A shaped charge for use in a perforating gun is generally described. More specifically, open and encapsulated shaped charges for use in an exposed perforating gun are described.
Perforating gun assemblies are used in many oilfield or gas well completions. In particular, the assemblies are used to generate holes in steel casing pipe/tubing and/or cement lining in a wellbore to gain access to the oil and/or gas deposit formation. In order to maximize extraction of the oil/gas deposits, various perforating gun systems are employed. These assemblies are usually elongated and frequently cylindrical, and include a detonating cord arranged within the interior of the assembly and connected to shaped charge perforators (or shaped charges) disposed therein.
The type of perforating gun assembly employed may depend on various factors, such as the conditions in the formation or restrictions in the wellbore. For instance, a hollow-carrier perforating gun system having a tube for carrying the shaped charges may be selected to help protect the shaped charges from wellbore fluids and pressure (the wellbore environment). One limitation of the hollow-carrier perforating gun system is that it is often limited in inner-diameter, which may limit the size of the shaped charges it carries. An alternative perforating gun system often used is an exposed or encapsulated perforating gun system. This system may allow for the delivery of larger sized shaped charges than those of the hollow-carrier gun system. The exposed perforating gun system typically includes a carrier strip upon which shaped charges are mounted. Because these shaped charges are not contained within a hollow tube, as those of a hollow-carrier perforating gun system, the shaped charges run the risk of being exposed to the wellbore environment. This issue is typically addressed by encapsulating/sealing each individual shaped charge to prevent direct exposure to fluids and/or pressure from the wellbore environment.
Typically, shaped charges are configured to focus ballistic energy onto a target to initiate production flow. Shaped charge design selection is also used to predict/simulate the flow of the oil and/or gas from the formation. The configuration of shaped charges may include conical or round aspects having a single point of initiation through a metal case, which contains an explosive charge material, with or without a liner therein, and that produces a perforating jet upon initiation. It should be recognized that the case or housing of the shaped charge is distinguished from the casing of the wellbore, which is placed in the wellbore after the drilling process and may be cemented in place in order to stabilize the borehole prior to perforating the surrounding formations. These shaped charges focus the entire ballistic energy onto a single point on a target, thereby typically producing a round perforation hole in the steel casing pipe or tubing, surrounding cement, and/or the surrounding formation. The ballistic energy creates a detonation wave that collapses the shaped charge liner (if present), thereby forming a forward-moving high velocity jet that travels through an open end of the case of the shaped charge. In some instances, the jet pierces the perforating gun casing and/or the cement liner and forms a cylindrical or conical-shaped tunnel in the surrounding target formation.
Such shaped charges are commercially available, and general examples of these prior shaped charges are illustrated in
Some shaped charges are encapsulated for protection from environmental conditions within the wellbore. Such shaped charges are mostly sealed with caps at what would normally be the shaped charge open end.
Encapsulated charges using high temperature stable explosives that are insensitive to initiation such as Hexanitrostilbene (HNS), 2,6-Bis(picrylamino)-3,5-dinitropyridine (PYX), or triamino-trinitrobenzene (TATB), may be extremely difficult to reliably initiate. Because HNS has a reduced detonation energy output, compared to other conventional oilfield explosives, it also has a relatively low initiation sensitivity, compared to other conventional oilfield explosives. When HNS is utilized in encapsulated shaped charges, its ability to initiate decreases even further due to the presence of a solid metal layer at the initiation point of the pressure sealed or encapsulated charge. This solid metal layer is often designed to withstand high hydraulic pressures, by virtue of increasing the thickness of the layer or incorporating other geometrical designs. A severe disadvantage with this arrangement is that the thickness of the solid metal layer must be increased due to the high hydraulic pressures within the wellbore where the shaped charge will be deployed/initiated. Due to the reduced initiation sensitivity, encapsulated shaped charges that include HNS or other insensitive explosive types and a relatively thick solid metal barrier layer as part of the charge case are often unable to initiate reliably using a detonating cord that also includes the same type of explosive (for instance, a HNS detonating cord).
According to the disadvantages described above, there is a need for a device and method that provides for a combination and arrangement of high temperature stable, insensitive explosives within a shaped charge, that also withstands the high hydraulic pressures of a wellbore. Further, there is a need for a shaped charge that is water and pressure insensitive, and includes an enhanced detonation capability. There is a further need for a shaped charge that provides a reliable initiation sensitivity. There is also a need for a perforating gun carrier system that is able to receive shaped charges of non-standard sizes.
This disclosure generally describes shaped charges for use in perforating guns. The shaped charges generally include a case having at least one wall that defines a hollow interior within the case. The wall includes an external surface and an internal surface. An explosive load is disposed within the hollow interior of the case, and is positioned so that it is adjacent at least a portion of the internal surface. The case further includes an initiation point chamber that at least partially extends between the external surface and the internal surface of the wall. The initiation point chamber may encompass a through-channel within, or a thinned-region of the wall. At least one self-contained, compressed explosive initiation pellet is contained within or adjacent the initiation point chamber. In an embodiment, the self-contained, compressed explosive initiation pellet is non-water soluble. The self-contained, compressed explosive initiation pellet may be a distinct explosive material, separate from the explosive load material, and may be limited in location to the initiation point chamber (as opposed to occupying a significant portion of the hollow interior of the case). According to an aspect, the self-contained, compressed explosive initiation pellet is of a different chemical composition from the explosive load, and includes additional components that have been mixed with explosive material, such components being different from those components found in the explosive load material. Further, the self-contained, compressed explosive initiation pellet may be physically separated from the explosive load.
The present disclosure further describes the shaped charge having a case with an open front portion, a back wall portion, and at least one side wall portion extending between the open front portion and the back wall portion. According to an aspect, the back wall portion and the side wall portion define a hollow interior. An explosive load is disposed adjacent the back wall portion and at least a part of the side wall portion, so that the explosive load is disposed in the hollow interior. The self-contained, compressed explosive initiation pellet may be placed in an enclosed cavity, which separates the self-contained, compressed explosive initiation pellet from the explosive load. The shaped charge may further include a cap configured to close the open front portion of the case, thereby forming a hermetically-sealed shaped charge (also know as an encapsulated shaped charge). The cap may help prevent fluids and pressure external to the hermetically sealed shaped charge from entering the internal space of the hermetically sealed shaped charge.
According to an aspect, the shaped charges described hereinabove are particularly suited for use in an exposed perforating gun carrier system. They may also be utilized with a closed perforating gun, such as a gun design including a shaped charge/(s) within a tubular structure. In an embodiment, the exposed perforating gun carrier system includes a shaped charge carrier configured for receiving the shaped charges.
The present embodiments also relate to a method of perforating a wellbore utilizing using a shaped charge including the self-contained, compressed explosive initiation pellet. According to an aspect, the method includes arranging at least one shaped charge within a perforating gun, positioning the perforating gun at a perforating location within a wellbore, and initiating the at least one shaped charge. The shaped charge arranged in the perforating gun may include a case having a hollow interior, a liner housed within the case, an explosive load disposed within the hollow interior, an initiation point chamber extending along an external surface of the case, and at least one self-contained, compressed explosive initiation pellet adjacent or within the initiation point chamber. The self-contained, compressed explosive initiation pellet may be integrated with the case of shaped charge. According to an aspect, the perforating location includes a hydraulic pressure that is less than a compression pressure of the self-contained, compressed explosive initiation pellet. The initiation of the shaped charge may include detonating the self-contained, compressed explosive initiation pellet and transferring the energy from detonation of the self-contained, compressed explosive initiation pellet to the explosive load.
The present embodiments further relate to a method of making a shaped charge having an integrated, self-contained, compressed explosive initiation pellet. According to an aspect, the method includes providing a self-contained, compressed explosive initiation pellet that utilizes an explosive material. The method may further include adding a hydrophobic substance with the explosive material to form the self-contained, compressed explosive initiation pellet. In a further embodiment, the method may include compressing the mixed explosive material and hydrophobic substance to a certain level to form the self-contained, compressed explosive initiation pellet, and then placing the self-contained, compressed explosive initiation pellet within the shaped charge such that it is situated within the shaped charge at a location within the initiation point chamber of the shaped charge, and alternatively, physically separated from the explosive load of the shaped charge. In an embodiment, the method includes providing a case having an open front portion, a back wall portion, at least one side wall portion extending between the open front portion and the back wall portion, and a hollow interior defined by the back wall portion and the side wall portions. An initiation point chamber may be provided in the back wall portion, so that the initiation point chamber extends between an external surface and an internal surface of the back wall portion. According to an aspect, the method includes disposing the self-contained, compressed explosive initiation pellet within or adjacent the initiation point chamber, and disposing a separate explosive load within the hollow interior, the separate explosive load being physically separated from the self-contained, compressed explosive initiation pellet. In such described embodiments, a shaped charge is produced or utilized, which allows for the incorporation of an environmentally insensitive explosive material in combination with a more sensitive explosive material, providing benefits to a drilling operation that would not normally be available from a shaped charge that utilizes a single environmentally sensitive explosive material alone.
A more particular description of the disclosure will be rendered by reference to specific embodiments thereof that are illustrated in the appended drawings. Understanding that these drawings depict only typical embodiments thereof and are not therefore to be considered to be limiting of its scope, exemplary embodiments will be described and explained with additional specificity and detail through the use of the accompanying drawings in which:
Various features, aspects, and advantages of the embodiments will become more apparent from the following detailed description, along with the accompanying figures in which like numerals represent similar components throughout the figures and text. The various described features are not necessarily drawn to scale, but are drawn to emphasize specific features relevant to some embodiments.
Reference will now be made in detail to various embodiments. Each example is provided by way of explanation, and is not meant as a limitation and does not constitute a definition of all possible embodiments.
A shaped charge is generally described herein, having particular use in conjunction with a perforating gun assembly. In an embodiment, the shaped charge is configured for use with a perforating gun assembly, in particular for oilfield or gas well drilling or completions. The shaped charge may include a case. According to an aspect, the case includes at least one wall that defines a hollow interior within the case. As used herein, the term “hollow interior” refers to a space within the case, which may include a liner and an explosive load therein. It should be understood, however, that the case is not entirely hollow once the explosive load and/or the liner is positioned therein. The at least one wall may include an external surface, and an internal surface that defines the hollow interior. In an embodiment, an explosive load is disposed within the hollow interior of the case, and is positioned so that it is adjacent at least a portion of the internal surface. The case may further include an initiation point chamber that at least partially extends between the external surface and the internal surface of the wall. In one aspect, the initiation point chamber may be at a through-channel in the wall, or alternatively, at a thinned-region of the wall or in a cavity of the wall. The shaped charge may include a precision-machined metal layer at the initiation point chamber, which serves as a mechanical barrier to withstand hydraulic pressures in the wellbore. According to an aspect, the shaped charge includes a self-contained, compressed explosive initiation pellet that serves as an energetic booster that is powerful enough to break the mechanical barrier. As used herein, the term “self-contained” refers to a pre-formed material that demonstrates its desired properties, so that it has a three-dimensional self-supporting structure. Utilization of the self-contained, compressed explosive initiation pellet at the initiation point chamber enables an increased thickness of the mechanical barrier at the initiation point chamber, helping to facilitate a shaped charge that has increased pressure resistance ratings. In an embodiment, the self-contained, compressed explosive initiation pellet is integrated within the shaped charge structure, and is distinct from the explosive load. As used herein, the term “integrated” refers to the incorporation of the self-contained, compressed explosive initiation pellet within a cavity formed in/immediately adjacent to a wall of the case, so that the self-contained, compressed explosive initiation pellet is essentially a part of (or combined with) the structure of the case, as opposed to being a continuous extension of the explosive load. In some instances, the self-contained, compressed explosive initiation pellet is physically separated from the explosive load by a physical barrier. According to an aspect, the self-contained, compressed explosive initiation pellet is formed from an explosive material that is distinct from the explosive load material(s).
For purposes of illustrating features of the embodiments, an example will now be introduced and referenced throughout the disclosure. Those skilled in the art will recognize that this example is illustrative and not limiting and is provided purely for explanatory purposes.
Turning now to the figures,
The shaped charges 10A/10B/10C/10D each include a case 20. The case 20 may be formed from machinable steel, aluminum, stainless-steel, copper, zinc material, and the like. According to an aspect, the case 20 is substantially cylindrical and includes at least one wall 20A. According to an aspect, the case 20 includes an open front portion 21, the back wall portion 25, 25′, and at least one side wall portion 23. The side wall portion 23 extends between the open front portion 21 and the back wall portion 25. According to an aspect, the back wall portion 25, 25′, and the side wall portion 23 of the wall 20A define a hollow interior 22 within the case 20. It should be understood that the shaped charge 10A/10B/10C/10D is not entirely hollow once an explosive load 40 and/or a liner 30 is positioned within the hollow interior 22. The wall 20A includes an external surface 24 and an internal surface 26, the hollow interior 22 extending between the internal surface 26 of the wall 20A.
The shaped charges 10A/10B/10C/10D may include an explosive load 40 enclosed (i.e., encased or disposed) within the hollow interior 22. According to an aspect, the explosive load 40 contacts/abuts at least a portion of the internal surface 26 of the wall 20A. The explosive load 40 may be adjacent the back wall portion 25, 25′ and a portion of the side wall portions 23 of the wall 20A. In an embodiment, the explosive load 40 comprises at least one of pentaerythritol tetranitrate (PETN), cyclotrimethylenetrinitramine (RDX), octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine/cyclotetramethylene-tetranitramine (HMX), PYX, FINS, TATB, and PTB (mixture of PYX and TATB).
As illustrated in
According to an aspect, the shaped charges 10A/10B/10C/10D each include a liner 30. The liner 30 may be pressed into or positioned over the explosive load 40. According to an aspect, the liner 30 is seated within the case 20 adjacent the internal surface 26 to substantially enclose the explosive load 40 therein. In shaped charges including both primer and main explosive loads 42, 44, the liner 30 is adjacent the main explosive load 44. According to an aspect, the liner 30 includes one of more components, such as powdered metallic materials and/or powdered metal alloys, and binders. Each component may be selected to create a high-energy output or jet velocity upon detonation of the shaped charges 10A/10B/10C/10D. According to an aspect, the powdered metallic materials may include aluminum, lead, nickel, titanium, bronze, tungsten, alloys, and mixtures thereof. In an embodiment, the liner 30 is formed by cold-pressing the powdered metallic materials to form a liner shape. The liner shapes contemplated for the liner 30 may include any desired liner shape, including hemispherical, trumpet, bell, tulip, and the like. The liner 30 may include reactive or energetic materials capable of an exothermic reaction when the liner material is activated or pushed above its threshold energy. Further description of liner materials that may be used in the shaped charges 10A/10B/10C/10D may be found in U.S. Pat. Nos. 3,235,005, 5,567,906, 8,220,394, 8,544,563, German Patent Application Publication No. DE 102005059934A1, and commonly-assigned U.S. Provisional Application No. 62/445,672, which are hereby incorporated by reference in their entireties.
The shaped charges 10A/10B/10C/10D may further include an initiation point chamber 50 that extends at least partially between at least one of the external surface 24 and the internal surface 26 of the wall 20A. According to an aspect, the initiation point chamber 50 extends entirely between the external surface 24 and the internal surface 26 of the back wall portion 25, 25′ of the wall 20A. As seen for instance in
The initiation point chamber 50 may include a cavity 52. In this configuration, the back wall portion 25, 25′ of the wall 20A includes cavity wall/(s) 53, which bound the cavity 52. The cavity 52 may have an inner diameter ID having a size of from about 1.0 mm to about 10.0 mm. In an embodiment, the inner diameter ID of the cavity 52 is from about 4.0 mm to about 6.0 mm. According to an aspect, the inner diameter ID of the cavity 52 is from about 4.5 mm to about 5.0 mm. The cavity 52 may include a depth D, as measured from the internal surface to the external surface of the case 20, of from about 1.0 mm to about 10.0 mm, alternatively, from an amount of less than about 1.0 mm to less than about 10.0 mm. In an embodiment, the D of the cavity 52 is from about 2.0 mm to about 6.0 mm. The depth D may be from about 3.0 mm to 5.0 mm. While specific numerical ranges are provided for the inner diameter ID and the depth D of the cavity 52, it is well understood that each range may include a tolerance, which accounts for unplanned manufacturing deviations. For instance, when the inner diameter ID includes a nominal dimension of 1.0 mm, it may include a tolerance of about +/−0.1 mm. To be sure, the inner diameter ID and the depth D of the cavity 52 may be selected based on the critical initiation diameter of the explosive load 40 of the shaped charge 10A/10B/10C/10D. For instance, since an increase of the inner diameter ID increases the amount of hydraulic/hydrostatic pressure that can act on the initiation point chamber 50, the size of the cavity 52 of the initiation point chamber 50 should be carefully selected.
According to an aspect, and as seen best in
In an embodiment, the self-contained, compressed explosive initiation pellet 60 includes a high energy explosive having a thermal decomposition temperature greater than about 276° C. (529° F.). To be sure, the self-contained, compressed explosive initiation pellet may include any other high energy explosives with a decomposition temperature higher than that of HMX. According to an aspect, the high energy explosive is one of HNS, PYX, and TATB. In an embodiment, the density of the self-contained, compressed explosive initiation pellet 60 is substantially the same as a theoretical density of the high energy explosive it contains. In an embodiment, the self-contained, compressed explosive initiation pellet 60 includes a density of from about 70% to 100% of a theoretical maximum density of the explosive load 40 disposed in the case 20.
The self-contained, compressed explosive initiation pellet 60 may be sized and shaped to be contained within the initiation point chamber 50. When the initiation point chamber 50 includes, for example, a through-channel, or a recess that extends into a portion of the back wall 25, 25′, the self-contained, compressed explosive initiation pellet 60 is maintained within the initiation point chamber 50. Alternatively, when the initiation point chamber 50 includes a chamber wall (i.e., a thinned region), the self-contained, compressed explosive initiation pellet 60 may be positioned adjacent the chamber wall. In an embodiment, the self-contained, compressed explosive initiation pellet 60 includes an outer diameter (OD), and is shaped and sized to be received within the ID of the cavity 52. In an embodiment, the explosive initiation pellet 60 is shaped as a cylinder, a disc, or a trapezoid. The desired shape and size may be adjusted based on the particular needs of the application or the size of the initiation point chamber 50 within/adjacent to which the self-contained, compressed explosive initiation pellet 60 is to be positioned. According to an aspect, the OD of the self-contained, compressed explosive initiation pellet 60 is from about 1.0 mm to about 10.0 mm. The OD may be sized from about 2.0 mm to about 4.0 mm. The OD of the self-contained, compressed explosive initiation pellet 60 may be selected so that it fills the initiation point chamber 50/the cavity 52. According to an aspect, the self-contained, compressed explosive initiation pellet 60 is substantially pliable so that it conforms to the shape of the initiation point chamber 50/cavity 52.
The self-contained, compressed explosive initiation pellet 60 may include a powdered explosive material that is compressed during manufacture using a pressing force. This pressing force is sufficient to form the explosive initiation pellet 60. In an embodiment, the pressing force is greater than a hydraulic pressure (the contemplated pressure) of the surrounding wellbore in which the shaped charge 10A/10B/10C/10D is to be placed. According to an aspect, the self-contained, compressed explosive initiation pellet 60 is compressed during manufacture at a pressure of least 25,000 psi (1,724 bar). In an embodiment, the self-contained, compressed explosive initiation pellet 60 is compressed during manufacture at a pressure of from about 10,000 psi (689 bar) to about 30,000 psi (2,068 bar). The self-contained, compressed explosive initiation pellet 60 may be compressed during manufacture at a pressure of from about 15,000 psi (1,034 bar) to about 25,000 psi (1,724 bar).
According to an aspect, the self-contained, compressed explosive initiation pellet 60 further includes at least one hydrophobic substance in addition to the explosive material. The hydrophobic substance and the explosive material, such as the powdered explosive, may form a mixture. In the mixture, the hydrophobic substance may include a hydrophobic polymer, natural wax, synthetic wax, and the like. According to an aspect, the hydrophobic substance includes at least one of a hydrophobic polymer and graphite. The hydrophobic substance may be present in the mixture in an amount of between about 0.1% and about 5.0% of a total weight of the mixture. The mixture, including the explosive material and the hydrophobic substance, may be compressed together during formation, so that the self-contained, compressed explosive initiation pellet 60 is generally hydrophobic. The self-contained, compressed explosive initiation pellet 60 may be both water and pressure resistant by virtue of the explosive material and the hydrophobic material being pressed/compacted at a higher pressure than the expected hydraulic pressure to be experienced in a wellbore.
The self-contained, compressed explosive initiation pellet 60 may be disposed between an outer chamber closure wall 80 and an inner chamber closure wall 90. The outer chamber closure wall 80 may face an area external to the shaped charge 10A/10B/10C/10D, while the inner chamber closure wall 90 faces the hollow interior 22 of the shaped charge 10A/10B/10C/10D. In this configuration, the outer and inner chamber closure walls 80, 90 are operative for maintaining the self-contained, compressed explosive initiation pellet 60 within the cavity 52 of or adjacent to the initiation point chamber 50. According to an aspect, the outer and inner chamber closure walls 80, 90 help to seal the self-contained, compressed explosive initiation pellet 60 against at least one of fluids and pressure located external to the shaped charge 10A/10B/10C/10D.
As illustrated in
The outer chamber closure wall 80, 80′ may include a layer of at least one of a lacquer, an aluminum tape, a pressure sensitive adhesive appliqué, a metal sheath, and a foil sticker. According to an aspect, if the outer chamber closure wall 81 is a lacquer, it may be selected from high temperature stable lacquer, or multiple component composite materials. In an embodiment, the outer chamber closure wall 80, 80′ is an isolative cap, such as, for example a bushing cap, that is positioned over at least a portion of the external surface 24 of the case 20. According to an aspect, the isolative cap is a cup-like material that is positioned over the self-contained, compressed explosive initiation pellet 60. The isolative cap may extend over the self-contained, compressed initiation pellet 60 (arranged within the initiation point chamber 50), thereby sealing the self-contained, compressed explosive initiation pellet 60 against fluids and pressure external to the shaped charge 10A/10B/10C/10D.
In an embodiment, the inner chamber closure wall 90 is a pressure resistant material. According to an aspect, the inner chamber closure wall 90 may have an increased pressure resistance rating, by virtue of the inner chamber wall 90 being an extension of the back wall 25, 25′ of the case 20. In an embodiment, when the pressure resistant material is a separate metal layer or when the inner chamber closure wall 90 is an extension of the back wall 25, 25′, the inner chamber closure wall 90 may have a thickness of about 0.1 mm to about 1.0 mm. The inner chamber closure wall 90 may include a thickness of from about 0.2 mm to about 0.5 mm. According to an aspect, the inner chamber closure wall 90 includes a thickness of 0.3 mm. The metal layer forming the inner chamber closure wall 90 may be formed contiguously with the back wall portion 25, 25′ of the case 20, thus including the same material used to form the wall 20A. According to an aspect, the metal layer forming the inner chamber closure wall 90′includes a layer of material that is separate from the case 20, extends over/covers the initiation point chamber 50, and is adjacent the internal surface 26 of the case 20. Through the integration/incorporation of the self-contained, compressed explosive initiation pellet 60 within the walls 20A of the case 20 of the shaped charge 10, it is possible to provide a case 20 having thicker walls 20A than the currently available shaped charges. Indeed, the thickness of the inner chamber closure wall 90, 90′ may be greater than the thickness of the walls 20A of standard shaped charges, to provide for higher shaped charge pressure ratings. In an embodiment, when the outer chamber closure wall 80, 80′ is formed from a metal sheath or foil that is non-contiguous with the case wall 20A, the outer chamber closure wall 80, 80′ is selected from steel, and aluminum types of metal foils. The embodiment shown in
Various shaped charges having self-contained, compressed explosive initiation pellets adjacent their initiation point chambers were made, according to the embodiments of the disclosure. The shaped charges where detonated, and the entrance hole diameters presented in the Examples shown in Table 1 are based on the minimum and maximum hole diameter formed by the perforation jet upon detonation of the shaped charges, while the simulated through-tubing perforating is based on the average length of the perforation hole formed by the perforation jet.
The shaped charges tested (the results of the tests being presented in Table 1), each included a self-contained, compressed explosive initiation pellet 60 within their respective initiation point chambers 50. Each of the self-contained, compressed explosive initiation pellets 60 included HNS, and were compressed at a pressure of about 30,000 psi. The pellets were manually inserted within their respective initiation point chambers 50 by an operator. Each shaped charge included an outer chamber closure wall formed of steel, and an inner chamber closure wall formed of steel. The thickness of the inner chamber closure wall 90 of each of the Samples A-1, A-2, and A-3 were varied. In Sample A-1, the inner chamber closure wall had a thickness of about 0.1 mm to 0.7 mm. In Sample A-2, the inner chamber closure wall 90 had a thickness of about 0.2 mm to 1.0 mm. In Sample A-3, the inner chamber closure wall 90 had a thickness of about 0.3 mm to 1.5 mm. Each inner chamber closure wall 90 included a pressure tolerance of about 20% less than the tested collapse pressure of the shaped charge sample. A pressure and temperature resistant detonating cord 70 was positioned adjacent the initiation point chamber 50 and the shaped charges were detonated. The detonating cord 70 included an explosive core of HNS, a detonating velocity of up to 6,600 m/sec and a tensile rating of up to 1,000 N. Each shaped charge was tested for perforation characteristics in steel coupons having a thickness of 10 mm, to simulate the casing or tubular downhole, as well as a concrete target to check for penetration values. The concrete target utilized had an average unconfined compressive strength rating of about 6,400 psi. The shaped charges were each positioned at a typical clearance distance to represent a downhole scenario. Successful initiation was achieved up to 100% of the time, and in some instances, up to 80% of the time. Notably, in Sample A-3, having an inner chamber closure wall 90 with increased thickness, successful initiation was achieved up to 80% of the time.
Alternatively, embodiments of the present disclosure are further directed to a hermetically sealed shaped charge 100 (also known as encapsulated shaped charges). As illustrated in
According to an aspect, the case 20 includes an external surface 24 and an internal surface 26. An initiation point chamber 50 may be disposed at the back wall portion 25, and may extend substantially between the external surface 24 and the internal surface 26. As see in FIGS. 4, 5A and 5B, at least one self-contained, compressed explosive initiation pellet 60 may be disposed adjacent or within the initiation point chamber 50.
For purposes of convenience, and not limitation, the general characteristics of the shaped charges 10A/10B/10C/10D (open shaped charges), though applicable to the hermetically sealed shaped charge 100, are described above with respect to the
As seen in
As seen for instance in
An alternative embodiment of an exposed perforating gun system 301, with the described shaped charges and having self-contained, compressed explosive initiation pellets 60 integrated within the shaped charges, is illustrated in
Embodiments of the present disclosure further relate to a method 400 of perforating a wellbore using a shaped charge having a self-contained, compressed explosive initiation pellet integrated within the shaped charge. As illustrated in
Prior to perforating, it may be desirable to keep the shaped charge (hermetically sealed or open) from being exposed to temperatures, pressures, and the like, external to the environment of the shaped charges. The shaped charges may therefore include outer and inner chamber closure walls to help maintain the self-contained, compressed explosive initiation pellets adjacent to or within the initiation point chambers, and seal the self-contained, compressed explosive initiation pellets against at least one of fluids and pressure located external to the shaped charges. The outer chamber closure wall 80 faces the areas external to the shaped charges, while the inner chamber closure wall 90 faces the hollow interiors of the shaped charges.
Embodiments of the present disclosure further relate to a method 500 of making a shaped charge having a self-contained, compressed explosive initiation pellet integrated therewithin, as depicted in
The method 500 of making the shaped charge having the self-contained, compressed explosive initiation pellet may further include the step of sealing 545 the self-contained, compressed explosive initiation pellet within the initiation point chamber by arranging 546 an outer chamber closure wall adjacent the self-contained, compressed explosive initiation pellet to face an area external to the shaped charge, and arranging 547 an inner chamber closure wall adjacent the self-contained, compressed explosive initiation pellet and to face the hollow interior of the shaped charge. As described in further detail hereinabove, the outer and inner chamber closure walls operatively maintain the self-contained, compressed explosive initiation pellet within or adjacent the initiation point chamber, as well as seal the self-contained, compressed explosive initiation pellet against at least one of fluids and pressure located external to the shaped charge. In an alternative embodiment of the method of making, the open front portion is covered with a cap to seal the shaped charge.
In still a further alternative embodiment of the method of making the shaped charge having the self-contained, compressed explosive initiation pellet, the initiating point chamber within the case is formed by including a through-channel through the back wall portion. In yet a further alternative embodiment of the method 500 of making, the initiating point chamber is formed by thinning 532 a region of the back wall portion. Such a thinned region may be formed by boring a hole in the case of the shaped charge to form the initiation point chamber, but not piercing through the interior wall. In yet a further alternative embodiment of the method of making, multiple explosive loads are positioned within the hollow interior of the case. In another alternative embodiment of the method of making, the self-contained, compressed explosive initiation pellet is disposed within the initiation point chamber in such a manner that it is physically separated from any other explosive load that may be disposed within the hollow interior of the case. In another alternative embodiment of the method of making, the self-contained, compressed explosive initiation pellet is formed from an explosive material that is of a different chemistry than that of any explosive load that may be loaded within the shaped charge.
The components of the apparatus illustrated are not limited to the specific embodiments described herein, but rather, features illustrated or described as part of one embodiment can be used on or in conjunction with other embodiments to yield yet a further embodiment. It is intended that the apparatus include such modifications and variations. Further, steps described in the method may be performed independently and separately from other steps described herein. Such method steps may be performed in sequences that differ from those illustrated in
Such apparatus, devices, and methods may be used to enable wellbore perforation under conditions previously unavailable and/or technologically difficult. Such apparatus utilize explosive materials of differing sensitivity to detonate explosions from within shaped charges, including both open and hermetically sealed shaped charges. The shaped charges described herein, including the explosive, initiation pellet, may be used with a shaped charge carrier/perforating gun carrier system and/or an exposed perforating gun (collectively perforating gun systems) (see, for instance,
While the apparatus and methods have been described with reference to specific embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope contemplated. In addition, many modifications may be made to adapt a particular situation or material to the teachings found herein without departing from the essential scope thereof.
In this specification and the claims that follow, reference will be made to a number of terms that have the following meanings. The singular forms “a,” “an” and “the” include plural referents unless the context clearly dictates otherwise. Furthermore, references to “one embodiment”, “some embodiments”, “an embodiment” and the like are not intended to be interpreted as excluding the existence of additional embodiments that also incorporate the recited features. Approximating language, as used herein throughout the specification and claims, may be applied to modify any quantitative representation that could permissibly vary without resulting in a change in the basic function to which it is related. Accordingly, a value modified by a term such as “about” is not to be limited to the precise value specified. In some instances, the approximating language may correspond to the precision of an instrument for measuring the value. Terms such as “first,” “second,” “upper,” “lower,” “inner,” “outer,” etc. are used to identify one element from another, and unless otherwise specified are not meant to refer to a particular order or number of elements.
As used herein, the terms “may” and “may be” indicate a possibility of an occurrence within a set of circumstances; a possession of a specified property, characteristic or function; and/or qualify another verb by expressing one or more of an ability, capability, or possibility associated with the qualified verb. Accordingly, usage of “may” and “may be” indicates that a modified term is apparently appropriate, capable, or suitable for an indicated capacity, function, or usage, while taking into account that in some circumstances the modified term may sometimes not be appropriate, capable, or suitable. For example, in some circumstances an event or capacity can be expected, while in other circumstances the event or capacity cannot occur—this distinction is captured by the terms “may” and “may be.”
As used in the claims, the word “comprises” and its grammatical variants logically also subtend and include phrases of varying and differing extent such as for example, but not limited thereto, “consisting essentially of” and “consisting of.” Where necessary, ranges have been supplied, and those ranges are inclusive of all sub-ranges therebetween. It is to be expected that variations in these ranges will suggest themselves to a practitioner having ordinary skill in the art and, where not already dedicated to the public, the appended claims should cover those variations.
Advances in science and technology may make equivalents and substitutions possible that are not now contemplated by reason of the imprecision of language; these variations should be covered by the appended claims. This written description uses examples to disclose the apparatus, devices, and methods, and also to enable any person of ordinary skill in the art to practice these, including making and using any apparatus, devices, or systems and performing any incorporated methods. The patentable scope thereof is defined by the claims, and may include other examples that occur to those of ordinary skill in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal language of the claims.
This application claims priority to PCT Application No. PCT/EP2018/056107 filed Mar. 2, 2018, which claims the benefit of U.S. Provisional Patent Application No. 62/477,482 filed Mar. 28, 2017, the disclosure of which is incorporated herein by reference in its entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2018/056107 | 3/12/2018 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2018/177733 | 10/4/2018 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4627353 | Chawla | Dec 1986 | A |
5421418 | Nelson | Jun 1995 | A |
5567906 | Reese et al. | Oct 1996 | A |
6386296 | Kothari | May 2002 | B1 |
9435170 | Bell et al. | Sep 2016 | B2 |
20040200377 | Collins et al. | Oct 2004 | A1 |
20100263523 | Lagrange | Oct 2010 | A1 |
20150376992 | Grattan | Dec 2015 | A1 |
20170058648 | Geerts et al. | Mar 2017 | A1 |
Number | Date | Country |
---|---|---|
0196807 | Dec 2001 | WO |
2005037735 | Apr 2005 | WO |
2017035337 | Mar 2017 | WO |
Entry |
---|
EPO—International Searching Authority, International Search Report and Written Opinion of International Application No. PCT/EP2018/056107, dated May 29, 2018, 14 pages. |
International Searching Authority, International Search Report and Written Opinion of PCT App. No. PCT/EP2018/056107, which is the same family U.S. Appl. No. 16/486,621, dated May 29, 2018, 9 pgs. |
European Patent Office; Examination Report for EP Application No. 18711085.3; dated Nov. 6, 2020; 6 pages. |
Number | Date | Country | |
---|---|---|---|
20190368318 A1 | Dec 2019 | US |
Number | Date | Country | |
---|---|---|---|
62477482 | Mar 2017 | US |