The present disclosure generally relates to devices, systems, methods for making, and methods for use in thrombectomy. Several embodiments relate to systems and methods for providing novel approaches for stroke treatment.
Stroke is the leading cause of long term disability in the United States and the second leading cause of death worldwide with over 4.4 million deaths in a year (1999). There are over 795,000 new strokes every year in the United States. Around 85% of all strokes are acute ischemic strokes caused from a blockage in a blood vessel or a blood clot occluding a blood vessel. In 1996, the FDA approved a thrombolytic drug to dissolve blood clots called recombinant tissue plasminogen activator (r-tpa). Despite practice guidelines from multiple national organizations stating the intravenous r-tpa is the standard of care for patients with acute ischemic stroke within 3 hours from symptom onset, only 3-4% of patients with acute ischemic stroke received this drug in the United States. Unlike intravenous r-tpa, catheter-based therapies for mechanical thrombectomy can be used for up to 8 hours or beyond from acute ischemic stroke symptom onset and could benefit more people. With advances in regional stroke networks, there are more and more stroke patients who are getting access to intra-arterial thrombolysis and therapies, and are as high as 21.6%.
Blood clots can range from 5 mm to greater than 55 mm. In addition, blood clots can extend from one vessel diameter to another vessel diameter. There is clearly an unmet need currently for a mechanical thrombectomy device that is gentle and safe on the fragile human blood vessels, that can be customized to the length of the clot or clot burden using the same device by the operator, that can be visualized with ease under X-ray fluoroscopy, that can reach the smallest of human blood vessels, that can be compatible with torsional rasping of the clot, and/or have bonding zones or attachment points that are strong even between dissimilar metals or alloys to avoid the risk of any fracture points, as well as have flexible delivery systems that have good proximal support and good distal flexibility. Several embodiments of the invention provide one or more of the advantages above. In some embodiments, all of the advantages above are provided.
In several embodiments, the device is particularly beneficial because it includes one or more of the following advantages: (i) adapted for and gentle on the fragile blood vessels instead of an expansile laser-cut stent based mechanical thrombectomy device; (ii) tapered to mimic the tapering of the human blood vessels thereby allowing for the use of a single tapered device to remove blood clots extending across different tapering blood vessel diameters; (iii) allows for flexibility during deployment and retrieval in tortuous human blood vessels thereby allowing for longer usable lengths of the device; (iv) comprises a long usable length can be customized to the length of the clot or the clot burden without having to use multiple devices to remove the clot in piece meal; (v) a textile structure based mechanical thrombectomy device allows for torsional rasping of the textile structure around the blood clot to entrap the clot and retrieve it; (vi) allows for filtering distal emboli or debris that may be released; (vii) employs processes to bond the textile structure and the delivery system allow for bonding of dissimilar metals or alloys; (viii) comprises an inlay bonding approach of the textile structure with the delivery system, which allows for a low overall profile and outer diameter of the mechanical thrombectomy device in the collapsed configuration to be less than e.g., 0.0125 inches (0.317 mm); (ix) low overall profile and outer diameter of the mechanical thrombectomy device in the collapsed configuration allows for the device to be deployed with a microcatheter that has an inner lumen diameter of e.g., 0.014 inch or greater (0.355 mm); (x) patterns of radio-opaque filaments or wires to achieve maximal radio-opacity and visibility for the operator during X-ray fluoroscopy; (xi) multiple transition points for the laser-cut delivery system or hypotube, which allows for distal flexibility and proximal support as well as supports the ability to perform torsional rasping of the clot; and/or (xii) the laser-cut hypotube with multiple transition points is incorporated as the core braid for the wall of the microcatheter, which allows for distal flexibility and proximal support for allowing the safe and effective deployment of the textile structure based mechanical thrombectomy device.
Various embodiments of the present invention are shown in the figures and described in detail below.
Part numbers for the Figures are listed below
The shape-set tapered textile structure in several embodiments has a distal tip, that in the expanded configuration has an outer diameter of less than e.g., 0.017 inches (0.43 mm) and in the collapsed configuration has an outer diameter of less than e.g., 0.0125 inches (0.317 mm) In several embodiments, the expanded configuration of the tip has a diameter in the range of about 0.35-0.65 mm (e.g., 0.40-0.45 mm) In several embodiments, the collapsed configuration has a diameter in the range of about 0.1-0.34 mm (e.g., 0.25-0.33 mm) In some embodiments, for larger vessels, the expanded configuration has a diameter in the range of about 1-40 mm and a diameter in the range of about 0.5-10 mm in a collapsed configuration. In some embodiments, the ratio of the expanded configuration to the collapsed configuration is 1.2:1-10:1. In several embodiments, the distal neck is narrow and has similar outer diameter in the expanded and collapsed configuration as the distal tip. The distal neck has a length that ranges from about 1-5 mm in one of the embodiments.
In several embodiments, there are a total of 10 spherical bulbs in one of the embodiments with varying diameters in the expanded configuration and in the collapsed configuration has an outer diameter of less than e.g., 0.0125 inches (0.317 mm) In several embodiments, the expanded configuration of the bulbs has a diameter in the range of about 1-6 mm (e.g., 3-4.5 mm) In several embodiments, the collapsed configuration has a diameter in the range of about 0.1-0.9 mm (e.g., 0.25-0.5 mm) In some embodiments, for larger vessels, the expanded configuration has a diameter in the range of about 5-40 mm and a diameter in the range of about 0.5-5 mm in a collapsed configuration. In some embodiments, the ratio of the expanded configuration to the collapsed configuration is 1.2:1-10:1.
In some embodiments, the varying outer diameters of the 10 spherical bulbs in the expanded configuration are as follows in one of the embodiments: The distal three extra-small spherical bulbs have an outer diameter (e.g., d=3 mm) in the expanded configuration and corresponds to the extra-small vessel segments such as the M2 segments of the middle cerebral artery, the next three small spherical bulbs have an outer diameter (e.g., d=3.5 mm) in the expanded configuration and corresponds to the smaller vessel segments such as the distal M1 segment of the middle cerebral artery, the next two medium spherical bulbs have an outer diameter (e.g., d=4 mm) in the expanded configuration and corresponds to the medium vessel segments such as the proximal M1 segment of the middle cerebral artery, and the proximal two large spherical bulbs have an outer diameter (d=4.5 mm) in the expanded configuration that corresponds to the large vessel segments such as the distal supra-clinoid segment of the internal carotid artery. This tapered configuration of the shape-set textile structure allows for adequate and safe deployment of the device across blood vessels with multiple diameters. Although specific diameter numbers are provided in this paragraph, other embodiments include diameters that are +/−5, 10, 15, or 20%.
In some embodiments, 10 bulbs are used. However, in other embodiments, 1-9 bulbs or 11-30 (or more) bulbs may be used. In some embodiments, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20 bulbs are used. In some conditions, for example in the leg, where clots can be up 20-40 cm, 40-60 bulbs may be used. In some embodiments, 1 bulb is used for every 0.2-5 cm (e.g., about 0.5-2 cm).
In several embodiments, bulbs of various sizes and/or shapes are provided on a single elongate support structure (such as a neck, tube, spindle, spine, rod, backbone, etc.). The elongate support structure may be hollow, filled or partially hollow. The elongate support structure may have a length in the range of about 1-20 cm (e.g., about 4-8 cm, 5-10 cm, etc). In larger vessels (e.g., outside the brain) the length can be about 20-50 cm. The diameter or width of the elongate support structure is in the range of about 0.35-0.65 mm (e.g., 0.40-0.45 mm) in an expanded configuration and in the range of about 0.1-0.34 mm (e.g., 0.25-0.33 mm) in the collapsed configuration. In some embodiments, for larger vessels, the expanded configuration of the elongate support structure has a diameter in the range of about 1-40 mm (e.g., 5-20 mm) and a diameter in the range of about 0.5-10 mm (e.g., 1-2 mm) in a collapsed configuration. Wall thickness of the elongate support structure are, in some embodiments, ranges from about 0.01-4 mm (e.g., about 0.02-1 mm 0.02-0.05 mm, e.g., 0.025 mm) The elongate support structure may be braided, knitted or weaved with two or more strands (e.g., about 12-120 strands, 12-96 strands, 48 strands) in some embodiments. The pattern, in some embodiments, is one-over-one-under-two, one-over-one-under-one, two-over-two-under-two, etc. In some embodiments, the braid angle is in the range of about 45-179 degrees (e.g., about 130-160 degrees, 151 degrees). The picks (or pixels) per inch (PPI) range from about 50-300 PPI (e.g., about 150-190 PPI, e.g., 171 PPI). In some embodiments, increased outward expansile force and/or compression resistance is provided by a higher braid angle and/or higher PPI. In some embodiments, the force/resistance (e.g., radial force) is in a range sufficient to expand a target vessel in the range of about 0%-30%. In some embodiments, the total diameter size of the treatment device is 0.5 mm-1.5 mm greater than the target vessel diameter. In some embodiments, the total diameter size of the treatment device is oversized by 10-50% with respect to the target vessel diameter. The elongate support structure may be made of shape memory alloys (e.g., nickel titanium). In some embodiments, the elongate support structure is about 50-95% (e.g., 75%) nickel titanium and about 5-50% (e.g., 25%) platinum iridium or platinum tungsten or combinations thereof. The radio-opaque portions can be spaced or clustered to increase visibility under x-ray. For example, a thick band pattern may be used which can include 1-12 radio-opaque strands (e.g., filaments, wires, etc.) that are wound adjacently with one another. In several embodiments, the bulbs are integral with the elongate support structure. In other embodiments, the bulbs are coupled (fixably or reversibly coupled) to the elongate support structure.
For example, bulbs size (with respect to the outer diameter in an expanded configuration) is about 0.5-3 mm (e.g., 3 mm), about 3.1-3.9 mm (e.g., 3.5 mm), about 4-4.4 mm (e.g., 4 mm), and about 4.5-7.5 mm (e.g., 4.5 mm) are provided. In some embodiments, the bulbs are sized in the range of about 1 mm-80 mm (e.g., 2 mm-12 mm) Bulbs in range of 4-10 mm may be particular beneficial for larger clots and/or vessels (e.g., in the leg). The sizes above are reduced by 1.3-10 times in the collapsed configuration. In some embodiments, the collapsed configuration of the bulbs is about 50-80% of the inner diameter of the delivery catheter (e.g., microcatheter). In some embodiments, each consecutive bulb is larger than the other. In other embodiments, two sizes are used in an alternate pattern. In yet other embodiments, three or more sizes are used in a series, and each series is repeated two, three, four, five, six, seven, or more times. As an example, if a series of three sizes is alternated, twenty-one bulbs are used. In some embodiments, larger bulbs may be used at the ends, while smaller bulbs are used in the middle. Bulbs may be smaller at the ends and larger in the middle.
Various bulb shapes may be used according to several embodiments, including spherical, oblong, egg, and elliptical (e.g., with respect to top view, side-view and/or cross-section). Square, rectangular and diamond-shapes (e.g., with respect to top view, side-view and/or cross-section) are used in some embodiments. Spiral, twisted, or helical bulbs are provided in some embodiments. For example, sphere-like bulbs and oblong bulbs may be used in a single strand. In some embodiments, shapes are alternated. In yet other embodiments, three or more shapes are used in a series, and each series is repeated two, three, four, five, six, seven, or more times. In some embodiments, bulbs of a first shape may be used at the ends, while bulbs of a second shape are used in the middle. Bulbs may be a first shape at the ends and a second shape in the middle, or vice versa.
The positioning of the bulbs may be beneficial for certain vessel sizes and/or clot locations, material, and/or sizes. Bulbs may be touching (e.g., contiguous) or non-touching. A single strand may include bulbs that are both touching and non-touching. In several embodiments, a strand includes bulbs that are all non-touching and/or are spaced apart by one or more spacers. These spacers may be of the same or different material than the bulbs. The spacers may also be shaped differently than the bulbs. The spacers may comprise, be embedded with or coated by markers or other visualization aids (such as radio-opaque portions).
The bulbs may be separated by distances of about 0.1 to 50 mm, including, but not limited to, about 0.5-1, 1-2, 2-3, 3-4, 4-5, 5-8, 8-10, 10-12, 12-15, 15-25, 25-35, and 35-50 mm apart, including overlapping ranges thereof. The spaces between all the bulbs in one strand may be constant. Alternatively, the spacing between two or more (or all) of the bulbs may be different. In some embodiments, some bulbs are spaced the same distance from one another, while other bulbs have different spacing.
Radio-opaque materials, metals or alloys, including but not limited to iridium, platinum, tantalum, gold, palladium, tungsten, tin, silver, titanium, nickel, zirconium, rhenium, bismuth, molybdenum, or combinations of the above etc. to enable visibility during interventional procedures.
The dip coating or spray coating may comprise a biomedical polymer, e.g., silicone, polyurethane, polyethylene (Rexell™ made by Huntsman), polypropylene, polyester (Hytril™ made by Dupont), poly tetra fluoro-ethylene (PTFE), polyvinyl chloride (PVC), polyamides (Durethan™ made by Bayer), polycarbonate (Corethane™ made by Corvita Corp), or polyethylene-terephthalate. The dip coating or spray coating may further comprise a radio-opaque material, e.g., particles of tantalum, particles of gold, other radio-opaque agents, e.g., barium sulfate, tungsten powder, bismuth subcarbonate, bismuth oxychloride, iodine containing agents such as iohexol (Omnipaque™ Amersham Health).
Various components (e.g., the elongate support structure, the bulbs, the sheath or the delivery system such as the hypotube) may be made up of materials that are biocompatible or surface treated to produce biocompatibility. Suitable materials include e.g., platinum, titanium, nickel, chromium, cobalt, tantalum, tungsten, iron, manganese, molybdenum, and alloys thereof including nitinol, chromium cobalt, stainless steel, etc. Suitable materials also include combinations of metals and alloys. Suitable materials also include polymers such as polylactic acid (PLA), polyglycolic acid (PGA), polyclycoloc-lactic acid (PLGA), polycaprolactone (PCL), polyorthoesters, polyanhydrides, and copolymers thereof. In some embodiments, the thrombectomy device is made of nitinol and platinum tungsten.
The introducer sheath may comprise a biomedical polymer, e.g., silicone, polyurethane, polyethylene (Rexell™ made by Huntsman), polypropylene, polyester (Hytril™ made by Dupont), poly tetra fluoro-ethylene (PTFE), polyvinyl chloride (PVC), polyamides (Durethan™ made by Bayer), polycarbonate (Corethane™ made by Corvita Corp), or polyethylene-terephthalate. Combinations of two or more of these materials may also be used.
The microcatheter may comprise a biomedical polymer, e.g., silicone, polyurethane, polyethylene (Rexell™ made by Huntsman), polypropylene, polyester (Hytril™ made by Dupont), poly tetra fluoro-ethylene (PTFE), polyvinyl chloride (PVC), polyamides (Durethan™ made by Bayer), polycarbonate (Corethane™ made by Corvita Corp), or polyethylene-terephthalate. Combinations of two or more of these materials may also be used.
In several embodiments, the devices described herein can be used in the brain. In some embodiments, vasculature in the periphery can be treated. In some embodiments, coronary vessels are treated. Abdominal aorta and branches are treated in several embodiments.
In some embodiments, a subject having a clot is identified. An access catheter is advanced over a guidewire to a vessel proximate or containing the clot. The guidewire may be removed at this stage. A microcatheter is advanced over a microwire, but stop before or at the clot. The microwire then crosses the clot by 0.5-5 mm (e.g., slices through the center of the clot). The microcatheter is then advanced over the microwire to cross the clot. The microwire is then removed or retracted. The thrombectomy device (the elongate support structure with the bulbs bonded to a delivery system, such as a hypotube, wire or multi-filament wire/hypotube device), as disclosed in several embodiments herein is positioned within an introducer sheath, and together are advanced through the hub of the microcatheter. The thrombectomy device is then advanced through the microcatheter, and the introducer sheath is removed. The thrombectomy device is advanced until it is at the tip of the microcatheter (which is beyond the clot). The thrombectomy device is kept in position, and the microcatheter is retracted (e.g., unsleeved, unsheathed) until the thrombectomy device is expanded. The length of retraction is related to length of the clot in one embodiment (e.g., the microcatheter is retracted to or before the proximal end of the clot). The thrombectomy device is torqued (e.g., in a counterclockwise motion) to facilitate torsional rasping (e.g., rotationally scraping), thereby allowing the bulb(s) to entrap the clot, and collect any debris (emboli). The sticky portions of the clot, which can be attached to the endothelium wall, can be removed by the torqueing motion. The non-laser cut braided nature of the bulbs facilaite gentle entrapment of the clot without perforating the blood vessel. In one embodiment, a 360 degree rotation on the proximal end results in a distal rotation that is less than 360 degrees (e.g., 90-180 degrees). In several embodiments, the rotational force from the proximal end to the distal is not 1:1. Instead the ratio is 1:0.75, 1:0.5 or 1:0.25. This non-1:1 ratio, in some embodiments, is beneficial because it provides a gentle rotation that reduces the risk that the blood vessel is rotated, displaced, disrupted or perforated. In several embodiments, if one bulb cannot fully entrap the clot, another bulb (whether it is the same or different in size and/or shape) will be able to further entrap the clot. In some embodiments, the undulations (e.g., the hills and valleys created by the bulbs and support structure) facilitate clot entrapment. Undulation is also provided at a micro level by the braiding pattern. This dual-undulating pattern enhances scraping and entrapment in several embodiments. The clot, once entrapped or captured by the bulbs, can then be removed as the thrombectomy device is removed from the subject. The thrombectomy device is removed as follows in some embodiments: the microcatheter and the delivery system (e.g., hypotube) are retracted into the tip of the guide catheter while negative suction is applied (e.g., with a syringe) at the level of the guide catheter and also while the microcatheter is retracted at a similar rate such that the microcatheter does not generally recapture any expanded portion of the thrombectomy device or expand (or expose) additional portions of the thrombectomy device. In other words, unexpanded bulbs remain unexpanded and expanded bulbs remain expanded until they are retracted into the guide catheter. Suction can be applied for about 5-30 seconds using a 30-90 cc syringe. The steps above need not be performed in the order recited.
The following references are herein incorporated by reference: (1) Sarti C, Rastenyte D, Cepaitis Z, Tuomilehto J. International trends in mortality from stroke, 1968 to 1994. Stroke. 2000; 31:1588-1601; (2) Wolf P A, D'Agostino R B. Epidemiology of Stroke. In: Barnett H J M, Mohr J P, Stein B M, Yatsu F, eds. Stroke: Pathophysiology, Diagnosis, and Management. 3rd ed. New York, N.Y.: Churchill Livingstone; 1998:6-7; (3) Adams H P, Jr., Adams R J, Brott T, del Zoppo G J, Furlan A, Goldstein L B, Grubb R L, Higashida R, Kidwell C, Kwiatkowski T G, Marler J R, Hademenos G J. Guidelines for the early management of patients with ischemic stroke: A scientific statement from the Stroke Council of the American Stroke Association. Stroke. 2003; 34:1056-1083; (4) Rymer M M, Thrutchley D E. Organizing regional networks to increase acute stroke intervention. Neurol Res. 2005; 27:59-16; and (5) Furlan A, Higashida R, Wechsler L, Gent M, Rowley H, Kase C, Pessin M, Ahuja A, Callahan F, Clark W M, Silver F, Rivera F. Intra-arterial prourokinase for acute ischemic stroke. The PROACT II study: a randomized controlled trial. Prolyse in Acute Cerebral Thromboembolism. Jama. 1999; 282:2003-2011.
While the invention is susceptible to various modifications, and alternative forms, specific examples thereof have been shown in the drawings and are herein described in detail. It should be understood, however, that the invention is not to be limited to the particular forms or methods disclosed, but to the contrary, the invention is to cover all modifications, equivalents and alternatives falling within the spirit and scope of the various embodiments described and the appended claims. The ranges disclosed herein also encompass any and all overlap, sub-ranges, and combinations thereof. Language such as “up to,” “at least,” “greater than,” “less than,” “between,” and the like includes the number recited. Numbers preceded by a term such as “about” or “approximately” include the recited numbers. For example, “about 3 mm” includes “3 mm.”
The present application is a continuation of U.S. patent application Ser. No. 14/012,161, filed Aug. 28, 2013, which is a continuation of U.S. patent application Ser. No. 13/952,982, filed Jul. 29, 2013, which claims priority benefit of U.S. Provisional Patent App. No. 61/798,540, filed on Mar. 15, 2013, and U.S. patent application Ser. No. 14/012,161 claims priority benefit of U.S. Provisional Patent App. No. 61/798,540, filed on Mar. 15, 2013. Any and all applications for which a foreign or domestic priority claim is identified in the Application Data Sheet as filed with the present application are hereby incorporated by reference under 37 C.F.R. §1.57.
Number | Name | Date | Kind |
---|---|---|---|
3378282 | Demler, Sr. | Apr 1968 | A |
3381114 | Nakanuma | Apr 1968 | A |
3596545 | Eisenhardt | Aug 1971 | A |
3790744 | Bowen | Feb 1974 | A |
4030503 | Clark, III | Jun 1977 | A |
4334535 | Wilson et al. | Jun 1982 | A |
4560378 | Weiland | Dec 1985 | A |
4585436 | Davis et al. | Apr 1986 | A |
4778559 | McNeilly | Oct 1988 | A |
4964320 | Lee, Jr. | Oct 1990 | A |
4984581 | Stice | Jan 1991 | A |
4989606 | Gehrich et al. | Feb 1991 | A |
5073694 | Tessier et al. | Dec 1991 | A |
5108419 | Reger et al. | Apr 1992 | A |
5160342 | Reger et al. | Nov 1992 | A |
5171383 | Sagae et al. | Dec 1992 | A |
5195408 | Niehaus | Mar 1993 | A |
5211183 | Wilson | May 1993 | A |
5234451 | Osypka | Aug 1993 | A |
5265622 | Barbere | Nov 1993 | A |
5324276 | Rosenberg | Jun 1994 | A |
5370609 | Drasler et al. | Dec 1994 | A |
5378234 | Hammerslag et al. | Jan 1995 | A |
5383387 | Chesterfield et al. | Jan 1995 | A |
5398568 | Worrell et al. | Mar 1995 | A |
5423849 | Engelson et al. | Jun 1995 | A |
5449372 | Schmaltz et al. | Sep 1995 | A |
5484409 | Atkinson et al. | Jan 1996 | A |
5522822 | Phelps et al. | Jun 1996 | A |
5537696 | Chartier | Jul 1996 | A |
5562641 | Flomenblit et al. | Oct 1996 | A |
5573520 | Schwartz | Nov 1996 | A |
5578074 | Mirigian | Nov 1996 | A |
5624508 | Flomenblit et al. | Apr 1997 | A |
5645558 | Horton | Jul 1997 | A |
5649949 | Wallace et al. | Jul 1997 | A |
5690120 | Jacobsen | Nov 1997 | A |
5695506 | Pike et al. | Dec 1997 | A |
5695507 | Auth et al. | Dec 1997 | A |
5697899 | Hillman et al. | Dec 1997 | A |
5725552 | Kotula et al. | Mar 1998 | A |
5725570 | Heath | Mar 1998 | A |
5725572 | Lam et al. | Mar 1998 | A |
5733400 | Gore et al. | Mar 1998 | A |
5741429 | Donadio, III et al. | Apr 1998 | A |
5766219 | Horton | Jun 1998 | A |
5772674 | Nakhjavan | Jun 1998 | A |
5776162 | Kleshinski | Jul 1998 | A |
5780807 | Saunders | Jul 1998 | A |
5788558 | Klein | Aug 1998 | A |
5792156 | Perouse | Aug 1998 | A |
5827304 | Hart | Oct 1998 | A |
5836066 | Ingram | Nov 1998 | A |
5843051 | Adams et al. | Dec 1998 | A |
5843117 | Alt et al. | Dec 1998 | A |
5846261 | Kotula et al. | Dec 1998 | A |
5849037 | Frid | Dec 1998 | A |
5865816 | Quinn | Feb 1999 | A |
5868708 | Hart et al. | Feb 1999 | A |
5876568 | Kindersley | Mar 1999 | A |
5879499 | Corvi | Mar 1999 | A |
5882444 | Flomenblit et al. | Mar 1999 | A |
5895398 | Wensel et al. | Apr 1999 | A |
5895407 | Jayaraman | Apr 1999 | A |
5897567 | Ressemann et al. | Apr 1999 | A |
5911731 | Pham et al. | Jun 1999 | A |
5925063 | Khosravi | Jul 1999 | A |
5928260 | Chin et al. | Jul 1999 | A |
5935145 | Villar et al. | Aug 1999 | A |
5941869 | Patterson et al. | Aug 1999 | A |
5944701 | Dubrul | Aug 1999 | A |
5951599 | McCrory | Sep 1999 | A |
5972019 | Engelson et al. | Oct 1999 | A |
5994667 | Merdan et al. | Nov 1999 | A |
5996929 | Mazodier et al. | Dec 1999 | A |
6019778 | Wilson et al. | Feb 2000 | A |
6027863 | Donadio, III | Feb 2000 | A |
6030406 | Davis et al. | Feb 2000 | A |
6030586 | Kuan | Feb 2000 | A |
6066149 | Samson et al. | May 2000 | A |
6080170 | Nash et al. | Jun 2000 | A |
6090118 | McGuckin, Jr. | Jul 2000 | A |
6093199 | Brown et al. | Jul 2000 | A |
6102890 | Stivland et al. | Aug 2000 | A |
6102933 | Lee et al. | Aug 2000 | A |
6107004 | Donadio, III | Aug 2000 | A |
6114653 | Gustafson | Sep 2000 | A |
6142987 | Tsugita | Nov 2000 | A |
6146370 | Barbut | Nov 2000 | A |
6146396 | Konya et al. | Nov 2000 | A |
6149682 | Frid | Nov 2000 | A |
6165199 | Barbut | Dec 2000 | A |
6165292 | Abrams et al. | Dec 2000 | A |
6168579 | Tsugita | Jan 2001 | B1 |
6168622 | Mazzocchi | Jan 2001 | B1 |
6174330 | Stinson | Jan 2001 | B1 |
6203561 | Ramee et al. | Mar 2001 | B1 |
6221006 | Dubrul et al. | Apr 2001 | B1 |
6221091 | Khosravi | Apr 2001 | B1 |
6227436 | Nishikawa et al. | May 2001 | B1 |
6237460 | Frid | May 2001 | B1 |
6241691 | Ferrera et al. | Jun 2001 | B1 |
6254633 | Pinchuk et al. | Jul 2001 | B1 |
6258115 | Dubrul | Jul 2001 | B1 |
6262390 | Goland | Jul 2001 | B1 |
6281262 | Shikinami | Aug 2001 | B1 |
6290721 | Heath | Sep 2001 | B1 |
6344048 | Chin et al. | Feb 2002 | B1 |
6346117 | Greenhalgh | Feb 2002 | B1 |
6348063 | Yassour et al. | Feb 2002 | B1 |
6350271 | Kurz et al. | Feb 2002 | B1 |
6369355 | Saunders | Apr 2002 | B1 |
6375668 | Gifford et al. | Apr 2002 | B1 |
6383204 | Ferrera | May 2002 | B1 |
6383205 | Samson et al. | May 2002 | B1 |
6391044 | Yadav et al. | May 2002 | B1 |
6395014 | Macoviak et al. | May 2002 | B1 |
6402771 | Palmer et al. | Jun 2002 | B1 |
6428558 | Jones et al. | Aug 2002 | B1 |
6447531 | Amplatz | Sep 2002 | B1 |
6461370 | Gray et al. | Oct 2002 | B1 |
6482217 | Pintor et al. | Nov 2002 | B1 |
6506204 | Mazzocchi | Jan 2003 | B2 |
6511492 | Rosenbluth et al. | Jan 2003 | B1 |
6511504 | Lau et al. | Jan 2003 | B1 |
6514273 | Voss et al. | Feb 2003 | B1 |
6517888 | Weber | Feb 2003 | B1 |
6521865 | Jones et al. | Feb 2003 | B1 |
6530935 | Wensel et al. | Mar 2003 | B2 |
6530939 | Hopkins et al. | Mar 2003 | B1 |
6540722 | Boyle et al. | Apr 2003 | B1 |
6544276 | Azizi | Apr 2003 | B1 |
6544279 | Hopkins et al. | Apr 2003 | B1 |
6554848 | Boylan et al. | Apr 2003 | B2 |
6563080 | Shapovalov et al. | May 2003 | B2 |
6569183 | Kim et al. | May 2003 | B1 |
6585755 | Jackson et al. | Jul 2003 | B2 |
6589263 | Hopkins et al. | Jul 2003 | B1 |
6589265 | Palmer et al. | Jul 2003 | B1 |
6602261 | Greene, Jr. et al. | Aug 2003 | B2 |
6602264 | McGuckin, Jr. | Aug 2003 | B1 |
6602265 | Dubrul et al. | Aug 2003 | B2 |
6605074 | Zadno-Azizi et al. | Aug 2003 | B2 |
6605111 | Bose et al. | Aug 2003 | B2 |
6610077 | Hancock et al. | Aug 2003 | B1 |
6612012 | Mitelberg et al. | Sep 2003 | B2 |
6616676 | Bashiri et al. | Sep 2003 | B2 |
6626861 | Hart et al. | Sep 2003 | B1 |
6626936 | Stinson | Sep 2003 | B2 |
6632241 | Hancock et al. | Oct 2003 | B1 |
6635070 | Leeflang et al. | Oct 2003 | B2 |
6652576 | Stalker | Nov 2003 | B1 |
6656218 | Denardo et al. | Dec 2003 | B1 |
6666882 | Bose et al. | Dec 2003 | B1 |
6669721 | Bose et al. | Dec 2003 | B1 |
6673089 | Yassour et al. | Jan 2004 | B1 |
6679893 | Tran | Jan 2004 | B1 |
6682546 | Amplatz | Jan 2004 | B2 |
6689986 | Patel et al. | Feb 2004 | B2 |
6692504 | Kurz et al. | Feb 2004 | B2 |
6695813 | Boyle et al. | Feb 2004 | B1 |
6696666 | Merdan et al. | Feb 2004 | B2 |
6696667 | Flanagan | Feb 2004 | B1 |
6706054 | Wessman et al. | Mar 2004 | B2 |
6710285 | Brown et al. | Mar 2004 | B2 |
6712835 | Mazzocchi et al. | Mar 2004 | B2 |
6719934 | Stinson | Apr 2004 | B2 |
6740112 | Yodfat et al. | May 2004 | B2 |
6749560 | Konstorum et al. | Jun 2004 | B1 |
6749619 | Ouriel et al. | Jun 2004 | B2 |
6773448 | Kusleika et al. | Aug 2004 | B2 |
6777647 | Messal et al. | Aug 2004 | B1 |
6818063 | Kerrigan | Nov 2004 | B1 |
6837901 | Rabkin et al. | Jan 2005 | B2 |
6840950 | Stanford et al. | Jan 2005 | B2 |
6843798 | Kusleika et al. | Jan 2005 | B2 |
6844603 | Georgakos et al. | Jan 2005 | B2 |
6849081 | Sepetka et al. | Feb 2005 | B2 |
6855153 | Saadat | Feb 2005 | B2 |
6855154 | Abdel-Gawwad | Feb 2005 | B2 |
6855909 | Patel et al. | Feb 2005 | B2 |
6860893 | Wallace et al. | Mar 2005 | B2 |
6861615 | Wojcik et al. | Mar 2005 | B2 |
6862794 | Hopkins | Mar 2005 | B2 |
6866680 | Yassour et al. | Mar 2005 | B2 |
6867389 | Shapovalov et al. | Mar 2005 | B2 |
6878163 | Denardo et al. | Apr 2005 | B2 |
6913618 | Denardo et al. | Jul 2005 | B2 |
6920677 | Dolan et al. | Jul 2005 | B2 |
6927359 | Kleine et al. | Aug 2005 | B2 |
6932828 | Bonnette et al. | Aug 2005 | B2 |
6949103 | Mazzocchi et al. | Sep 2005 | B2 |
6953472 | Palmer et al. | Oct 2005 | B2 |
6964670 | Shah et al. | Nov 2005 | B1 |
6977355 | Duley et al. | Dec 2005 | B2 |
6989019 | Mazzocchi et al. | Jan 2006 | B2 |
7004954 | Voss et al. | Feb 2006 | B1 |
7018401 | Hyodoh et al. | Mar 2006 | B1 |
7029494 | Soun et al. | Apr 2006 | B2 |
7033375 | Mazzocchi et al. | Apr 2006 | B2 |
7037316 | McGuckin, Jr. et al. | May 2006 | B2 |
7038334 | Botos et al. | May 2006 | B2 |
7048752 | Mazzocchi et al. | May 2006 | B2 |
7083640 | Lombardi et al. | Aug 2006 | B2 |
7090688 | Nishtala et al. | Aug 2006 | B2 |
7093416 | Johnson et al. | Aug 2006 | B2 |
7093527 | Rapaport et al. | Aug 2006 | B2 |
7105003 | Hiltebrandt | Sep 2006 | B2 |
7118539 | Vrba et al. | Oct 2006 | B2 |
7125414 | Blackledge et al. | Oct 2006 | B2 |
7128073 | van der Burg et al. | Oct 2006 | B1 |
7128752 | Bales | Oct 2006 | B2 |
7131986 | Sirhan et al. | Nov 2006 | B2 |
7135039 | De Scheerder et al. | Nov 2006 | B2 |
7152605 | Khairkhahan et al. | Dec 2006 | B2 |
7172614 | Boyle et al. | Feb 2007 | B2 |
7179273 | Palmer et al. | Feb 2007 | B1 |
7211109 | Thompson | May 2007 | B2 |
7220269 | Ansel et al. | May 2007 | B1 |
7220271 | Clubb et al. | May 2007 | B2 |
7252680 | Freitag | Aug 2007 | B2 |
7300429 | Fitzgerald et al. | Nov 2007 | B2 |
7306618 | Demond et al. | Dec 2007 | B2 |
7306624 | Yodfat et al. | Dec 2007 | B2 |
7323001 | Clubb et al. | Jan 2008 | B2 |
7344546 | Wulfman et al. | Mar 2008 | B2 |
7367985 | Mazzocchi et al. | May 2008 | B2 |
7367986 | Mazzocchi et al. | May 2008 | B2 |
7371250 | Mazzocchi et al. | May 2008 | B2 |
7374564 | Brown | May 2008 | B2 |
7381198 | Noriega et al. | Jun 2008 | B2 |
7404820 | Mazzocchi et al. | Jul 2008 | B2 |
7410491 | Hopkins et al. | Aug 2008 | B2 |
7410492 | Mazzocchi et al. | Aug 2008 | B2 |
7410602 | Davey et al. | Aug 2008 | B2 |
7442200 | Mazzocchi et al. | Oct 2008 | B2 |
7462192 | Norton et al. | Dec 2008 | B2 |
7476034 | Shedlov et al. | Jan 2009 | B2 |
7537600 | Eskuri | May 2009 | B2 |
7556635 | Mazzocchi et al. | Jul 2009 | B2 |
7556636 | Mazzocchi et al. | Jul 2009 | B2 |
7566338 | Mazzocchi et al. | Jul 2009 | B2 |
7572273 | Mazzocchi et al. | Aug 2009 | B2 |
7572290 | Yodfat et al. | Aug 2009 | B2 |
7582101 | Jones et al. | Sep 2009 | B2 |
7588597 | Frid | Sep 2009 | B2 |
7618434 | Santra et al. | Nov 2009 | B2 |
7621870 | Berrada et al. | Nov 2009 | B2 |
7622070 | Atladottir et al. | Nov 2009 | B2 |
7645261 | Hinchliffe | Jan 2010 | B2 |
7651514 | Salahieh et al. | Jan 2010 | B2 |
7669799 | Elzey et al. | Mar 2010 | B2 |
7670355 | Mazzocchi et al. | Mar 2010 | B2 |
7670356 | Mazzocchi et al. | Mar 2010 | B2 |
7678130 | Mazzocchi et al. | Mar 2010 | B2 |
7686815 | Mazzocchi et al. | Mar 2010 | B2 |
7717935 | Tsugita et al. | May 2010 | B2 |
7735493 | van der Burg et al. | Jun 2010 | B2 |
7763011 | Ortiz et al. | Jul 2010 | B2 |
7780646 | Farnholtz | Aug 2010 | B2 |
7786406 | Flanagan | Aug 2010 | B2 |
7798992 | Ortiz | Sep 2010 | B2 |
7828790 | Griffin | Nov 2010 | B2 |
7828815 | Mazzocchi et al. | Nov 2010 | B2 |
7828816 | Mazzocchi et al. | Nov 2010 | B2 |
7837726 | Von Oepen et al. | Nov 2010 | B2 |
7846175 | Bonnette et al. | Dec 2010 | B2 |
7857844 | Norton et al. | Dec 2010 | B2 |
7862577 | Gray et al. | Jan 2011 | B2 |
7875050 | Samson et al. | Jan 2011 | B2 |
7879062 | Galdonik et al. | Feb 2011 | B2 |
7892188 | Walker et al. | Feb 2011 | B2 |
7909801 | Hinchliffe | Mar 2011 | B2 |
7914549 | Morsi | Mar 2011 | B2 |
7922732 | Mazzocchi et al. | Apr 2011 | B2 |
7931664 | Gray et al. | Apr 2011 | B2 |
7932479 | Bialas et al. | Apr 2011 | B2 |
7942925 | Yodfat et al. | May 2011 | B2 |
7955345 | Kucharczyk et al. | Jun 2011 | B2 |
7955449 | Prokoshkin et al. | Jun 2011 | B2 |
7971333 | Gale et al. | Jul 2011 | B2 |
7989042 | Obara et al. | Aug 2011 | B2 |
7993302 | Hebert et al. | Aug 2011 | B2 |
7993363 | Demond et al. | Aug 2011 | B2 |
7993364 | Morsi | Aug 2011 | B2 |
7996993 | Gray et al. | Aug 2011 | B2 |
7998163 | Salahieh et al. | Aug 2011 | B2 |
8003157 | Andreacchi et al. | Aug 2011 | B2 |
8021379 | Thompson et al. | Sep 2011 | B2 |
8021380 | Thompson et al. | Sep 2011 | B2 |
8043326 | Hancock et al. | Oct 2011 | B2 |
8044322 | Merdan | Oct 2011 | B2 |
8052640 | Fiorella et al. | Nov 2011 | B2 |
8057497 | Raju et al. | Nov 2011 | B1 |
8070769 | Broome | Dec 2011 | B2 |
8088140 | Ferrera et al. | Jan 2012 | B2 |
8092483 | Gladonik et al. | Jan 2012 | B2 |
8092486 | Berrada et al. | Jan 2012 | B2 |
8092508 | Leynov et al. | Jan 2012 | B2 |
8142456 | Rosqueta et al. | Mar 2012 | B2 |
8147534 | Berez et al. | Apr 2012 | B2 |
8152833 | Zaver et al. | Apr 2012 | B2 |
8157833 | Au et al. | Apr 2012 | B2 |
8192484 | Frid | Jun 2012 | B2 |
8197493 | Ferrera et al. | Jun 2012 | B2 |
8217303 | Baxter et al. | Jul 2012 | B2 |
8231651 | Tsugita | Jul 2012 | B2 |
8235047 | Swann et al. | Aug 2012 | B2 |
8236042 | Berez et al. | Aug 2012 | B2 |
8252010 | Raju et al. | Aug 2012 | B1 |
8252016 | Anwar | Aug 2012 | B2 |
8257421 | Berez et al. | Sep 2012 | B2 |
8261648 | Marchand et al. | Sep 2012 | B1 |
8267985 | Garcia et al. | Sep 2012 | B2 |
8267986 | Berez et al. | Sep 2012 | B2 |
8273101 | Garcia et al. | Sep 2012 | B2 |
8278593 | Bialas et al. | Oct 2012 | B2 |
8292914 | Morsi | Oct 2012 | B2 |
8308712 | Provost et al. | Nov 2012 | B2 |
RE43882 | Hopkins et al. | Dec 2012 | E |
8333796 | Tompkins et al. | Dec 2012 | B2 |
8333897 | Bialas et al. | Dec 2012 | B2 |
8361095 | Osborne | Jan 2013 | B2 |
8361138 | Adams | Jan 2013 | B2 |
8394119 | Zaver et al. | Mar 2013 | B2 |
8398670 | Amplatz et al. | Mar 2013 | B2 |
8398701 | Berez et al. | Mar 2013 | B2 |
8409114 | Parins | Apr 2013 | B2 |
8409267 | Berez et al. | Apr 2013 | B2 |
8409269 | Berez et al. | Apr 2013 | B2 |
8409270 | Clerc et al. | Apr 2013 | B2 |
8419658 | Eskuri | Apr 2013 | B2 |
8419787 | Yodfat et al. | Apr 2013 | B2 |
8435218 | Hinchliffe | May 2013 | B2 |
8444668 | Jones et al. | May 2013 | B2 |
8468678 | Salahieh et al. | Jun 2013 | B2 |
8475487 | Bonnette et al. | Jul 2013 | B2 |
8486104 | Samson et al. | Jul 2013 | B2 |
8486105 | Demond et al. | Jul 2013 | B2 |
8500788 | Berez et al. | Aug 2013 | B2 |
8529614 | Berez et al. | Sep 2013 | B2 |
8585713 | Ferrera et al. | Nov 2013 | B2 |
8603132 | Anwar | Dec 2013 | B2 |
8617201 | Hopkins et al. | Dec 2013 | B2 |
8617234 | Garcia et al. | Dec 2013 | B2 |
8623067 | Berez et al. | Jan 2014 | B2 |
8623071 | Lundkvist et al. | Jan 2014 | B2 |
8628564 | Berez et al. | Jan 2014 | B2 |
8663273 | Khairkhahan et al. | Mar 2014 | B2 |
8671815 | Hancock et al. | Mar 2014 | B2 |
8679150 | Janardhan et al. | Mar 2014 | B1 |
8690907 | Janardhan et al. | Apr 2014 | B1 |
8696621 | Gunday et al. | Apr 2014 | B2 |
8715314 | Janardhan et al. | May 2014 | B1 |
8715315 | Janardhan et al. | May 2014 | B1 |
8715316 | Janardhan et al. | May 2014 | B1 |
8715317 | Janardhan et al. | May 2014 | B1 |
8715338 | Frid | May 2014 | B2 |
8721676 | Janardhan et al. | May 2014 | B1 |
8721677 | Janardhan et al. | May 2014 | B1 |
8728116 | Janardhan et al. | May 2014 | B1 |
8728117 | Janardhan et al. | May 2014 | B1 |
8733618 | Janardhan et al. | May 2014 | B1 |
8735777 | Janardhan et al. | May 2014 | B1 |
8747432 | Janardhan et al. | Jun 2014 | B1 |
8753371 | Janardhan et al. | Jun 2014 | B1 |
8758424 | Sacher et al. | Jun 2014 | B2 |
8764787 | Ren | Jul 2014 | B2 |
8771299 | Diamant et al. | Jul 2014 | B2 |
8783151 | Janardhan et al. | Jul 2014 | B1 |
8784434 | Rosenbluth et al. | Jul 2014 | B2 |
8784446 | Janardhan et al. | Jul 2014 | B1 |
8789452 | Janardhan et al. | Jul 2014 | B1 |
8790299 | Gunday et al. | Jul 2014 | B2 |
8790365 | Janardhan et al. | Jul 2014 | B1 |
8795305 | Martin et al. | Aug 2014 | B2 |
8795330 | Janardhan et al. | Aug 2014 | B1 |
8801748 | Martin | Aug 2014 | B2 |
8803030 | Janardhan et al. | Aug 2014 | B1 |
8813625 | Janardhan et al. | Aug 2014 | B1 |
8816247 | Janardhan et al. | Aug 2014 | B1 |
8828045 | Janardhan et al. | Sep 2014 | B1 |
8845678 | Janardhan et al. | Sep 2014 | B1 |
8845679 | Janardhan et al. | Sep 2014 | B1 |
8852227 | Janardhan et al. | Oct 2014 | B1 |
8859934 | Janardhan et al. | Oct 2014 | B1 |
8863631 | Janardhan et al. | Oct 2014 | B1 |
8866049 | Janardhan et al. | Oct 2014 | B1 |
8869670 | Janardhan et al. | Oct 2014 | B1 |
8870901 | Janardhan et al. | Oct 2014 | B1 |
8870910 | Janardhan et al. | Oct 2014 | B1 |
8872068 | Janardhan et al. | Oct 2014 | B1 |
8874434 | Collobert et al. | Oct 2014 | B2 |
8882797 | Janardhan et al. | Nov 2014 | B2 |
8895891 | Janardhan et al. | Nov 2014 | B2 |
8904914 | Janardhan et al. | Dec 2014 | B2 |
8906057 | Connor et al. | Dec 2014 | B2 |
8910555 | Janardhan et al. | Dec 2014 | B2 |
8932320 | Janardhan et al. | Jan 2015 | B1 |
8932321 | Janardhan et al. | Jan 2015 | B1 |
8968330 | Rosenbluth et al. | Mar 2015 | B2 |
8974512 | Aboytes et al. | Mar 2015 | B2 |
8992553 | Diamant et al. | Mar 2015 | B2 |
8998947 | Aboytes et al. | Apr 2015 | B2 |
9034007 | Janardhan | May 2015 | B2 |
9132000 | Vantassel et al. | Sep 2015 | B2 |
9179931 | Janardhan et al. | Nov 2015 | B2 |
9179995 | Janardhan et al. | Nov 2015 | B2 |
9198687 | Fulkerson et al. | Dec 2015 | B2 |
9211132 | Bowman | Dec 2015 | B2 |
9211396 | Aboytes | Dec 2015 | B2 |
9220522 | Fulkerson et al. | Dec 2015 | B2 |
9314324 | Janardhan et al. | Apr 2016 | B2 |
9592068 | Janardhan et al. | Mar 2017 | B2 |
20010031980 | Wensel et al. | Oct 2001 | A1 |
20020010487 | Evans et al. | Jan 2002 | A1 |
20020013548 | Hinchliffe | Jan 2002 | A1 |
20020026211 | Khosravi et al. | Feb 2002 | A1 |
20020045916 | Gray et al. | Apr 2002 | A1 |
20020052638 | Zadno-Azizi | May 2002 | A1 |
20020082558 | Samson et al. | Jun 2002 | A1 |
20020091355 | Hayden | Jul 2002 | A1 |
20020099408 | Marks et al. | Jul 2002 | A1 |
20020099436 | Thornton et al. | Jul 2002 | A1 |
20020111648 | Kusleika et al. | Aug 2002 | A1 |
20020133111 | Shadduck | Sep 2002 | A1 |
20020143349 | Gifford, III et al. | Oct 2002 | A1 |
20020161395 | Douk | Oct 2002 | A1 |
20020169473 | Sepetka et al. | Nov 2002 | A1 |
20020188314 | Anderson et al. | Dec 2002 | A1 |
20020193866 | Saunders | Dec 2002 | A1 |
20020194670 | Hashemi | Dec 2002 | A1 |
20020198550 | Nash et al. | Dec 2002 | A1 |
20020198589 | Leong | Dec 2002 | A1 |
20030004537 | Boyle et al. | Jan 2003 | A1 |
20030065356 | Tsugita et al. | Apr 2003 | A1 |
20030078519 | Salahieh et al. | Apr 2003 | A1 |
20030097094 | Ouriel et al. | May 2003 | A1 |
20030097710 | Adrian | May 2003 | A1 |
20030100945 | Yodfat et al. | May 2003 | A1 |
20030114919 | McQuiston et al. | Jun 2003 | A1 |
20030135265 | Stinson | Jul 2003 | A1 |
20030176884 | Berrada et al. | Sep 2003 | A1 |
20030225448 | Gerberding | Dec 2003 | A1 |
20030226833 | Shapovalov et al. | Dec 2003 | A1 |
20040004061 | Merdan | Jan 2004 | A1 |
20040004063 | Merdan | Jan 2004 | A1 |
20040024416 | Yodfat et al. | Feb 2004 | A1 |
20040039435 | Hancock et al. | Feb 2004 | A1 |
20040044391 | Porter | Mar 2004 | A1 |
20040073293 | Thompson | Apr 2004 | A1 |
20040073300 | Chouinard et al. | Apr 2004 | A1 |
20040088037 | Machreiner et al. | May 2004 | A1 |
20040089643 | Jones et al. | May 2004 | A1 |
20040093015 | Ogle | May 2004 | A1 |
20040098023 | Lee et al. | May 2004 | A1 |
20040098033 | Leeflang et al. | May 2004 | A1 |
20040118902 | Adams | Jun 2004 | A1 |
20040148007 | Jackson et al. | Jul 2004 | A1 |
20040167613 | Yodfat et al. | Aug 2004 | A1 |
20040168298 | Dolan et al. | Sep 2004 | A1 |
20040182451 | Poirier | Sep 2004 | A1 |
20040193140 | Griffin et al. | Sep 2004 | A1 |
20040204737 | Boismier et al. | Oct 2004 | A1 |
20040220610 | Kreidler et al. | Nov 2004 | A1 |
20040225186 | Horne, Jr. et al. | Nov 2004 | A1 |
20040236412 | Brar et al. | Nov 2004 | A1 |
20050015110 | Fogarty et al. | Jan 2005 | A1 |
20050021075 | Bonnette et al. | Jan 2005 | A1 |
20050035101 | Jones et al. | Feb 2005 | A1 |
20050050624 | Pangramuyen | Mar 2005 | A1 |
20050120471 | Lim | Jun 2005 | A1 |
20050124969 | Fitzgerald et al. | Jun 2005 | A1 |
20050131522 | Stinson et al. | Jun 2005 | A1 |
20050133486 | Baker et al. | Jun 2005 | A1 |
20050149108 | Cox | Jul 2005 | A1 |
20050192624 | Mazzocchi et al. | Sep 2005 | A1 |
20050203553 | Maschke | Sep 2005 | A1 |
20050228417 | Teitelbaum et al. | Oct 2005 | A1 |
20050234474 | DeMello et al. | Oct 2005 | A1 |
20050236911 | Botos et al. | Oct 2005 | A1 |
20050251200 | Porter | Nov 2005 | A1 |
20050256563 | Clerc et al. | Nov 2005 | A1 |
20050267510 | Razack | Dec 2005 | A1 |
20050277975 | Saadat et al. | Dec 2005 | A1 |
20050283166 | Greenhalgh | Dec 2005 | A1 |
20050283186 | Berrada et al. | Dec 2005 | A1 |
20060004346 | Begg | Jan 2006 | A1 |
20060009799 | Kleshinski et al. | Jan 2006 | A1 |
20060020286 | Niermann | Jan 2006 | A1 |
20060030878 | Anderson et al. | Feb 2006 | A1 |
20060047286 | West | Mar 2006 | A1 |
20060070516 | McCullagh et al. | Apr 2006 | A1 |
20060100687 | Fahey et al. | May 2006 | A1 |
20060116712 | Sepetka et al. | Jun 2006 | A1 |
20060116713 | Sepetka et al. | Jun 2006 | A1 |
20060122687 | Bassler et al. | Jun 2006 | A1 |
20060136043 | Cully et al. | Jun 2006 | A1 |
20060155305 | Freudenthal et al. | Jul 2006 | A1 |
20060161198 | Sakai et al. | Jul 2006 | A1 |
20060161253 | Lesh | Jul 2006 | A1 |
20060206143 | West | Sep 2006 | A1 |
20060206196 | Porter | Sep 2006 | A1 |
20060206200 | Garcia et al. | Sep 2006 | A1 |
20060229638 | Abrams et al. | Oct 2006 | A1 |
20060229645 | Bonnette et al. | Oct 2006 | A1 |
20060241739 | Besselink et al. | Oct 2006 | A1 |
20060264904 | Kerby et al. | Nov 2006 | A1 |
20060276887 | Brady et al. | Dec 2006 | A1 |
20060282111 | Morsi | Dec 2006 | A1 |
20070016233 | Ferrera et al. | Jan 2007 | A1 |
20070027522 | Chang et al. | Feb 2007 | A1 |
20070034615 | Kleine | Feb 2007 | A1 |
20070045255 | Kleine et al. | Mar 2007 | A1 |
20070060880 | Gregorich et al. | Mar 2007 | A1 |
20070060942 | Zadno-Azizi | Mar 2007 | A2 |
20070088383 | Pal et al. | Apr 2007 | A1 |
20070112381 | Figulla et al. | May 2007 | A1 |
20070118165 | DeMello et al. | May 2007 | A1 |
20070135832 | Wholey et al. | Jun 2007 | A1 |
20070135833 | Talpade et al. | Jun 2007 | A1 |
20070142903 | Dave | Jun 2007 | A1 |
20070168019 | Amplatz et al. | Jul 2007 | A1 |
20070173921 | Wholey et al. | Jul 2007 | A1 |
20070185500 | Martin et al. | Aug 2007 | A1 |
20070185501 | Martin et al. | Aug 2007 | A1 |
20070197103 | Martin et al. | Aug 2007 | A1 |
20070198029 | Martin et al. | Aug 2007 | A1 |
20070198030 | Martin et al. | Aug 2007 | A1 |
20070225749 | Martin et al. | Sep 2007 | A1 |
20070228023 | Kleine et al. | Oct 2007 | A1 |
20070233174 | Hocking et al. | Oct 2007 | A1 |
20070265656 | Amplatz et al. | Nov 2007 | A1 |
20070288054 | Tanaka et al. | Dec 2007 | A1 |
20080027356 | Chen et al. | Jan 2008 | A1 |
20080033475 | Meng | Feb 2008 | A1 |
20080045881 | Teitelbaum et al. | Feb 2008 | A1 |
20080065008 | Barbut et al. | Mar 2008 | A1 |
20080077119 | Snyder et al. | Mar 2008 | A1 |
20080097374 | Korleski et al. | Apr 2008 | A1 |
20080097393 | Chen | Apr 2008 | A1 |
20080097395 | Adams et al. | Apr 2008 | A1 |
20080097398 | Mitelberg et al. | Apr 2008 | A1 |
20080097401 | Trapp et al. | Apr 2008 | A1 |
20080107641 | Kuebler | May 2008 | A1 |
20080109063 | Hancock et al. | May 2008 | A1 |
20080195230 | Quijano et al. | Aug 2008 | A1 |
20080221601 | Huynh et al. | Sep 2008 | A1 |
20080228209 | DeMello et al. | Sep 2008 | A1 |
20080234722 | Bonnette et al. | Sep 2008 | A1 |
20080262487 | Wensel et al. | Oct 2008 | A1 |
20080269774 | Garcia et al. | Oct 2008 | A1 |
20080275464 | Abrams et al. | Nov 2008 | A1 |
20080275488 | Fleming | Nov 2008 | A1 |
20080294181 | Wensel et al. | Nov 2008 | A1 |
20080296274 | Bialas et al. | Dec 2008 | A1 |
20080300673 | Clerc et al. | Dec 2008 | A1 |
20080306499 | Katoh et al. | Dec 2008 | A1 |
20080312681 | Ansel et al. | Dec 2008 | A1 |
20090024085 | To et al. | Jan 2009 | A1 |
20090025820 | Adams | Jan 2009 | A1 |
20090036833 | Parins | Feb 2009 | A1 |
20090043283 | Turnlund et al. | Feb 2009 | A1 |
20090062841 | Amplatz et al. | Mar 2009 | A1 |
20090076540 | Marks et al. | Mar 2009 | A1 |
20090082800 | Janardhan | Mar 2009 | A1 |
20090099647 | Glimsdale et al. | Apr 2009 | A1 |
20090105737 | Fulkerson et al. | Apr 2009 | A1 |
20090105748 | Fogarty et al. | Apr 2009 | A1 |
20090105753 | Greenhalgh et al. | Apr 2009 | A1 |
20090112251 | Qian et al. | Apr 2009 | A1 |
20090114626 | Oberg | May 2009 | A1 |
20090125097 | Bruszewski et al. | May 2009 | A1 |
20090157048 | Sutermeister et al. | Jun 2009 | A1 |
20090172935 | Anderson et al. | Jul 2009 | A1 |
20090188269 | Attarwala et al. | Jul 2009 | A1 |
20090198269 | Hannes et al. | Aug 2009 | A1 |
20090208385 | Howorth et al. | Aug 2009 | A1 |
20090209855 | Drilling et al. | Aug 2009 | A1 |
20090216326 | Hirpara et al. | Aug 2009 | A1 |
20090221995 | Harlan | Sep 2009 | A1 |
20090248071 | Saint et al. | Oct 2009 | A1 |
20090264985 | Bruszewski | Oct 2009 | A1 |
20090275974 | Marchand et al. | Nov 2009 | A1 |
20090287120 | Ferren et al. | Nov 2009 | A1 |
20090297582 | Meyer et al. | Dec 2009 | A1 |
20090306702 | Miloslavski et al. | Dec 2009 | A1 |
20090306762 | McCullagh et al. | Dec 2009 | A1 |
20090312834 | Wood et al. | Dec 2009 | A1 |
20090318892 | Aboytes et al. | Dec 2009 | A1 |
20090318948 | Linder | Dec 2009 | A1 |
20100010622 | Lowe et al. | Jan 2010 | A1 |
20100023034 | Linder et al. | Jan 2010 | A1 |
20100023038 | Santra et al. | Jan 2010 | A1 |
20100023105 | Levy et al. | Jan 2010 | A1 |
20100030256 | Dubrul et al. | Feb 2010 | A1 |
20100049240 | Papp | Feb 2010 | A1 |
20100069882 | Jennings et al. | Mar 2010 | A1 |
20100069948 | Veznedaroglu et al. | Mar 2010 | A1 |
20100087850 | Razack | Apr 2010 | A1 |
20100102046 | Huang et al. | Apr 2010 | A1 |
20100114017 | Lenker et al. | May 2010 | A1 |
20100131000 | DeMello et al. | May 2010 | A1 |
20100137892 | Krolik et al. | Jun 2010 | A1 |
20100137899 | Razack | Jun 2010 | A1 |
20100152834 | Hannes et al. | Jun 2010 | A1 |
20100191319 | Lilburn et al. | Jul 2010 | A1 |
20100193485 | Anukhin et al. | Aug 2010 | A1 |
20100217276 | Garrison et al. | Aug 2010 | A1 |
20100217303 | Goodwin | Aug 2010 | A1 |
20100230391 | Baxter et al. | Sep 2010 | A1 |
20100262221 | Schafer et al. | Oct 2010 | A1 |
20100268264 | Bonnette et al. | Oct 2010 | A1 |
20100280592 | Shin et al. | Nov 2010 | A1 |
20100318097 | Ferrera et al. | Dec 2010 | A1 |
20110036820 | Merdan | Feb 2011 | A1 |
20110046719 | Frid | Feb 2011 | A1 |
20110056350 | Gale et al. | Mar 2011 | A1 |
20110060359 | Hannes et al. | Mar 2011 | A1 |
20110060400 | Oepen et al. | Mar 2011 | A1 |
20110077620 | deBeer | Mar 2011 | A1 |
20110082493 | Samson et al. | Apr 2011 | A1 |
20110087147 | Garrison et al. | Apr 2011 | A1 |
20110094708 | Cardone | Apr 2011 | A1 |
20110125132 | Krolik et al. | May 2011 | A1 |
20110125181 | Brady et al. | May 2011 | A1 |
20110152993 | Marchand et al. | Jun 2011 | A1 |
20110160757 | Ferrera et al. | Jun 2011 | A1 |
20110160760 | Ferrera et al. | Jun 2011 | A1 |
20110160761 | Ferrera et al. | Jun 2011 | A1 |
20110190797 | Fulkerson et al. | Aug 2011 | A1 |
20110190868 | Ducke et al. | Aug 2011 | A1 |
20110203446 | Dow et al. | Aug 2011 | A1 |
20110208227 | Becking | Aug 2011 | A1 |
20110210108 | Bialas et al. | Sep 2011 | A1 |
20110213403 | Aboytes | Sep 2011 | A1 |
20110213407 | Morsi | Sep 2011 | A1 |
20110238041 | Lim et al. | Sep 2011 | A1 |
20110264133 | Hanlon et al. | Oct 2011 | A1 |
20110265943 | Rosqueta et al. | Nov 2011 | A1 |
20110283871 | Adams | Nov 2011 | A1 |
20110295359 | Clerc et al. | Dec 2011 | A1 |
20110307072 | Anderson et al. | Dec 2011 | A1 |
20110319917 | Ferrera et al. | Dec 2011 | A1 |
20120016406 | Ferrera et al. | Jan 2012 | A1 |
20120022579 | Fulton | Jan 2012 | A1 |
20120029616 | Guerriero et al. | Feb 2012 | A1 |
20120041460 | Ferrera et al. | Feb 2012 | A1 |
20120055614 | Hancock et al. | Mar 2012 | A1 |
20120057813 | Von Oepen | Mar 2012 | A1 |
20120065660 | Ferrera et al. | Mar 2012 | A1 |
20120083824 | Berrada et al. | Apr 2012 | A1 |
20120116443 | Ferrera et al. | May 2012 | A1 |
20120158124 | Zaver et al. | Jun 2012 | A1 |
20120164157 | Kuebler | Jun 2012 | A1 |
20120179192 | Fogarty et al. | Jul 2012 | A1 |
20120197283 | Marchand et al. | Aug 2012 | A1 |
20120197285 | Martin et al. | Aug 2012 | A1 |
20120209312 | Aggerholm et al. | Aug 2012 | A1 |
20120231414 | Johnson | Sep 2012 | A1 |
20120232655 | Lorrison et al. | Sep 2012 | A1 |
20120239066 | Levine et al. | Sep 2012 | A1 |
20120239074 | Aboytes et al. | Sep 2012 | A1 |
20120245517 | Tegels | Sep 2012 | A1 |
20120259404 | Tieu et al. | Oct 2012 | A1 |
20120265238 | Hopkins et al. | Oct 2012 | A1 |
20120271337 | Figulla et al. | Oct 2012 | A1 |
20120271403 | Gries | Oct 2012 | A1 |
20120273467 | Baxter et al. | Nov 2012 | A1 |
20120277850 | Bertini | Nov 2012 | A1 |
20120283768 | Cox et al. | Nov 2012 | A1 |
20120290067 | Cam et al. | Nov 2012 | A1 |
20120316598 | Becking et al. | Dec 2012 | A1 |
20120330347 | Becking et al. | Dec 2012 | A1 |
20120330350 | Jones et al. | Dec 2012 | A1 |
20130030460 | Marks et al. | Jan 2013 | A1 |
20130060323 | McHugo | Mar 2013 | A1 |
20130066357 | Aboytes et al. | Mar 2013 | A1 |
20130085515 | To et al. | Apr 2013 | A1 |
20130090682 | Bachman et al. | Apr 2013 | A1 |
20130092298 | Bregulla et al. | Apr 2013 | A1 |
20130096587 | Smith et al. | Apr 2013 | A1 |
20130116284 | Salzman | May 2013 | A1 |
20130138136 | Beckham et al. | May 2013 | A1 |
20130167960 | Pethe et al. | Jul 2013 | A1 |
20130220610 | Mosing et al. | Aug 2013 | A1 |
20130240096 | Browne et al. | Sep 2013 | A1 |
20130261656 | Lorenzo | Oct 2013 | A1 |
20130289589 | Krolik et al. | Oct 2013 | A1 |
20130327469 | Pingleton et al. | Dec 2013 | A1 |
20140005712 | Martin | Jan 2014 | A1 |
20140046359 | Bowman et al. | Feb 2014 | A1 |
20140074144 | Shrivastava et al. | Mar 2014 | A1 |
20140081315 | McIntosh et al. | Mar 2014 | A1 |
20140121758 | Ferrera et al. | May 2014 | A1 |
20140128905 | Molaei | May 2014 | A1 |
20140188208 | Hancock et al. | Jul 2014 | A1 |
20140200608 | Brady et al. | Jul 2014 | A1 |
20140214067 | Sachar et al. | Jul 2014 | A1 |
20140243882 | Ma | Aug 2014 | A1 |
20140249569 | Kusleika | Sep 2014 | A1 |
20140276403 | Follmer et al. | Sep 2014 | A1 |
20140276922 | McLain et al. | Sep 2014 | A1 |
20140277013 | Sepetka et al. | Sep 2014 | A1 |
20140277082 | Janardhan et al. | Sep 2014 | A1 |
20140324091 | Rosenbluth et al. | Oct 2014 | A1 |
20140330302 | Tekulve et al. | Nov 2014 | A1 |
20140371839 | Henkes et al. | Dec 2014 | A1 |
20150005801 | Marquis et al. | Jan 2015 | A1 |
20150018928 | Sachar et al. | Jan 2015 | A1 |
20150028005 | Janardhan et al. | Jan 2015 | A1 |
20150032121 | Janardhan et al. | Jan 2015 | A1 |
20150032146 | Janardhan et al. | Jan 2015 | A1 |
20150032147 | Janardhan et al. | Jan 2015 | A1 |
20150080941 | Janardhan et al. | Mar 2015 | A1 |
20150196744 | Aboytes | Jul 2015 | A1 |
20150209050 | Aboytes et al. | Jul 2015 | A1 |
20150209058 | Ferrera et al. | Jul 2015 | A1 |
20150216650 | Shaltis | Aug 2015 | A1 |
20150223829 | Aboytes | Aug 2015 | A1 |
20150238303 | Janardhan | Aug 2015 | A1 |
20150250497 | Marks et al. | Sep 2015 | A1 |
20150265299 | Cooper et al. | Sep 2015 | A1 |
20150272590 | Aboytes et al. | Oct 2015 | A1 |
20150297240 | Divino et al. | Oct 2015 | A1 |
20150305756 | Rosenbluth et al. | Oct 2015 | A1 |
20150314111 | Solar et al. | Nov 2015 | A1 |
20150342613 | Aboytes et al. | Dec 2015 | A1 |
20150352325 | Quick | Dec 2015 | A1 |
20150360001 | Quick | Dec 2015 | A1 |
20150374391 | Quick et al. | Dec 2015 | A1 |
20150374393 | Brady et al. | Dec 2015 | A1 |
20160045212 | Janardhan et al. | Feb 2016 | A1 |
20160213459 | Janardhan et al. | Jul 2016 | A1 |
Number | Date | Country |
---|---|---|
0 521 595 | Jan 1993 | EP |
1 210 032 | Dec 2003 | EP |
1 059 890 | Dec 2004 | EP |
1 028 671 | Jan 2005 | EP |
1 026 997 | Oct 2005 | EP |
1 156 757 | Dec 2005 | EP |
1 117 344 | Jun 2006 | EP |
1 676 545 | Jul 2006 | EP |
1 214 016 | Jun 2007 | EP |
1 389 959 | Nov 2007 | EP |
1 028 670 | Jan 2008 | EP |
1 459 703 | Jan 2008 | EP |
1 402 848 | Oct 2008 | EP |
1 482 859 | Oct 2008 | EP |
1 715 795 | Dec 2008 | EP |
1 479 357 | May 2009 | EP |
1 494 619 | Aug 2009 | EP |
1 589 900 | Sep 2009 | EP |
1 681 034 | Jan 2010 | EP |
1 487 526 | Sep 2010 | EP |
1 377 224 | May 2011 | EP |
2 113 224 | Jun 2011 | EP |
1 583 485 | Sep 2011 | EP |
2 301 450 | Nov 2011 | EP |
2 217 315 | May 2012 | EP |
0 851 777 | Dec 2012 | EP |
2 057 967 | Jan 2013 | EP |
1 904 217 | Mar 2013 | EP |
1 706 063 | Oct 2013 | EP |
2 517 658 | Dec 2013 | EP |
0 998 228 | Jun 2014 | EP |
1 981 413 | Nov 2014 | EP |
2 482 913 | Nov 2014 | EP |
2 700 368 | Feb 2015 | EP |
1 483 009 | Oct 2015 | EP |
2 474 277 | Oct 2015 | EP |
1 006 890 | Sep 2016 | EP |
667071 | Feb 1952 | GB |
WO 0160442 | Aug 2001 | WO |
WO 2004093738 | Nov 2004 | WO |
WO 2007011353 | Jan 2007 | WO |
WO 2010014447 | Feb 2010 | WO |
WO 2011119872 | Sep 2011 | WO |
WO 2012011097 | Jan 2012 | WO |
WO 2012110619 | Aug 2012 | WO |
WO 2012120490 | Sep 2012 | WO |
WO 2014127738 | Aug 2014 | WO |
WO 2014141226 | Sep 2014 | WO |
WO 2014154137 | Oct 2014 | WO |
WO 2015138649 | Sep 2015 | WO |
Entry |
---|
US 6,348,062, 02/2002, Hopkins et al. (withdrawn) |
6th Annual MedTech Investing Conference, “Venture Capital and Private Equity Investing in Medical Devices and Healthcare Technologies,” May 16-17, 2007. |
Abbott Laboratories, “Xact Carotid Stent System, RX ACCULINK Carotid Stent System, 2006 Clinical Update for Physicians”, 2007. |
Adams et al., “Guidelines for the Early Management of Patients with Ischemic Stroke: A Scientific Statement from the Stroke Council of the American Stroke Association,” Stroke, 2003, vol. 34, pp. 1056-1083. |
Adams et al., “Guidelines for the Early Management of Patients with Ischemic Stroke—2005 Guidelines Update—A Scientific Statement from the Stroke Council of the American Stroke Association,” Stroke, 2005, vol. 36, pp. 916-923. |
Alligator Retrieval Device Product Brochure, 2009. |
Bose et al., “A Novel, Self-Expanding, Nitinol Stent in Medically Refractory Intracranial Atherosclerotic Stenoses, The Wingspan Study,” http://stroke.ahajournals.org/, American Heart Association, Inc., 2007, pp. 1531-1537. |
Boston Scientific, “Excelsior 1018 Microcatheter, for Peak Performance in GDC Delivery,” 2000. |
Boston Scientific, “Excelsior 1018 Microcatheter, Neurovascular Access,” 2004. |
Boston Scientific, “Excelsior SL-10 Microcatheter, Neurovascular Access,” 2004. |
Boston Scientific, “Excelsior SL-10 Microcatheter, The 10 Microcatheter with a 14 Lumen,” 2002. |
Boston Scientific, “FilterWire EX, Embolic Protection System, Instruction for Use,” Apr. 2004. |
Boston Scientific, “Neuroform2 Microdelivery Stent System, Technical Bulletin No. 1—Parent Vessel Protection,” 2004. |
Boston Scientific, “Neuroform2 Microdelivery Stent System, Neurovascular Reconstruction,” 2004. |
Boston Scientific, “Neuroform3 Microdelivery Stent System, Confidence Begins with Control,” 2005. |
Boston Scientific, “Pre-Shaped Microcatheters, Product Selection Guide,” 2004. |
Boston Scientific, “Renegade 18 Microcatheter, Neurovascular Access,” 2004. |
Boston Scientific, “Synchro Guidewires, Neurovascular Access,” 2004. |
Boston Scientific, “Tracker Excel-14 Microcatheter, Engineered for GDC Coil Delivery,” 1998. |
Boston Scientific, “Tracker Excel-14 Microcatheter, Neurovascular Access,” 2004. |
Boston Scientific, “Transend Guidewires, Neurovascular Access,” 2003. |
Braley et al., “Advancements in Braided Materials Technology,” 46th Int'l SAMPLE Symposium, May 2001, pp. 2445-2454. |
Chestnut Medical Technologies, Inc., “Instructions for Use (IFU), Alligator Retrieval Device (ARD),” 2005. |
Concentric Medical, “Instructions for Use, Concentric Micro Catheters”, 2003. |
Concentric Medical, “Instructions for Use, Merci Retriever X5IX6,” 2004. |
Cordis Corporation, “Cordis CarotidSystem, Cordis Precise Nitinol Self-Expanding Stent and Cordis ANGIOGUARD Emboli Capture Guidewire System,” 2004. |
Cordis Corporation, “Cordis CarotidSystem, Technical Specification and Product Codes,” 2006. |
Cordis Corporation, “Cordis CarotidSystem RX, Technical Specifications and Product Codes,” 2007. |
Cordis Endovascular, “Diagnosing Carotid Artery Disease: The Leading Cause of Stroke,” Sample News Article #1: “Diagnosis,” 2008 or earlier. |
Embo Shield, “Xact, Customized for Carotid Arteries, The Barewaire Revolution is Here,” 2005. |
Ev3, “ev3 Carotid Innovations, Redefining Confidence, See what you've been missing . . . ”, ev3 The Endovascular Company, 2008 or earlier. |
Furlan et al., “Intra-arterial Prourokinase for Acute Ischemic Stroke, The PROCT II Study: A Randomized Controlled Trial,” JAMA, Dec. 1, 1999, vol. 282, Issue 21, pp. 2003-2011. |
Henkes et al., “A New Device for Endovascular Coil Retrieval from Intracranial Vessels: Alligator Retrieval Device”, AJRN Am J. Neuroradiol, Feb. 2006, vol. 27, pp. 327-329. |
Micro Therapeutics, Inc., “Mirage .008 Hydrophilic Guidewire”, 2000. |
Micrus Endovascular, “WATUSI guidewire, Let's Dance,” 2006. |
Rymer et al., “Organizing regional networks to increase acute stroke intervention”, Neurological Research, 2005, vol. 27, Issue 1, pp. S9-S16. |
Sarti et al., “International Trends in Mortality From Stroke, 1968 to 1994”, http://stroke.ahajournals.org/, American Heart Association, Inc., Apr. 20, 2000, pp. 1588-1601. |
University of Minnesota, “Design of Medical Devices Conference,” Apr. 17-19, 2007. |
Yadav, “Carotid stenting in high-risk patients: Design and rationale of the SAPPHIRE trial”, Cleveland Clinic Journal of Medicine, Jan. 2004, vol. 71, Issue 1, pp. S45-S46. |
Yadav et al., “Protected Carotid-Artery Stenting versus Endarterectomy in High-Risk Patients,” The New England Journal of Medicine, Oct. 7, 2004, vol. 351, Issue 15, pp. 1493-1501 & 1565-1567. |
U.S. Appl. No. 60/980,736, filed Oct. 17, 2007. |
U.S. Appl. No. 61/044,392, filed Apr. 11, 2008. |
U.S. Appl. No. 61/015,154, filed Dec. 19, 2007. |
U.S. Appl. No. 60/989,422, filed Nov. 20, 2007. |
U.S. Appl. No. 61/019,506, filed Jan. 7, 2008. |
U.S. Appl. No. 60/987,384, filed Nov. 12, 2007. |
U.S. Appl. No. 61/129,823, filed Jul. 22, 2008. |
U.S. Appl. No. 61/202,612, filed Mar. 18, 2009. |
U.S. Appl. No. 14/709,794, filed May 12, 2015, Distal Embolic Protection Devices and Mehods for Their Use. |
U.S. Appl. No. 14/551,337, filed Nov. 24. 2014, Free End Vascular Treatment Systems. |
U.S. Appl. No. 14/013,421, filed Aug. 29, 2013, Laser Cutting Systems. |
U.S. Appl. No. 14/013,448, filed Aug. 29, 2013, Woven Vascular Device End Treatments. |
U.S. Appl. No. 14/224,637, filed Mar. 25, 2014, Variably Heat-Treated Tubular Devices. |
U.S. Appl. No. 14/225,055, filed Mar. 25, 2014, Reversibly Coupled Joints. |
U.S. Appl. No. 14/269,594, filed May 5, 2014, Aspiration Catheters. |
U.S. Appl. No. 14/926,980, filed Oct. 29, 2015, Variably Bulbous Vascular Treatment Devices. |
U.S. Appl. No. 15/085,083, filed Mar. 30, 2016, Longitudinally Variable Vascular Treatment Devices. |
U.S. Appl. No. 15/457,089, filed Mar. 13, 2017, Vascular Treatment Devices. |
Number | Date | Country | |
---|---|---|---|
20160045211 A1 | Feb 2016 | US |
Number | Date | Country | |
---|---|---|---|
61798540 | Mar 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14012161 | Aug 2013 | US |
Child | 14926636 | US | |
Parent | 13952982 | Jul 2013 | US |
Child | 14012161 | US |