratings (sensors) fabricated within each of the core fibers deployed within a stylet, catheter, guidewire, etc., and (ii) translate the reflected light signals into reflection data, namely data in the form of electrical signals representative of the reflected light signals including wavelength shifts caused by strain. The reflected light signals associated with different spectral widths include reflected light signals provided from sensors positioned in the center core fiber (reference) of a multi-core optical fiber of the stylet, catheter, guidewire, etc., and reflected light signals provided from sensors positioned in the outer core fibers of the stylet, catheter, guidewire, etc.
The optical-fiber connector module 120 includes a housing 324, a cable 326 extending from the housing 324, and an optical fiber 528 within at least the cable 326. (For the optical fiber 528, see
The optical-fiber connector module 120 can further include one or more sensors 222 selected from at least a gyroscope, an accelerometer, and a magnetometer disposed within the housing 324. The one or more sensors 222 are configured to provide sensor data to the console 140 or 240 by way of one or more data wires within at least the cable 326 for determining a reference plane with a reference plane-determiner algorithm of the one or more algorithms 246 for shape sensing with the optical-fiber stylet of the medical device 110.
Certain features of the optical-fiber connector module 120 are set forth in more detail below with respect to particular embodiments of the optical-fiber connector module 120 such as the optical-fiber connector module 620 and 820. That said, some features set forth below with respect to one or more embodiments of the optical-fiber connector module 120 are shared among two or more embodiments of the optical-fiber connector module 120. As such, “the optical-fiber connector module 120” is used herein to generically refer to more than one embodiment of the optical-fiber connector module 120 when needed for expository expediency. This is despite certain features having been described with respect to particular embodiments of the optical-fiber connector module 120 such as the optical-fiber connector modules 620 and 820.
Medical Devices
As shown, the PICC 310 includes the catheter tube 312, a bifurcated hub 314, two extension legs 316, and two Luer connectors 318 operably connected in the foregoing order. The catheter tube 312 includes two catheter-tube lumens 413 and the optical-fiber stylet 424 disposed in a longitudinal bead 425 of the catheter tube 312 such as between the two catheter-tube lumens 413, as extruded. In some embodiments, the optical-fiber stylet 424 includes a single core fiber. In other embodiments, the optical-fiber stylet 424 is a multi-core optical fiber stylet. Optionally, in a same or different longitudinal bead of the catheter tube 312, the PICC 310 can further include an electrocardiogram (“ECG”) stylet. The bifurcated hub 314 has two hub lumens correspondingly fluidly connected to the two catheter-tube lumens 413. Each extension leg of the two extension legs 316 has an extension-leg lumen fluidly connected to a hub lumen of the two hub lumens. The PICC 310 further includes a stylet extension tube 320 extending from the bifurcated hub 314. The stylet extension tube 320 can be a skived portion of the catheter tube 312 including the optical-fiber stylet 424 or the skived portion of the catheter tube 312 disposed in another tube, either of which can terminate in a plug 322 for establishing an optical connection between the optical fiber 528 of the optical-fiber connector module 120 and the optical-fiber stylet 424 of the PICC 310.
The optical-fiber stylet 424 includes a number of FBG sensors 426a, 426b, 426c, . . . , 426n along at least a distal-end portion of the optical-fiber stylet 424 configured for shape sensing with the shape-sensing system 100 or 200. The FBG sensors 426a, 426b, 426c, . . . , 426n include periodic variations in refractive index of the optical fiber of the optical-fiber stylet 424, thereby forming wavelength-specific reflectors configured to reflect the input optical signals sent into the optical-fiber stylet 424 by the optical interrogator 130 or 230. In embodiments in which the optical-fiber stylet 424 is a multi-core optical fiber stylet, each core fiber includes a number of FBG sensors 426a, 426b, 426c, . . . , 426n,
While the PICC 310 is provided as a particular embodiment of the medical device 110 of the shape-sensing system 100 or 200, it should be understood that any medical device of a number of medical devices including catheters such as a CVC can include at least an optical-fiber stylet and a stylet extension tube terminating in a plug for establishing an optical connection between the optical-fiber stylet of the medical device and the optical interrogator 130 or 230, optionally by way of the optical fiber 528 of the optical-fiber connector module 120.
Optical-Fiber Connector Modules
As shown, the optical-fiber connector module 620 or 820 includes the housing 324, a receptacle 532 disposed in the housing 324, the cable 326 extending from the housing 324, and an optical fiber 528 within at least the cable 326.
The receptacle 532 includes an optical receiver configured to accept insertion of an optical terminal of a plug of the medical device 110 (e.g., the plug 322 of the PICC 310) for establishing an optical connection between the optical-fiber connector module 620 or 820 and the optical-fiber stylet of the medical device 110 (e.g., the optical-fiber stylet 424 of the PICC 310) when the plug is inserted into the receptacle 532.
The cable 326 includes the plug 330 for establishing an optical connection between the optical-fiber connector module 620 or 820 and the optical interrogator 230 of the console 240.
The optical fiber 528 extends from the receptacle 532 through the cable 326 to the plug 330. The optical fiber 528 is configured to convey the input optical signals from the optical interrogator 230 to the optical-fiber stylet of the medical device 110 (e.g., the optical-fiber stylet 424 of the PICC 310) and the reflected optical signals from the optical-fiber stylet to the optical interrogator 230.
As set forth above, the optical-fiber connector module 620 or 820 can further include the one or more sensors 222 selected from the gyroscope, the accelerometer, and the magnetometer disposed within the housing 324. The one or more sensors 222 are configured to provide sensor data for determining a reference plane for shape sensing with the optical-fiber stylet of the medical device 110 (e.g., the optical-fiber stylet 424 of the PICC 310).
While not shown, the optical-fiber connector module 620 or 820 can further include power and data wires extending from the one or more sensors 222 through the cable 326 to the plug 330 or another plug. The power and data wires are configured to respectively convey power to the one or more sensors 122 and data from the one or more sensors 122 to the console 240 when the one or more sensors 122 are present in the optical-fiber connector module 620 or 820.
The optical-fiber connection module 620 is configured to sit within the fenestration 601 of the surgical drape 603 adjacent a percutaneous insertion site for the medical device 110 (e.g., a catheter such as the PICC 310). As the optical-fiber connection module 620 is configured to sit within the fenestration 601 of the surgical drape 603, the optical-fiber connection module 620 is amenable to disinfection or sterilization. For example, the housing 324 of the optical-fiber connection module 620 can be a non-porous or chemically resistant to oxidants. The optical-fiber connection module 620 can be configured for manual disinfection with a ChloraPrep® product by Becton, Dickinson and Company (Franklin Lakes, NJ), or the optical-fiber connection module 620 can be configured for automatic high-level disinfection or sterilization with vaporized H2O2 by way of Trophon® by Nanosonics Inc. (Indianapolis, IN).
In contrast to the optical-fiber connection module 620, the optical-fiber connection module 820 is configured to sit beneath the surgical drape 603 on a chest of a patient P. As such, the optical-fiber connection module 820 need not require a same level of disinfection or sterilization as the optical-fiber connection module 620.
While not shown, the housing 324 the optical-fiber connection module 820 includes a loop extending from the housing 324, a tether point integrated into the housing 324, a ball-lock-pin receiver integrated into the housing 324, or the like configured for attaching a neck strap to the optical-fiber connector module 820. The loop, the tether point, the ball-lock-pin receiver, or the like enables the optical-fiber connector module 820 to be secured to a neck of the patient P while sitting on the patient's chest. Additionally or alternatively, the housing 324 includes a patient-facing surface (e.g., a back of the optical-fiber connection module 820) configured to be adhered to the patient's chest. The patient-facing surface enables the optical-fiber connector module 820 to be secured to the patient's chest while sitting on the patient's chest whether or not the optical-fiber connection module 820 is also secured to the patient's neck.
Again, the receptacle 532 includes an optical receiver configured to accept insertion of an optical terminal of a plug of the medical device 110 (e.g., the plug 322 of the PICC 310) and form an optical connection when the plug is inserted into the receptacle 532; however, with the optical-fiber connector module 820, the optical connection is formed with the surgical drape 603 between the optical-fiber connector module 820 and the medical device 110. The receptacle 532 and the plug of the medical device 110 enable at least the optical connection from a sterile field (e.g., above the surgical drape 603) including the medical device 110 such as the PICC 310 to a non-sterile field (e.g., beneath the surgical drape 603) including the optical-fiber connection module 820 by way of breaching the surgical drape 603.
Methods
Each method of a number of methods for determining whether the tip of the medical device 110 is located within an SVC of a patient includes advancing the tip of the medical device 110 through a vasculature of the patient toward the SVC. As set forth above, the medical device 110 (e.g., the PICC 310) includes the integrated optical-fiber stylet (e.g., the optical-fiber stylet 424) having the number of FBG sensors (e.g. the FBG sensors 426a, 426b, 426c, . . . , 426n) along at least the distal-end portion of the optical-fiber stylet for shape sensing with the shape-sensing system 100 or 200 including the medical device 110. When the medical device 110 is the PICC 310, advancing the tip of the PICC 310 through the vasculature of the patient includes advancing the tip of the PICC 310 through a right internal jugular vein, a right brachiocephalic vein, and into the SVC. When the medical device is a CVC, advancing the tip of the CVC through the vasculature of the patient includes advancing the tip of the DVC through a right basilic vein, a right axillary vein, a right subclavian vein, a right brachiocephalic vein, and into the SVC.
The method can include enabling certain functions of the shape-sensing system 100 or 200 by turning on the console 140 or 240, running one or more programs on the console 140 or 240, making the selection of the FBG sensors (e.g., a selection of the FBG sensors 426a, 426b, 426c . . . , 426n) in the distal-end portion of the optical-fiber stylet for the plots of curvature vs. time 1012a, 1012b, 1012c, . . . , 1012n, making the optical or electrical connections, or the like as needed for various functions of the shape-sensing system 100 or 200. Enabling certain functions of the shape-sensing system 100 or 200 can include enabling the input optical signals to be sent into the optical-fiber stylet by the optical interrogator 130 or 230 of the shape-sensing system 100 or 200 while advancing the tip of the medical device 110 through the vasculature of the patient. Enabling certain functions of the shape-sensing system 100 or 200 can include enabling the FBG sensor-reflected optical signals to be received from the optical-fiber stylet by the optical interrogator 130 or 230 while advancing the tip of the medical device 110 through the vasculature of the patient. Enabling certain functions of the shape-sensing system 100 or 200 can include enabling the FBG sensor-reflected optical signals received from the optical-fiber stylet to be algorithmically converted into the number of different plots (e.g., the plot of curvature vs. arc length 1004, the plot of torsion vs. arc length 1006, the plot of angle vs. arc length 1008, the plot of position vs. time 1010, one or more of the plots of curvature vs. time 1012a, 1012b, 1012c . . . , 1012n, etc.) for display on the display screen 150 or 250. Enabling certain functions of the shape-sensing system 100 or 200 can include enabling the FBG sensor-reflected optical signals received from the optical-fiber stylet to be algorithmically converted into the displayable shapes over the 3-dimensional grid 1002 for the medical device 110 for display on the display screen 150 or 250.
The method can include manually identifying on the display screen 150 or 250 the distinctive change in the plotted curvature of the optical-fiber stylet sensed by the selection of the FBG sensors in the distal-end portion of the optical-fiber stylet at the moment the tip of the medical device 110 is advanced into the SVC, thereby determining the tip of the medical device 110 is located within the SVC. Identifying on the display screen 150 or 250 the distinctive change can include identifying the instantaneous increase in the plotted curvature of the optical-fiber stylet followed by the instantaneous decrease in the plotted curvature as sensed by each FBG sensor of the last three FBG sensors (e.g., the FBG sensors 426a, 426b, and 426c) in the distal-end portion of the optical-fiber stylet at the moment the tip of the medical device 110 is advanced into the SVC. Additionally or alternatively, the method can include automatically determining with the SVC-determiner algorithm the distinctive change in the plotted curvature of the optical-fiber stylet, or the plottable data therefor, sensed by the selection of the FBG sensors in the distal-end portion of the optical-fiber stylet at the moment the tip of the medical device 110 is advanced into the SVC.
The method can include ceasing to advance the tip of the medical device 110 through the vasculature of the patient after determining the tip of the medical device 110 is located in the SVC. The method can include confirming the tip of the medical device 110 is in the SVC by way of periodic changes in the plotted curvature of the optical-fiber stylet sensed by the selection of the FBG sensors. The periodic changes in the plotted curvature result from periodic changes in blood flow within the SVC as a heart of the patient beats.
In some alternative or additional embodiments, logic of the shape-sensing system 100 or 200 may be configured to generate a rendering of the current physical state of the stylet and, as a result, of the catheter, based on heuristics or run-time analytics. For example, the logic may be configured in accordance with machine-learning techniques to access a data store (library) with pre-stored data (e.g., images, etc.) pertaining to different regions of the stylet in which the core fibers experienced similar or identical wavelength shifts. From the pre-stored data, the current physical state of the stylet and/or the catheter may be rendered. Alternatively, as another example, the logic may be configured to determine, during run-time, changes in the physical state of each region of the stylet (and the catheter), based on at least (i) resultant wavelength shifts experienced by the core fibers, and (ii) the relationship of these wavelength shifts generated by sensors positioned along different outer core fibers at the same cross-sectional region of the stylet (or the catheter) to the wavelength shift generated by a sensor of the center core fiber at the same cross-sectional region. It is contemplated that other processes and procedures may be performed to utilize the wavelength shifts as measured by sensors along each of the core fibers to render appropriate changes in the physical state of the stylet and/or the catheter.
Notably, not one method of the shape-sensing system 100 or 200 requires an X-ray for determining whether the tip of the medical device 110 is located within the SVC of the patient. As such, patients need not be exposed to ionizing X-ray radiation when the shape-sensing system 100 or 200 is used. In addition, not one method of the shape-sensing system 100 or 200 requires an additional magnetic-sensor piece of capital equipment for determining whether the tip of the medical device 110 is located within the SVC of the patient. In addition, since, the shape-sensing system 100 or 200 does not require use of a reliable ECG P-wave like some existing systems for placing a tip of a medical device into an SVC of a patient, the shape-sensing system 100 or 200 can be used with patient having atrial fibrillation or another heart arrhythmia.
While some particular embodiments have been disclosed herein, and while the particular embodiments have been disclosed in some detail, it is not the intention for the particular embodiments to limit the scope of the concepts provided herein. Additional adaptations and/or modifications can appear to those of ordinary skill in the art, and, in broader aspects, these adaptations and/or modifications are encompassed as well. Accordingly, departures may be made from the particular embodiments disclosed herein without departing from the scope of the concepts provided herein.
This application claims the benefit of priority to U.S. Provisional Application No. 62/885,702, filed Aug. 12, 2019, which is incorporated by reference in its entirety into this application.
Number | Name | Date | Kind |
---|---|---|---|
4813429 | Eshel et al. | Mar 1989 | A |
5099845 | Besz et al. | Mar 1992 | A |
5163935 | Black et al. | Nov 1992 | A |
5207672 | Roth et al. | May 1993 | A |
5211165 | Dumoulin et al. | May 1993 | A |
5275151 | Shockey et al. | Jan 1994 | A |
5280786 | Wlodarczyk et al. | Jan 1994 | A |
5423321 | Fontenot | Jun 1995 | A |
5454807 | Lennox et al. | Oct 1995 | A |
5517997 | Fontenot | May 1996 | A |
5622170 | Schulz | Apr 1997 | A |
5740808 | Panescu et al. | Apr 1998 | A |
5872879 | Hamm | Feb 1999 | A |
5873842 | Brennen et al. | Feb 1999 | A |
5879306 | Fontenot et al. | Mar 1999 | A |
5906579 | Vander Salm et al. | May 1999 | A |
6069698 | Ozawa et al. | May 2000 | A |
6081741 | Hollis | Jun 2000 | A |
6178346 | Amundson et al. | Jan 2001 | B1 |
6208887 | Clarke | Mar 2001 | B1 |
6319227 | Mansouri-Ruiz | Nov 2001 | B1 |
6343227 | Crowley | Jan 2002 | B1 |
6398721 | Nakamura et al. | Jun 2002 | B1 |
6485482 | Belef | Nov 2002 | B1 |
6564089 | Izatt et al. | May 2003 | B2 |
6593884 | Gilboa et al. | Jul 2003 | B1 |
6597941 | Fontenot et al. | Jul 2003 | B2 |
6650923 | Lesh et al. | Nov 2003 | B1 |
6685666 | Fontenot | Feb 2004 | B1 |
6687010 | Horii et al. | Feb 2004 | B1 |
6690966 | Rava et al. | Feb 2004 | B1 |
6701181 | Tang et al. | Mar 2004 | B2 |
6711426 | Benaron et al. | Mar 2004 | B2 |
6816743 | Moreno et al. | Nov 2004 | B2 |
6892090 | Verard et al. | May 2005 | B2 |
6895267 | Panescu et al. | May 2005 | B2 |
7132645 | Korn | Nov 2006 | B2 |
7273056 | Wilson et al. | Sep 2007 | B2 |
7344533 | Pearson et al. | Mar 2008 | B2 |
7366562 | Dukesherer et al. | Apr 2008 | B2 |
7366563 | Kleen et al. | Apr 2008 | B2 |
7396354 | Rychnovsky et al. | Jul 2008 | B2 |
7406346 | Kleen et al. | Jul 2008 | B2 |
7515265 | Alfano et al. | Apr 2009 | B2 |
7532920 | Ainsworth et al. | May 2009 | B1 |
7587236 | Demos et al. | Sep 2009 | B2 |
7603166 | Casscells, III et al. | Oct 2009 | B2 |
7729735 | Burchman | Jun 2010 | B1 |
7757695 | Wilson et al. | Jul 2010 | B2 |
7758499 | Adler | Jul 2010 | B2 |
7840253 | Tremblay et al. | Nov 2010 | B2 |
7992573 | Wilson et al. | Aug 2011 | B2 |
8032200 | Tearney et al. | Oct 2011 | B2 |
8054469 | Nakabayashi et al. | Nov 2011 | B2 |
8060187 | Marshik-Geurts et al. | Nov 2011 | B2 |
8073517 | Burchman | Dec 2011 | B1 |
8078261 | Imam | Dec 2011 | B2 |
8187189 | Jung et al. | May 2012 | B2 |
8267932 | Baxter et al. | Sep 2012 | B2 |
8369932 | Cinbis et al. | Feb 2013 | B2 |
8388541 | Messerly et al. | Mar 2013 | B2 |
8571640 | Holman | Oct 2013 | B2 |
8597315 | Snow et al. | Dec 2013 | B2 |
8700358 | Parker, Jr. | Apr 2014 | B1 |
8781555 | Burnside et al. | Jul 2014 | B2 |
8798721 | Dib | Aug 2014 | B2 |
8968331 | Sochor | Mar 2015 | B1 |
8979871 | Tyc et al. | Mar 2015 | B2 |
9060687 | Yamanaka et al. | Jun 2015 | B2 |
9360630 | Jenner et al. | Jun 2016 | B2 |
9504392 | Caron et al. | Nov 2016 | B2 |
9560954 | Jacobs et al. | Feb 2017 | B2 |
9622706 | Dick et al. | Apr 2017 | B2 |
9678275 | Griffin | Jun 2017 | B1 |
10231753 | Burnside et al. | Mar 2019 | B2 |
10327830 | Grant et al. | Jun 2019 | B2 |
10349890 | Misener et al. | Jul 2019 | B2 |
10492876 | Anastassiou et al. | Dec 2019 | B2 |
10568586 | Begin et al. | Feb 2020 | B2 |
10631718 | Petroff et al. | Apr 2020 | B2 |
10992078 | Thompson et al. | Apr 2021 | B2 |
11123047 | Jaffer et al. | Sep 2021 | B2 |
20020198457 | Tearney et al. | Dec 2002 | A1 |
20030092995 | Thompson | May 2003 | A1 |
20040242995 | Maschke | Dec 2004 | A1 |
20050033264 | Redinger | Feb 2005 | A1 |
20050261598 | Banet et al. | Nov 2005 | A1 |
20060013523 | Childlers et al. | Jan 2006 | A1 |
20060036164 | Wilson et al. | Feb 2006 | A1 |
20060189959 | Schneiter | Aug 2006 | A1 |
20060200049 | Leo et al. | Sep 2006 | A1 |
20060241395 | Kruger et al. | Oct 2006 | A1 |
20060241492 | Boese et al. | Oct 2006 | A1 |
20070156019 | Larkin et al. | Jul 2007 | A1 |
20070201793 | Askins et al. | Aug 2007 | A1 |
20070287886 | Saadat | Dec 2007 | A1 |
20070299425 | Waner et al. | Dec 2007 | A1 |
20080039715 | Wilson et al. | Feb 2008 | A1 |
20080082004 | Banet et al. | Apr 2008 | A1 |
20080172119 | Yamasaki et al. | Jul 2008 | A1 |
20080183128 | Morriss et al. | Jul 2008 | A1 |
20080285909 | Younge et al. | Nov 2008 | A1 |
20090054908 | Zand et al. | Feb 2009 | A1 |
20090062634 | Say et al. | Mar 2009 | A1 |
20090137952 | Ramamurthy | May 2009 | A1 |
20090234328 | Cox et al. | Sep 2009 | A1 |
20090304582 | Rousso et al. | Dec 2009 | A1 |
20090314925 | Van Vorhis et al. | Dec 2009 | A1 |
20100016729 | Futrell | Jan 2010 | A1 |
20100030063 | Lee et al. | Feb 2010 | A1 |
20100114115 | Schlesinger et al. | May 2010 | A1 |
20100286531 | Ryan et al. | Nov 2010 | A1 |
20100312095 | Jenkins et al. | Dec 2010 | A1 |
20110144481 | Feer et al. | Jun 2011 | A1 |
20110166442 | Sarvazyan | Jul 2011 | A1 |
20110172680 | Younge et al. | Jul 2011 | A1 |
20110237958 | Onimura | Sep 2011 | A1 |
20110245662 | Eggers et al. | Oct 2011 | A1 |
20110295108 | Cox et al. | Dec 2011 | A1 |
20110313280 | Govari et al. | Dec 2011 | A1 |
20120046562 | Powers et al. | Feb 2012 | A1 |
20120101413 | Beetel et al. | Apr 2012 | A1 |
20120136242 | Qi et al. | May 2012 | A1 |
20120143029 | Silverstein et al. | Jun 2012 | A1 |
20120184827 | Shwartz et al. | Jul 2012 | A1 |
20120184955 | Pivotto et al. | Jul 2012 | A1 |
20120321243 | Younge et al. | Dec 2012 | A1 |
20130028554 | Wong et al. | Jan 2013 | A1 |
20130096482 | Bertrand et al. | Apr 2013 | A1 |
20130104884 | Vazales et al. | May 2013 | A1 |
20130188855 | Desjardins et al. | Jul 2013 | A1 |
20130204124 | Duindam et al. | Aug 2013 | A1 |
20130211246 | Parasher | Aug 2013 | A1 |
20130296693 | Wenzel et al. | Nov 2013 | A1 |
20130310668 | Young | Nov 2013 | A1 |
20130324840 | Zhongping et al. | Dec 2013 | A1 |
20140121468 | Eichenholz | May 2014 | A1 |
20140221829 | Maitland et al. | Aug 2014 | A1 |
20140275997 | Chopra et al. | Sep 2014 | A1 |
20150029511 | Hooft et al. | Jan 2015 | A1 |
20150031987 | Pameijer | Jan 2015 | A1 |
20150080688 | Cinbis et al. | Mar 2015 | A1 |
20150099979 | Caves et al. | Apr 2015 | A1 |
20150119700 | Liang et al. | Apr 2015 | A1 |
20150190221 | Schaefer et al. | Jul 2015 | A1 |
20150209113 | Burkholz et al. | Jul 2015 | A1 |
20150209117 | Flexman et al. | Jul 2015 | A1 |
20150254526 | Denissen | Sep 2015 | A1 |
20150320977 | Vitullo et al. | Nov 2015 | A1 |
20160018602 | Govari et al. | Jan 2016 | A1 |
20160166326 | Bakker et al. | Jun 2016 | A1 |
20160166341 | Iordachita | Jun 2016 | A1 |
20160184020 | Kowalewski et al. | Jun 2016 | A1 |
20160213432 | Flexman et al. | Jul 2016 | A1 |
20160354038 | Demirtas et al. | Dec 2016 | A1 |
20170020394 | Harrington | Jan 2017 | A1 |
20170079681 | Burnside et al. | Mar 2017 | A1 |
20170082806 | Van Der Mark et al. | Mar 2017 | A1 |
20170196479 | Liu et al. | Jul 2017 | A1 |
20170201036 | Cohen et al. | Jul 2017 | A1 |
20170215973 | Flexman | Aug 2017 | A1 |
20170231699 | Flexman et al. | Aug 2017 | A1 |
20170273542 | Au | Sep 2017 | A1 |
20170273565 | Ma et al. | Sep 2017 | A1 |
20170273628 | Ofek et al. | Sep 2017 | A1 |
20170311901 | Zhao et al. | Nov 2017 | A1 |
20170319279 | Fish et al. | Nov 2017 | A1 |
20180095231 | Lowell et al. | Apr 2018 | A1 |
20180113038 | Janabi-Sharifi et al. | Apr 2018 | A1 |
20180140170 | Van Putten et al. | May 2018 | A1 |
20180235709 | Donhowe et al. | Aug 2018 | A1 |
20180239124 | Naruse et al. | Aug 2018 | A1 |
20180250088 | Brennan et al. | Sep 2018 | A1 |
20180264227 | Flexman et al. | Sep 2018 | A1 |
20180279909 | Noonan et al. | Oct 2018 | A1 |
20180289390 | Amorizzo et al. | Oct 2018 | A1 |
20180289927 | Messerly | Oct 2018 | A1 |
20180339134 | Leo | Nov 2018 | A1 |
20180360545 | Cole et al. | Dec 2018 | A1 |
20190059743 | Ramachandran et al. | Feb 2019 | A1 |
20190110844 | Misener et al. | Apr 2019 | A1 |
20190231272 | Yamaji | Aug 2019 | A1 |
20190237902 | Thompson et al. | Aug 2019 | A1 |
20190307331 | Saadat et al. | Oct 2019 | A1 |
20190321110 | Grunwald et al. | Oct 2019 | A1 |
20190343424 | Blumenkranz et al. | Nov 2019 | A1 |
20190357875 | Qi et al. | Nov 2019 | A1 |
20190374130 | Bydlon et al. | Dec 2019 | A1 |
20200046434 | Graetzel et al. | Feb 2020 | A1 |
20200054399 | Duindam et al. | Feb 2020 | A1 |
20200305983 | Yampolsky et al. | Oct 2020 | A1 |
20200315770 | Dupont et al. | Oct 2020 | A1 |
20210023341 | Decheek et al. | Jan 2021 | A1 |
20210068911 | Walker et al. | Mar 2021 | A1 |
20210298680 | Sowards et al. | Mar 2021 | A1 |
20210244311 | Zhao et al. | Aug 2021 | A1 |
20210268229 | Sowards et al. | Sep 2021 | A1 |
20210271035 | Sowards et al. | Sep 2021 | A1 |
20210275257 | Prior et al. | Sep 2021 | A1 |
20210401456 | Cox et al. | Dec 2021 | A1 |
20210401509 | Misener et al. | Dec 2021 | A1 |
20210402144 | Messerly | Dec 2021 | A1 |
20220011192 | Misener et al. | Jan 2022 | A1 |
20220034733 | Misener et al. | Feb 2022 | A1 |
20220096796 | McLaughlin et al. | Mar 2022 | A1 |
20220110695 | Sowards et al. | Apr 2022 | A1 |
20220152349 | Sowards et al. | May 2022 | A1 |
20220160209 | Sowards et al. | May 2022 | A1 |
20220172354 | Misener et al. | Jun 2022 | A1 |
20220211442 | McLaughlin et al. | Jul 2022 | A1 |
20220233246 | Misener et al. | Jul 2022 | A1 |
20220369934 | Sowards et al. | Nov 2022 | A1 |
20230081198 | Sowards et al. | Mar 2023 | A1 |
20230097431 | Sowards et al. | Mar 2023 | A1 |
20230101030 | Misener et al. | Mar 2023 | A1 |
20230108604 | Messerly et al. | Apr 2023 | A1 |
20230126813 | Sowards et al. | Apr 2023 | A1 |
20230243715 | Misener et al. | Aug 2023 | A1 |
20230248444 | Misener et al. | Aug 2023 | A1 |
20230251150 | Misener et al. | Aug 2023 | A1 |
20230337985 | Sowards et al. | Oct 2023 | A1 |
Number | Date | Country |
---|---|---|
102016109601 | Nov 2017 | DE |
2240111 | Oct 2010 | EP |
3545849 | Oct 2019 | EP |
3705020 | Sep 2020 | EP |
20190098512 | Aug 2019 | KR |
9964099 | Dec 1999 | WO |
1999064099 | Dec 1999 | WO |
2006122001 | Nov 2006 | WO |
2009155325 | Dec 2009 | WO |
2011121516 | Oct 2011 | WO |
2011141830 | Nov 2011 | WO |
2011150376 | Dec 2011 | WO |
2012064769 | May 2012 | WO |
2015044930 | Apr 2015 | WO |
2015074045 | May 2015 | WO |
2016038492 | Mar 2016 | WO |
2016061431 | Apr 2016 | WO |
2016051302 | Apr 2016 | WO |
2018096491 | May 2018 | WO |
2019037071 | Feb 2019 | WO |
2019046769 | Mar 2019 | WO |
2019070423 | Apr 2019 | WO |
2019230713 | Dec 2019 | WO |
2020182997 | Sep 2020 | WO |
2021030092 | Feb 2021 | WO |
2021108688 | Jun 2021 | WO |
2021108697 | Jun 2021 | WO |
2021138096 | Jul 2021 | WO |
2021216089 | Oct 2021 | WO |
2022031613 | Feb 2022 | WO |
2022081723 | Apr 2022 | WO |
2022150411 | Jul 2022 | WO |
2022164902 | Aug 2022 | WO |
2022245987 | Nov 2022 | WO |
2023043954 | Mar 2023 | WO |
2023049443 | Mar 2023 | WO |
2023055810 | Apr 2023 | WO |
2023076143 | May 2023 | WO |
Entry |
---|
PCT/US2021/019713 filed Feb. 25, 2021 International Search Report and Written Opinion dated Jul. 6, 2021. |
PCT/US2021/020079 filed Feb. 26, 2021 International Search Report and Written Opinion dated Jun. 4, 2021. |
U.S. Appl. No. 15/947,267, filed Apr. 6, 2018 Final Office Action dated Jun. 30, 2021. |
U.S. Appl. No. 15/947,267, filed Apr. 6, 2018 Non-Final Office Action dated Mar. 12, 2021. |
Fiber Optic RealShape (FORS) technology—research. Philips. (Oct. 18, 2018). Retrieved Feb. 28, 2023, from https:// www.philips.com/a-w/research/research-programs/fors.html (Year: 2018). |
U.S. Appl. No. 17/105,310, filed Nov. 25, 2020 Non-Final Office Action dated Feb. 22, 2023. |
U.S. Appl. No. 17/357,186, filed Jun. 24, 2021 Restriction Requirement dated Mar. 7, 2023. |
U.S. Appl. No. 17/392,002, filed Aug. 2, 2021, Corrected Notice of Allowability dated Feb. 23, 2023. |
U.S. Appl. No. 17/500,678, filed Oct. 13, 2021 Non-Final Office Action dated Mar. 15, 2023. |
Jackle Sonja et al. “Three-dimensional guidance including shape sensing of a stentgraft system for endovascular aneurysm repair.” International Journal of Computer Assisted Radiology and Surgery, Springer DE. vol. 15, No. 6, May 7, 2020. |
PCT/US2022/029894 filed May 18, 2022, International Search Report and Written Opinion dated Sep. 1, 2022. |
PCT/US2022/043706 filed Sep. 16, 2022 International Search Report and Written Opinion dated Nov. 24, 2022. |
PCT/US2022/044696 filed Sep. 26, 2022 International Search Report and Written Opinion dated Jan. 23, 2023. |
PCT/US2022/045051 filed Sep. 28, 2022 International Search Report and Written Opinion dated Jan. 2, 2023. |
PCT/US2022/047538 filed Oct. 24, 2022 International Search Report and Written Opinion dated Jan. 26, 2023. |
U.S. Appl. No. 15/947,267, filed Apr. 6, 2018 Examiner's Answer dated Nov. 28, 2022. |
U.S. Appl. No. 17/357,561, filed Jun. 24, 2021 Non-Final Office Action dated Aug. 11, 2022. |
U.S. Appl. No. 17/357,561, filed Jun. 24, 2021 Notice of Allowance dated Dec. 9, 2022. |
U.S. Appl. No. 17/371,993, filed Jul. 9, 2021 Notice of Allowance dated Nov. 3, 2022. |
U.S. Appl. No. 17/392,002, filed Aug. 2, 2021, Non-Final Office Action dated Sep. 12, 2022. |
U.S. Appl. No. 17/392,002, filed Aug. 2, 2021, Notice of Allowance dated Jan. 19, 2023. |
PCT/US2018/026493 filed Apr. 6, 2018 International Search Report and Written Opinion dated Jun. 22, 2018. |
U.S. Appl. No. 15/947,267, filed Apr. 6, 2018 Non-Final Office Action dated May 29, 2020. |
PCT/US2021 /059755 filed Nov. 17, 2021 International Search Report and Written Opinion dated Apr. 29, 2022. |
PCT/US2021/054802 filed Oct. 13, 2021 International Search Report and Written Opinion dated Feb. 2, 2022. |
PCT/US2021/060849 filed Nov. 24, 2021 International Search Report and Written Opinion dated Mar. 9, 2022. |
U.S. Appl. No. 15/947,267, filed Apr. 6, 2018 Final Office Action dated Apr. 22, 2022. |
PCT/US2020/062396 filed Nov. 25, 2020 International Preliminary Report on Patentability dated Jan. 29, 2021. |
PCT/US2020/062407 filed Nov. 25, 2020 International Preliminary Report on Patentability dated Jan. 25, 2021. |
PCT/US2022/011347 filed Jan. 5, 2022 International Search Report and Written Opinion dated May 3, 2022. |
PCT/US2022/013897 filed Jan. 26, 2022 International Search Report and Written Opinion dated May 11, 2022. |
U.S. Appl. No. 17/105,259, filed Nov. 25, 2020, Notice of Allowance dated Jul. 20, 2022. |
U.S. Appl. No. 17/371,993, filed Jul. 9, 2021 Non-Final Office Action dated Jul. 12, 2022. |
PCT/US2020/062396 filed Nov. 25, 2020 International Search Report and Written Opinion dated Mar. 2, 2021. |
PCT/US2020/062407 filed Nov. 25, 2020 International Search Report and Written Opinion dated Mar. 11, 2021. |
PCT/US2021/020732 filed Mar. 3, 2021 International Search Report and Written Opinion dated Jul. 5, 2021. |
U.S. Appl. No. 15/947,267, filed Apr. 6, 2018 Non-Final Office Action dated Oct. 13, 2021. |
PCT/US2020/044801 filed Aug. 3, 2020 International Search Report and Written Opinion dated Oct. 26, 2020. |
U.S. Appl. No. 15/947,267, filed Apr. 6, 2018 Final Office Action dated Nov. 10, 2020. |
PCT/US2021/038899 filed Jun. 24, 2021 International Search Report and Written Opinion dated Oct. 6, 2021. |
PCT/US2021/038954 filed Jun. 24, 2021 International Search Report and Written Opinion dated Oct. 28, 2021. |
PCT/US2021/041128 filed Jul. 9, 2021 International Search Report and Written Opinion dated Oct. 25, 2021. |
PCT/US2021/044216 filed Aug. 2, 2021 International Search Report and Written Opinion dated Nov. 18, 2021. |
U.S. Appl. No. 17/185,777, filed Feb. 25, 2021 Non-Final Office Action dated Feb. 9, 2022. |
EP 20853352.1 filed Mar. 7, 2022 Extended European Search Report dated Jul. 27, 2023. |
PCT/US2023/019239 filed Apr. 20, 2023 International Search Report and Written Opinion dated Jul. 20, 2023. |
U.S. Appl. No. 17/105,310, filed Nov. 25, 2020 Notice of Allowance dated Aug. 2, 2023. |
U.S. Appl. No. 17/357,186, filed Jun. 24, 2021 Non Final Office Action dated May 30, 2023. |
U.S. Appl. No. 17/357,186, filed Jun. 24, 2021 Notice of Allowance dated Aug. 23, 2023. |
Dziuda L et al: “Monitoring Respiration and Cardiac Activity Using Fiber Bragg Grating-Based Sensor”, IEEE Transactions on Biomedical Engineering vol. 59, No. 7, Jul. 2012 pp. 1934-1942. |
Dziuda L. et al: “Fiber-optic sensor for monitoring respiration and cardiac activity”, 2011 IEEE Sensors Proceedings : Limerick, Ireland, Oct. 2011 pp. 413-416. |
EP 20893677.3 filed Jun. 22, 2022 Extended European Search Report dated Oct. 13, 2023. |
EP 20894633.5 filed Jun. 22, 2022 Extended European Search Report dated Oct. 16, 2023. |
PCT/US2023/026487 filed Jun. 28, 2023 International Search Report and Written Opinion dated Sep. 6, 2023. |
PCT/US2023/026581 filed Jun. 29, 2023 International Search Report and Written Opinion dated Oct. 27, 2023. |
U.S. Appl. No. 17/484,960, filed Sep. 24, 2021 Non-Final Office Action dated Oct. 5, 2023. |
U.S. Appl. No. 17/500,678, filed Oct. 13, 2021 Final Office Action dated Sep. 21, 2023. |
Number | Date | Country | |
---|---|---|---|
20210045814 A1 | Feb 2021 | US |
Number | Date | Country | |
---|---|---|---|
62885702 | Aug 2019 | US |