1. Field of the Invention
The present invention relates to a multi-layered shaped metal body with a metal foam matrix, in which a one-part or multi-part insert element is embedded, the metal foam matrix and the insert element being positively connected to each other, and relates to a method for producing such a shaped metal body.
2. Description of Background and Other Information
A shaped metal body is disclosed, for example, by DE 203 13 655 U1, which describes a ballistic-resistant element of aluminum foam with a net-like reinforcement embedded in the aluminum foam, the reinforcement being formed as a metal mesh or linked arrangement of steel wire. A metal mesh is in this case a mesh in which a multiplicity of continuous wires are connected to form a linked arrangement. The contact points between the individual wires, in this case, may be rigid or loose. However, when under fire, these continuous wires are subjected to high tensile stresses and elongations by the projectile, bullet, or shell that is to be stopped, and so either a very strong and highly extensible steel wire is required, or the steel wire must be appropriately dimensioned. Although good ballistic resistance can be achieved in this way, it can have the effect of driving up the costs of such a shaped metal body.
The present invention provides a shaped metal body that does not have the above disadvantages and, in addition, has even better strength to resist penetrating or impacting bodies, such as the impact of a body, for example, caused by a nearby explosion, or caused by a bullet or shell.
To this end, the insert element according to the invention is formed as a freely shearing chain mail of loosely interlinked rings. A method according to the invention for producing a multi-layered shaped metal body includes the following: providing a mold for the shaped metal body; arranging at least one one-part or multi-part insert element in the form of a freely shearing chain mail of loosely interlinked rings in the mold; melting a metal; introducing gas into the molten metal, in order to make the molten metal foam, thereby producing a flowable metal foam; bringing the flowable metal foam into the mold; and cooling the metal in the mold, the metal solidifying to form the shaped metal body.
Under loading (caused by lateral impact or when under fire), the individual rings of the freely shearing chain mail of linked rings slide on one another in the metal foam matrix. As a result, the loading on the individual ring is greatly reduced, but at the same time the strength of the interlinked structure is increased, since this interlinked structure can dissipate a great amount of energy. With a shaped metal part according to the invention, a very lightweight component with the highest ballistic resistance class B7 can consequently be achieved. Such a shaped metal part may be used, for example, as armoring on vehicles or on buildings, but also as a personal shield.
The effect can be further enhanced if a number of chain mails of linked rings are arranged next to one another or one behind the other in the metal foam matrix, it also being possible for the chain mails of linked rings to be arranged offset in relation to one another.
Depending on the application, the metal foam matrix may have an essentially monomodal pore size distribution. However, the sizes of the pores of the metal foam matrix may also increase gradually from one side face of the shaped metal body to the opposite side face, whereby the strength of the shaped metal body can be further increased.
A further increase in the strength of the shaped metal body is achieved by pretensioning the chain mail of linked rings in the metal foam matrix.
Most particularly for use as ballistic-resistant armoring, it is advantageous if a further layer of a homogeneous and/or isotropic material, such as a sheet of mineral material, is applied to one side face of the shaped metal body, since this breaks up the impacting bullet or shell and changes the path of the bullet or shell, and consequently reduces its effect. For such an application, it is favorable to make this layer face the direction of oncoming fire.
The invention is described below on the basis of the schematic, non-restrictive
The insert elements 3 may in this case be arranged in virtually any way desired, as indicated in
In a particular embodiment according to the invention, the metal foam 4 has an essentially monomodal distribution, i.e., the pores are essentially all of the same size and homogeneously distributed. As an alternative to this, however, the invention encompasses the size of the pores of the metal foam matrix 4 to be increased gradually from one side face 2 of the metal foam body 1 to the opposite side face, as indicated in
Further, within the scope of the invention, the above configurations and arrangements can be combined in any way desired and in this way make them match a specific application.
Still further according to the invention, an additional layer 5 of a homogeneous and/or isotropic material, optionally with a thin sheet of mineral material, for example of granite or the like, may be applied to one side face 2 by a suitable method, such as for example by material bonding by means of adhesion over the surface area. This layer 5 has a positive effect, in particular in the case of an application as a ballistic-resistant rigid shaped part, since the allowable ballistic resistance class can be increased and the explosive effect reduced or even eliminated as a result. For this purpose, the layer 5 is to be made to face the direction of oncoming fire. Such a layer 5 has the effect that an impacting bullet or shell is broken up and the path of the bullet or shell is changed (essentially by being made to spin upon impact) and in this way the effect is reduced.
According to the invention, an insert element 3 is formed as a freely shearing chain mail of linked rings, as indicated in
The effect according to the invention is brought about by such a freely shearing chain mail of linked rings in the metal foam matrix 4. Under loading (caused by lateral impact or when under fire), the individual rings 6 slide on one another in the metal foam matrix 4. As a result, the loading on the individual ring 6 is greatly reduced, but at the same time the strength of the interlinked structure is increased, since this interlinked structure can dissipate a great amount of energy. Moreover, the spread of the shock wave in the interlinked structure is significantly reduced and broad crack fronts can form to absorb energy. With a shaped metal part according to the invention, it is consequently possible to achieve a very lightweight component up to the highest ballistic resistance class B7. Such a shaped metal part may be used, for example, as armoring on vehicles or on buildings, but also as a personal shield.
One possible inventive shaped metal body 1 could be formed in this case by a metal foam matrix 4 of aluminum (or some other suitable metal) in which an chain mail of linked rings comprising steel, titanium, or aluminum rings is embedded. The rings may in this case have, for example, an outside diameter of 3-20 mm (depending on the application) and the pore size of the metal foam matrix 4 is also chosen according to the application, for example a pore size of up to 30 mm. The thicknesses of the rings may be chosen, for example, between 1 and 2 mm. The chain mail of linked rings may also be surface-treated and hardened. The pretensioning of a chain mail of linked rings in the metal foam matrix 4 may be, for example, 1 kN. Such an arrangement is suitable as a ballistic-resistant shaped metal part for 1 kg of TNT at a range of 5 m or 15 kg of plastic explosive at a range of 15 m.
The production of a shaped metal part 1 according to the invention is described below with reference to
One or more, one-part or multi-part insert element(s) 3 in the form of a freely shearing chain mail of loosely interlinked rings 6 is or are arranged in a two-part mold 10 in the desired position within a cavity 12, which predetermines the outer shape of the shaped metal part. The insert element 3 may in this case also be pretensioned with a certain force. In a furnace 14, metal, for example aluminum, is heated and brought into a liquid state. The cavity 12 of the mold 10 is connected to the furnace 14 via a filling opening 11 and a filler piece 13 (or a similar device). The filler piece 13 thereby dips into the liquid metal bath 16 in the furnace 14. Also provided in the furnace 14, underneath the filler piece 13, is a foaming device 18, such as for example a nozzle arrangement or an impeller. Suitable foaming devices and foaming methods are described, for example, in the patents EP 1 288 320 B1 and EP 1 419 835 B1, commonly owned herewith. Gas, such as air, is fed via a supply line 20 to the foaming device 18, the air exiting the foaming device to enter the liquid metal bath 16 and to form bubbles 22 in the metal bath. The bubbles 22 rise in the metal bath 16 and in the filler piece 13 (indicated by the arrow in
After filling, the mold 10 or the shaped metal body 1 located in the mold is cooled until the liquid metal foam has solidified and forms the metal foam matrix 4. After that, the mold 10 can be opened and the finished shaped metal body 1 removed.
In principle, however, it is possible to fill the cavity 12 of the mold 10 partially or completely with liquid metal before the foaming, for example by exerting a pressure on the liquid metal bath 16, whereby the level of the liquid in the filler piece 13, and consequently also in the cavity 12, rises. If the liquid metal is then made to foam, as described above, the bubbles 22 again rise up and thereby displace the liquid metal in the cavity 12, until the latter is completely filled with metal foam to form the metal foam matrix 4. For this purpose, a certain pressure equalization may also be provided, in order to ensure uniform foam formation, for example by slowly raising the mold during the foaming operation or by slowly lowering the pressure on the metal bath 16.
However, the foaming process may also be controlled in such a way that the shaped metal body 1 has regions with metal foam and regions of compact metal lying next to one another. For this purpose, suitable separating elements may also be arranged in the mold 10.
The foaming operation and the molding operation, according to the invention, can be separated. For this purpose, metal foam may be produced in a separate device, such as a furnace 14, for example by conventional known methods, and this metal foam transported to a separate mold 10 by a suitable device, such as for example a scoop or a trowel. There, the liquid metal foam can be filled into the cavity 12 of the mold 10. This may take place, for example, by forcing the liquid metal foam into the cavity 12 of the mold, for example by means of a ram.
Number | Date | Country | Kind |
---|---|---|---|
A1670/2006 | Oct 2006 | AT | national |
The instant application is a divisional of U.S. non-provisional application Ser. No. 12/090,009 filed on Jul. 2, 2007, which application is a U.S. National Stage of International Application No. PCT/AT2007/000327 filed Jul. 2, 2007 which published as WO 2008/040035 on Apr. 10, 2008, and claims the right of priority granted under 35 U.S.C. §119 of Austrian Application No. A1670/2006 filed on Oct. 5, 2006. The disclosures of each of these applications is incorporated by reference herein in their entireties.
Number | Date | Country | |
---|---|---|---|
Parent | 12090009 | Jun 2008 | US |
Child | 14873582 | US |