Shaped recesses in explosive carrier housings that provide for improved explosive performance in a well

Information

  • Patent Grant
  • 6460463
  • Patent Number
    6,460,463
  • Date Filed
    Thursday, February 3, 2000
    24 years ago
  • Date Issued
    Tuesday, October 8, 2002
    22 years ago
Abstract
A carrier for containing explosives (e.g., shaped charges) includes a housing having a plurality of recesses, each recess having a periphery and a side surface extending around the periphery. The side surface is shaped to a geometry to reduce or control reflection of compression waves generated in response to an explosive jet (e.g., a perforating jet) created due to detonation of an explosive. The side surface may be slanted from a bottom surface of the recess, or a predetermined profile may be formed in the side surface to scatter or direct compression waves. One or more shock absorbing inserts may also be placed in recesses formed by the inserts, or the recesses may be capped to trap air so that compression waves generated in the recesses are significantly reduced as compared to compression waves generated in well fluids.
Description




BACKGROUND




The invention is generally related to recesses in explosive carrier housings (such as perforating gun carrier housings) that provide for improved explosive performance (such as improved performance perforating shaped charges).




After a well has been drilled and casing has been cemented in the well, perforations are created to allow communication of fluids between reservoirs in the formation and the wellbore. Shaped charge perforating is commonly used, in which shaped charges are mounted in perforating guns that are conveyed into the well on a slickline, wireline, tubing, or another type of carrier. The perforating guns are then fired to create openings in the casing and to extend perforations into the formation.




Various types of perforating guns exist. A first type is a strip gun that includes a strip carrier on which capsule shaped charges may be mounted. The capsule shaped charges are contained in sealed capsules to protect the shaped charges from the well environment. Another type of gun is a sealed hollow carrier gun, which includes a hollow carrier in which non-capsule shaped charges may be mounted. The shaped charges may be mounted on a loading tube or a strip inside the hollow carrier. Thinned areas (referred to as recesses) may be formed in the wall of the hollow carrier housing to allow easier penetration by perforating jets from fired shaped charges. Another type of gun is a sealed hollow carrier shot-by-shot gun, which includes a plurality of hollow carrier gun segments in each of which one non-capsule shaped charge may be mounted.




Another type of gun is a puncher gun, designed to perforate the interior tubing, casing, drillpipe or similar wellbore lining while leaving the exterior tubing, casing, drillpipe, drill collar or similar wellbore lining intact. Another type of gun is a cutter designed to perforate the tubing, casing, drillpipe, drill collar or similar wellbore lining in a pattern which will allow removal of same without damage to the formation or other wellbore structures.




Referring to

FIGS. 1A-1C

, an example of a conventional perforating gun


10


including a hollow carrier


12


is illustrated. The hollow carrier


12


contains plural shaped charges


20


that are attached to a strip


22


. Alternatively, the shaped charges


20


may be attached to a loading tube inside the hollow carrier


12


. In the illustrated arrangement, the shaped charges


20


are arranged in a phased pattern. Non-phased arrangements may also be provided.




The hollow carrier


12


has a housing that includes recesses


14


that have generally circular recesses, as illustrated in FIG.


1


A. The recesses


14


are designed to line up with corresponding shaped charges


20


so that the perforating jet exits through the recess to provide a low resistance path for the perforating jet. This enhances performance of the jet to create openings in the surrounding casing as well as to extend perforations into the formation behind the casing.




As shown in the cross-sectional view of FIG.


1


B and the longitudinal sectional view of

FIG. 1C

, each recess


14


includes a bottom surface


18


and a side surface


16


. A web


19


(which is a thinned region of the carrier housing


12


) is formed below the recess


14


. The side surface


16


and the bottom surface


18


are generally perpendicular to each other. The bottom surface


18


and side surface


16


define a generally cylindrical geometry in the recess


14


. As will be described below, the generally perpendicular side surface


16


of a typical recess


14


causes reflection of compression waves that interfere with the perforating jet (from a fired shaped charge) as it extends through the recess


14


. For big hole charges, this reduces the opening in the casing created by the perforating jet. For deep penetrating charges, the depth of penetration may be reduced.




Referring to

FIGS. 2A-2B

, a generally conical shaped charge


20


includes an outer case


32


that acts as a containment vessel designed to hold the detonation force of the detonating explosive long enough for a perforating jet to form. The generally conical shaped charge


20


is a deep penetrator charge that provides relatively deep penetration. Another type of shaped charge includes substantially non-conical shaped charges (such as pseudo-hemispherical, parabolic, or tulip-shaped charges). The substantially non-conical shaped charges are big hole charges that are designed to create large entrance holes in casing. Another type of shaped charge is a puncher charge which is a specialized version of a big hole charge designed to create large hole with a specific, short range of penetration.




The conical shaped charge


20


illustrated in

FIG. 2A

includes a main explosive


36


that is contained inside the outer case


32


and is sandwiched between the inner wall of the outer case


32


and the outer surface of a liner


40


that has generally a conical shape. A primer


34


provides the detonating link between a detonating cord (not shown) and the main explosive


36


. The primer


34


is initiated by the detonating cord, which in turn initiates detonation of the main explosive


36


to create a detonation wave that sweeps through the shaped charge


20


. As shown in

FIG. 2B

, upon detonation, the liner


40


(original liner


40


represented with dashed lines) collapses under the detonation force of the main explosive


36


. Material from the collapsed liner


40


flows along streams (such as those indicated as


49


) to form a perforating jet


46


along a J axis.




The tip of the perforating jet travels at speeds of approximately 25,000 feet per second and produces impact pressures in the millions of pounds per square inch. The tip portion is the first to penetrate the web


19


below the recess


14


in the housing


12


of the gun carrier. The perforating jet tip then penetrates the wellbore fluid immediately in front of the web and inside the geometry of the recess


14


. At the velocity and impact pressures generated by the jet tip, the wellbore fluid is compressed out and away from the tip of the jet. However, due to confinement of the wellbore fluid by the substantially perpendicular side surface


16


of the recess


14


, the expansion, compression, and movement of the wellbore fluid is limited and the wellbore fluid may quickly be reflected back upon the jet at a later portion of the jet (behind the tip).




As the perforating jet passes through the recess


14


(FIGS.


1


B and


1


C), a compression wave front is created by the perforating jet in the fluid that is located in the recess. When the compression wave impacts the side surface


16


, a large portion of the compression wave is reflected back towards the perforating jet, which carries the wellbore fluid back to the jet. The reflected wellbore fluid interferes with the perforating jet. The effect is more pronounced in a relatively deep recess with a perpendicular side surface (such as side surface


16


), or if the clearance between the gun carrier and the casing is limited (that is, the gun carrier is close to the casing). When the clearance between the gun carrier and the casing is limited, interactions between the reflected compression wave off the inside surface of the wellbore casing and the reflected compression wave off the side surface


16


of the recess


14


also combine to impede the free passage of the shaped charge jet through the wellbore fluid. The resultant interference with the perforating jet may reduce the depth of penetration (for deep penetrating charges) or the size of the casing entrance hole (for big hole charges).




In addition to the desire to improve performance of the perforating jet, the recess formed in a gun carrier housing should also account for other factors. As shown in

FIGS. 1B and 1C

, the recess


14


is formed below the outer surface of the carrier housing


12


. As the shaped charge perforating jet passes through the web


19


of the carrier housing


12


, an exit burr may be created that protrudes towards the outside of the carrier housing. However, by having recesses (and webs below the recesses) for the jets to pass through, the exit burr is kept below the external surface of the wall of the carrier housing. In this way, the sharp and hard exit burr is kept from touching and scratching the inside surface of the wellbore casing or other components in the wellbore to prevent damage to such components as the gun is being retrieved to the surface.




In forming the recesses, the recesses are made relatively deep to reduce the resistance path for a perforating jet, but not so deep that the carrier housing is unable to support the external wellbore pressures experienced by the gun carrier. The size of the recesses are also optimized to ensure that jets pass through the recesses and not through the carrier housing around the recesses. However, the sizes of the recesses are limited to enhance the structural integrity of the carrier housing in withstanding external wellbore pressures and internal forces created by detonation of the shaped charges.




The generally cylindrical geometries of some conventional recesses provide for relatively reliable carrier housing integrity. However, as explained above, such a geometry causes interference that may adversely affect the performance of the perforating jets. Other types of recess geometries are also available. For example, some may have generally elliptical shapes. However, such recess geometries may come at the expense of carrier housing integrity, since the recesses may take up too much surface area of the carrier housing, or remove too much carrier housing material.




A need thus continues to exist for improved recesses in gun or other explosive carrier housings that improve performance of shaped charges or other explosives without sacrificing integrity of the carrier housing.




SUMMARY




In general, according to one embodiment, a carrier for containing explosives includes a housing having a plurality of recesses, each recess having a periphery and a side surface extending around the periphery and shaped to control the reflection of compression waves generated in response to an explosive jet created due to detonation of an explosive.




Other embodiments and features will become apparent from the following description, from the drawings, and from the claims.











BRIEF DESCRIPTION OF THE DRAWINGS





FIGS. 1A-1C

illustrate a conventional perforating gun that includes a hollow carrier having plural recesses.





FIGS. 2A-2B

illustrate formation of a perforating jet by a conventional shaped charge.





FIG. 3

illustrates a portion of a gun carrier housing having a plurality of recesses in accordance with one embodiment.





FIGS. 4A-4B

,


5


A-


5


B,


6


A-


6


B,


7


A-


7


B,


8


A-


8


B,


9


A-


9


B,


10


A-


10


B,


11


,


12


A-


12


B, and


13


illustrate different embodiments of recesses useable with the gun carrier of FIG.


3


.





FIG. 14

is a chart of test results comparing the performance obtained with recesses of prior art

FIGS. 1B-1C

and recesses of the invention

FIGS. 4A-4B

.





FIGS. 15A-15E

illustrate a simulation of a perforating jet extending through a conventional recess according to

FIGS. 1B-1C

and compression waves generated at different time points.





FIGS. 16A-16E

illustrate a simulation of a perforating jet extending through a recess according to

FIGS. 4A-4B

and compression waves generated at different time points.





FIGS. 17 and 18

illustrate different embodiments of recesses having inwardly extending side surface portions.











DETAILED DESCRIPTION




In the following description, numerous details are set forth to provide an understanding of the present invention. However, it will be understood by those skilled in the art that the present invention may be practiced without these details and that numerous variations or modifications from the described embodiments may be possible. For example, although the described embodiments include recesses used with perforating gun carriers containing shaped charges, other embodiments may include carriers for other types of explosives.




As used here, the terms “up” and “down”; “upper” and “lower”; “upwardly” and downwardly”; “below” and “above”; and other like terms indicating relative positions above or below a given point or element are used in this description to more clearly describe some embodiments of the invention. However, when applied to equipment and methods for use in wells that are deviated or horizontal, or when applied to equipment and methods that when arranged in a well are in a deviated or horizontal orientation, such terms may refer to a left to right, right to left, or other relationships as appropriate.




In accordance with some embodiments of the invention, recesses formed in the outer wall of a carrier housing are shaped to enhance the performance of shaped charges (or other types of explosives). As used here, “recess” refers generally to any type of thinned region or portion of an explosive carrier housing to allow easier penetration of a jet due to detonation of the explosive. Such recesses may have any of various different shapes. A recess may be bounded by one or more side surfaces and, optionally, by a bottom surface and/or a top surface. Without the bottom or top surfaces, the recess would generally be a hole. The recesses are shaped to reduce or control the reflectivity of compression waves from the side surfaces of the recesses. The geometry of the recess is formed to control the interaction of the wellbore fluid with the passage of the shaped charge jet to improve performance of the shaped charge. While providing for reduced interference with perforating jets, the recesses are also designed to maintain collapse resistance from external pressure and burst resistance from internal detonation pressures. By reducing interference of the perforating jet, casing entrance holes (for big hole charges) and penetration depths (for deep penetrator charges) may be enhanced.




The shaped recesses in accordance with some embodiments accomplish the objective of enhancing performance of shaped charges by controlling, disrupting, or tailoring reflected pressures or compression waves in wellbore fluids that are induced by an early portion of a perforating jet (the tip of the jet). The reflected pressure or compression waves are generally deflected out of the path of the later portion of the perforating jet. The geometric profile of the shaped recess may be varied to focus or diffuse the reflections, depending on the desired performance. Depending on the type of shaped charge, the interest may be nearer the early portion of the jet for a big hole type charges or along any portion of the jet for deep penetrators.




The geometry of the recess in accordance with some embodiments may be shaped to one of several different profiles or arrangements. Rather than the cylindrical recess with a generally perpendicular side surface as provided by some conventional recesses, the shaped recess in accordance with some embodiments may include a slanted side or peripheral surface at some angle with respect to the bottom surface of the recess. The slanted side surface may have a flat (or planar) cross-section or a concave or convex cross-section. The side surface may also have a profile, such as a stepped, grooved, or other profile, adapted to scatter, focus or otherwise control reflected compression waves. The diameter of the bottom surface, the depth of the recess (with respect to the outer surface of the carrier housing), and the shape and orientation of the side surface may be selected to optimize shaped charge performance, collapse resistance from external pressure, and burst resistance from internal detonation pressures.




Referring to

FIG. 3

, a portion of a gun carrier housing


80


is illustrated. The gun carrier housing


80


includes a plurality of recesses R that have one of various shaped geometries. The gun carrier housing


80


may be part of a perforating gun that is similar to that shown in FIG.


1


A. In

FIG. 3

, a transverse or cross-section of the carrier housing


80


is represented by line A—A, and a longitudinal section of the carrier housing


80


is represented by line B—B.




Referring to

FIGS. 4A-4B

, a recess


114


in accordance with one embodiment may be formed in the gun carrier housing


80


(FIG.


3


).

FIG. 4A

is the cross-section of the carrier housing


80


in accordance with one embodiment taken along line A—A, and

FIG. 4B

is the longitudinal section of the carrier housing


80


taken along line B—B. As shown in

FIG. 3

, each recess has a periphery


100


that when viewed from the top is generally circular in shape. In further embodiments, the periphery


100


of the recess may have other shapes, such as rectangular, square, triangular, elliptical, and other shapes. As shown in

FIGS. 4A-4B

, the recess


114


has a generally flat bottom surface


104


and a side surface


106


. The side surface


106


extends around the periphery of the recess


114


. As used here, a side surface that extends around the periphery of the recess refers to the presence of a wall segment of some depth around each point of the periphery.




With a generally circular or elliptical recess, the side surface


106


is continuous around the periphery of the recess


114


. However, if the recess has another shape, such as triangular, square, or rectangular, the side surface


106


would be divided into multiple segments corresponding to the segments of the triangle, square, or rectangle.




In the illustrated embodiment, at each point along the periphery of the recess


114


, the side surface


106


extends at a predetermined angle from the bottom surface


104


. The side surface


106


widens as its extends from the bottom surface


104


in a generally cone-like manner. Thus, a cup-shaped geometry is provided by the recess


114


.




As shown in

FIG. 4B

, two axes X and Y may be defined. The axis Y is generally perpendicular to the bottom surface


104


, while the X axis extends in the plane of the bottom surface


104


. The angle of the side surface


106


from the axis Y is defined as θ, and the angle of the side surface


106


from the X axis is defined as α. In the illustrated embodiment of

FIG. 3B

, both θ and a are 45°. In further embodiments, the angles θ and α may be varied to provide the desired performance of the perforating jet. Generally, the angle α may range between an angle greater than 0° but less than 90°. A more specific range is between about 10° and 80°.




The slanted side surface


106


that angles away from the bottom surface


104


reduces, disrupts, or re-directs reflection of compression waves from the side surface


106


to reduce interference with a perforating jet that extends generally along an axis indicated as J, which is generally perpendicular to the bottom surface


104


. The side surface


106


thus slants away from the axis J. Slanting of the side surface


106


relieves a substantial part of compression waves generated by the leading part of the perforating jet. Also, the slanted side surface


106


increases the time needed for compression waves to travel from the perforating jet J to the side surface


106


and back to the perforating jet J.




Consequently, by relieving the reflected compression waves and increasing the travel time for incident and reflected compression waves to the recess side surface, a smaller amount of well fluid is reflected into the path of the perforating jet during the critical time period to reduce interference with the jet.




Thus, generally, the recess


14


according to

FIGS. 4A-4B

has an axis (generally parallel to axis J), and the recess is bounded by a surface at least a portion of which is planar and lies at an angle to the axis.




Referring to

FIGS. 5A-5B

, a recess


214


in accordance with an alternative embodiment of is illustrated. As with the recess


114


shown in

FIGS. 4A-4B

, the side surface


206


of the recess


214


is slanted away from the bottom surface


204


of the recess


214


. However, in addition to the angling of the side surface


206


, the side surface


206


is also roughened or otherwise provided with a predetermined profile to aid in further disruption of reflection of compression waves. For example, steps


208


may be formed in the side surface


206


as illustrated in

FIGS. 5A-5B

. Other types of profiles may be formed on the side surface


206


in other embodiments. For example, grooves or slots may also be machined into the side surface


206


to roughen the surface. Alternatively, a more random pattern may also be formed in the side surface


206


to roughen it.




In another embodiment, effective disruption of reflected compression waves may also be achievable by forming a profile on a side surface that is generally perpendicular to the bottom surface of a recess, such as with conventional recesses. Thus, a modification of the recess


214


would be to provide the side surface


206


at an angle of about 90° to the bottom surface


204


while forming some predetermined profile in the side surface.




Referring to

FIGS. 6A-6B

, a recess


314


in accordance with another embodiment is illustrated. The recess


314


does not have discrete bottom and side surfaces as in the embodiments of

FIGS. 4A-4B

and


5


A-


5


B. Instead, the recess


314


has a generally arcuate or curvilinear surface


300


that extends around the periphery of the recess


314


. The arcuate surface


300


of the recess


314


as shown in

FIGS. 6A-6B

is generally semi-hemispherical in shape and has a bottom surface portion


305


that is continuous with a side surface portion


306


along an arc (as shown in the sectional views). The side surface


300


is thus curvilinear in a direction from the bottom surface portion


305


to the upper edge or top of the recess about the full periphery of the recess


314


. The side surface portion


306


of the surface


300


extends away from the axis J (along which the perforating jet extends) at some predetermined relationship defined by the arcuate surface


300


. Again, the relationship of the side surface portion


306


and the axis J is such that compression waves generated by the perforating jet extending along the axis J are less effectively reflected back into the path of the perforating jet.




Referring to

FIGS. 7A-7B

, a recess


414


according to another embodiment has a bottom surface


404


and a side surface


406


that is generally concave in shape. Referring to

FIGS. 8A-8B

, another embodiment of a recess


514


includes a bottom surface


504


and a side surface


506


that is generally convex in shape. The concave side surface


406


and the convex side surface


506


of recesses


414


and


514


, respectively, are shown extending away from the axis J along which a perforating jet generally travels. Again, both side surfaces


406


and


506


are curvilinear from the bottoms of respective recesses


414


and


514


to the tops of the recesses.




Referring to

FIGS. 9A-9B

, a recess


564


in accordance with a further embodiment includes a lower portion


570


and an upper portion


572


. The lower portion


570


has a bottom surface


554


and a generally perpendicular side surface


556


. In the second portion


572


, a slanted side surface


558


is slanted outwardly with respect to the side surface


556


. The lower portion


570


is generally cylindrical in shape, while the upper portion


572


generally forms part of a cone. The recess


564


is thus generally a combination of a conventional recess and the recess according to

FIGS. 4A-4B

.




Thus, the embodiments as described in

FIGS. 4A-4B

,


5


A-


5


B,


6


A-


6


B,


7


A-


7


B,


8


A-


8


B, and


9


A-


9


B, as well as other embodiments as described herein, may generally include a carrier with a housing having recesses each with an axis (generally parallel to axis J). Each recess is defined by a side surface, with the distance from the axis to the side surface varying from a bottom of the recess to a top of the recess about the full periphery of the recess.




Described generally in another way, some embodiments may include a carrier having a housing with recesses each having an axis. The recess is defined by a side surface and has a first aspect dimension and a second aspect dimension. The first aspect dimension equals the distance from one surface to an opposite surface and measured along a line passing through and perpendicular to the axis. The second aspect dimension equals the distance from one surface to an opposite surface and measured along a line passing through and perpendicular to the axis and perpendicular to the first aspect dimension. The first and second aspect dimensions vary from a bottom of the recess to a top of the recess.




Referring to

FIGS. 10A-10B

, in another embodiment, a recess


614


includes a convex-shaped bottom surface


604


and a generally perpendicular side surface


606


that is generally parallel to the axis J. A modification of the recess


614


would include a concave instead of a convex-shaped bottom surface


604


. Another modification of the recess


614


would include a slanted side surface


606


.




Referring to

FIG. 11

, a recess


714


according to yet a further embodiment includes a bottom surface


704


and a slanted side surface


706


that has a predetermined angle less than 90° with respect to the axis X in the plane of the bottom surface


704


. In addition to that arrangement, the recess


714


includes an insert


708


(generally ring-shaped) arranged around the side surface


706


. The insert


708


may be formed of a shock absorbing material to reduce or disrupt the reflection of compression waves. The insert alternately may be used to tailor the reflections to focus on the jet. Alternatively, instead of a separate insert, the side surface of the recess may be coated with a shock absorbing material. Example shock absorbing materials include aluminum, ceramic, plastic, powdered metal, foam, or other like materials. The insert


708


may have various shapes, with a vertical inner surface


710


and slanted outer surface


712


shown in FIG.


11


. Other configurations of the insert


708


may be used with recesses having a generally perpendicular side surface as in conventional recesses.




Referring to

FIGS. 12A-12B

, in accordance with another embodiment, a recess


814


includes a bottom surface


804


and a side surface


806


that is generally perpendicular to the bottom surface


804


(as in conventional recesses). However, a cap


808


is provided in the recess


814


, with the cap sitting on a shoulder


810


provided by the carrier housing


80


. A pressure tight seal


812


, which may be formed of an elastomer material or by welding, for example, is positioned around the outside and/or outside bottom of the cap


808


to provide a seal so that a sealed chamber


816


is defined in the recess


814


. Since the assembly is assembled at the surface, the chamber


816


may be filled with air. Other types of gases or fluids may be provided in the chamber


816


. The cap


808


may be made of metal, ceramic or other like material that can withstand the outside well pressures but at the same time is easily shattered by a perforating jet traveling through the recess


814


.




When a perforating jet passes through the recess


814


, compression waves generated in the air chamber


816


are significantly reduced as compared to compression waves generated in fluids in a wellbore that may be outside the gun carrier housing


80


. As a result, interference with the perforating jet inside the recess


814


(the chamber


816


) is significantly reduced. In modifications or variations of the arrangement of

FIGS. 12A-12B

, the side surface


806


may be slanted with respect to the bottom surface


804


. In addition, the side surface


806


may have a concave or convex shape. Further, an arcuate surface, such as the surface


300


shown in

FIGS. 6A-6B

, may also be used.




Referring to

FIG. 13

, a top view of a recess


914


in accordance with another embodiment is illustrated. The recess


914


may be shaped as a conventional recess or as any one of the recesses shown in

FIGS. 4A-4B

,


5


A-


5


B,


6


A-


6


B,


7


A-


7


B,


8


A-


8


B,


9


A-


9


B, or


10


A-


10


B. In addition, slots


910


are extended away from the recess


914


. The slots


910


provide a travel path for compression waves so that only a portion of incident compression waves are reflected back to the path of the perforating jet. The slots


910


thus provide a mechanism to disrupt reflection of compression waves generated by a perforating jet.




The table below summarizes test results performed using big-hole charges fired through conventional recesses according to

FIGS. 1B-1C

and recesses according to

FIGS. 4A-4B

.


















EH AVG




EH AVG






Clearance




.75 × 0°




1.00 × 45°

























0.62




0.77




0.82






0.69




0.74




0.89






0.84




0.73




0.83






0.92




0.71




0.79






Average




0.736




0.839














The table includes 3 columns, with the first column indicating the water filled clearance distance between the gun carrier and the casing (in inches). The second column includes the average entrance hole size created using a big hole charge fired through a conventional recess according to

FIGS. 1B-1C

with a diameter of about 0.75 inches and a side surface that is generally perpendicular to the bottom surface of the recess (represented as the angle θ of about 0°). The third column includes the size of entrance holes created in the casing using the same types of big-hole charges fired through a recess according to

FIGS. 4A-4B

having a diameter of about 1.00 inches and a slanted side surface


106


having an angle θ of about 45°.




Thus, as shown by the table of results, the shaped charge performance with recesses according to the

FIGS. 4A-4B

embodiment is superior to the performance with conventional recesses.




Referring to

FIG. 14

, a chart illustrating the area open to flow created by the casing opening per shot versus the gun clearance is illustrated. The triangular dots represent the results obtained with conventional recesses (0.75 inches and angle θ of about 0°). The circular dots represent results obtained using recesses according to

FIGS. 4A-4B

having a diameter of about 1.0 inch and an angle θ of about 45°. As illustrated, the average area open to flow per shot obtained with a recess according to

FIGS. 4A-4B

at any given clearance is superior to those obtained with conventional recesses.




Referring to

FIGS. 15A-15E

and


16


A-


16


E, simulations of perforating jets extending through a conventional recess according to

FIGS. 1B-1C

(

FIG. 15A-15E

) and through a recess according to

FIGS. 4A-4B

(

FIGS. 16A-16E

) and associated compression waves are illustrated.

FIGS. 15A and 16A

show the perforating jets right at a point before impacting webs of corresponding recesses.

FIGS. 15B and 16B

show the perforating jets extending through portions of the webs of corresponding recesses, with compression wave fronts


1000


A and


1000


B generated. Generally, the compression waves closer to the perforating jet have the highest pressure.




As shown in

FIGS. 15C and 16C

, the perforating jet tips have extended through the webs of corresponding recesses and are close to extending all the way through the recesses. Portions


1002


A and


1002


B that are closest to the tips of corresponding jets have the highest pressures, while the wave fronts surrounding portions


1002


A and


1002


B have lower pressures. However, as shown in

FIG. 15C

, in the conventional recess with the generally perpendicular side surface, a compression wave portion


1004


A constitutes a high pressure reflection from the side surface. In contrast, as shown in

FIG. 16C

, no such high pressure reflection has yet occurred in the recess according to

FIGS. 4A-4B

.




Next, in

FIG. 15D

, reflections in the conventional recess have created a portion


1006


A that includes high pressure compression waves. In contrast, as shown in

FIG. 16D

, the high pressure compression wave


1006


B is still created primarily by the leading edge of the perforating jet. In

FIGS. 15E and 16E

, a second portion of the perforating jet that is behind the tip has extended almost through the corresponding recesses. In

FIG. 15E

, two high pressure compression wave portions


1008


A and


1010


A are illustrated. The compression wave portion


1008


A is primarily reflected back from the side surface of the recess and, as illustrated, is about to impact the perforating jet to cause interference. In contrast, as shown in

FIG. 16E

, the high pressure side reflections are not present in the recess according to

FIGS. 4A-4B

. Thus, the simulation results illustrate the superior perforating jet performance using the recess according to

FIGS. 4A-4B

.




Referring to

FIGS. 17 and 18

, recesses


1100


and


1200


, respectively, according to other embodiments are illustrated. Such recesses have inwardly extending side surfaces that are adapted to focus reflection of compression waves back onto a perforating jet. Such focusing of the reflection reduces the charge performance. In

FIG. 17

, the side surface


1102


is generally concave with at least a portion that extends inwardly. In

FIG. 18

, the side surface


1202


is generally planar and extends at an angle θ that is greater than 90° with respect to the axis in the plane of the bottom surface


1204


. Such recesses may be advantageously used in a multiphase puncher gun to reduce the depth of penetration. The shape of the recesses may be different (or the same) along the different phases of the puncher gun.




While the invention has been disclosed with respect to a limited number of embodiments, those skilled in the art will appreciate numerous modifications and variations therefrom. It is intended that the appended claims cover all such modifications and variations as fall within the true spirit and scope of the invention.



Claims
  • 1. A carrier for containing explosives, comprising:a housing having a plurality of recesses, each recess having a periphery and a side surface extending around the periphery and shaped to a geometry to reduce reflection of compression waves generated in response to an explosive jet created due to detonation of an explosive.
  • 2. The carrier of claim 1, wherein the recess further includes a bottom surface, the side surface being slanted with respect to the bottom surface.
  • 3. The carrier of claim 2, wherein the side surface is at a predetermined angle with respect to an axis in the plane of the bottom surface, the predetermined angle being selected in a range greater than 0° and less than 90°.
  • 4. The carrier of claim 2, wherein the side surface is at a predetermined angle with respect to an axis in the plane of the bottom surface, the predetermined angle being selected in a range greater than 10° and less than 80°.
  • 5. The carrier of claim 2, wherein the side surface is generally convex.
  • 6. The carrier of claim 2, wherein the side surface is generally concave.
  • 7. The carrier of claim 2, wherein the recess includes a generally arcuate surface including the bottom surface and the side surface.
  • 8. The carrier of claim 2, wherein the recess further includes a first portion and a second portion, the first portion including the bottom surface and a side surface generally perpendicular to the bottom surface, and the second portion including the slanted side surface.
  • 9. The carrier of claim 1, wherein the side surface has a predetermined non-smooth surface profile.
  • 10. The carrier of claim 9, wherein the surface profile includes one or more steps.
  • 11. The carrier of claim 9, wherein the surface profile includes a roughened surface.
  • 12. The carrier of claim 9, wherein the surface profile includes one or more grooves.
  • 13. The carrier of claim 1, wherein the recess further includes a bottom surface, the bottom surface having one of a concave and convex shape.
  • 14. The carrier of claim 1, further comprising slots extending from the side surface around the periphery, the slots adapted to receive portions of the compression waves.
  • 15. The carrier of claim 2, wherein the housing defines an interior of the housing, the bottom surface of the recess being adjacent the housing interior.
  • 16. The carrier of claim 15, wherein the recess increases in size as the recess extends from the housing interior to an exterior of the housing.
  • 17. The carrier of claim 1, wherein the housing defines an interior of the housing, and wherein the recess is tapered to increase in size as the recess extends radially from the housing interior to an exterior of the housing.
  • 18. The carrier of claim 17, wherein the side surface is generally convex.
  • 19. The carrier of claim 17, wherein the side surface is generally concave.
  • 20. The carrier of claim 17, wherein the recess includes a generally arcuate surface including the bottom surface and the side surface.
  • 21. The carrier of claim 17, wherein the side surface has a predetermined non-smooth surface profile.
  • 22. The carrier of claim 21, wherein the surface profile includes one or more steps.
  • 23. The carrier of claim 21, wherein the surface profile includes a roughened surface.
  • 24. The carrier of claim 21, wherein the surface profile includes one or more grooves.
  • 25. A carrier for containing explosives, comprising:a housing having a plurality of recesses, each recess having a tapered side surface, the housing defining an interior, wherein the tapered side surface increases in size as the recess extends radially from the interior through the housing to an exterior of the housing.
  • 26. The carrier of claim 25, wherein the tapered side surface of each recess is adapted to reduce reflection of compression waves generated in response to an explosive jet created due to detonation of an explosive contained in the housing.
  • 27. The carrier of claim 25, wherein the side surface is generally convex.
  • 28. The carrier of claim 25, wherein the side surface is generally concave.
  • 29. The carrier of claim 25, wherein the recess includes a generally arcuate surface including a bottom surface and the side surface of the recess.
  • 30. The carrier of claim 25, wherein the side surface has a predetermined non-smooth surface profile.
  • 31. The carrier of claim 30, wherein the surface profile includes one or more steps.
  • 32. The carrier of claim 30, wherein the surface profile includes a roughened surface.
  • 33. The carrier of claim 30, wherein the surface profile includes one or more grooves.
US Referenced Citations (24)
Number Name Date Kind
2425472 Hodgson et al. Aug 1947 A
2980017 Castel Apr 1961 A
3327630 Bell Jun 1967 A
3367282 Franks et al. Feb 1968 A
3371605 Eckols Mar 1968 A
4041866 Thevenin et al. Aug 1977 A
4341983 Gottliebson Jul 1982 A
4491500 Michaud et al. Jan 1985 A
4498367 Skolnick et al. Feb 1985 A
4499830 Majerus et al. Feb 1985 A
4702171 Tal et al. Oct 1987 A
4766813 Winter et al. Aug 1988 A
4800815 Appledorn et al. Jan 1989 A
4818333 Michaud Apr 1989 A
4852495 Hancock et al. Aug 1989 A
4885993 Hancock et al. Dec 1989 A
4951744 Rytlewski Aug 1990 A
4958569 Mandigo Sep 1990 A
5090324 Böcker et al. Feb 1992 A
5259317 Lips Nov 1993 A
5619008 Chawla et al. Apr 1997 A
5701964 Walker et al. Dec 1997 A
5780764 Welch et al. Jul 1998 A
6021714 Grove et al. Feb 2000 A
Foreign Referenced Citations (6)
Number Date Country
0 105 495 Apr 1984 EP
832685 Apr 1960 GB
854043 Nov 1960 GB
1 504 431 Feb 1978 GB
2 303 687 Feb 1997 GB
2 326 220 Dec 1998 GB
Non-Patent Literature Citations (2)
Entry
Walters et al., “Fundamentals of Shaped Charges,” pp. 339-351 (John Wiley & Sons, 1989).
Delacour et al., “A New Approach to Elimination of Slug in Shaped Charge Perforating,” Paper No. 941-G, pp. 1-10 (1957).