TECHNICAL FIELD OF THE INVENTION
The invention relates to a geometrically-shaped wavelength-selective thermal emitter, more specifically to a visible light source, thermophotovoltaic emitter, heat exchanger, electronic display, and sensor.
BACKGROUND OF THE INVENTION
Today's incandescent lighting is only about 5% efficient, yet enjoys a dominant market share due to a very low cost. A need has arisen for a high efficacy, low cost, non-toxic, fixture compatible, high quality light source. Various technologies have attempted to fill this need, but all have failed in at least one way or another.
ThermoPhotoVoltaic (TPV) electric generation offers the potential to recover vast amounts of waste heat, yet has failed to operate at reasonable efficiency or have a reasonable cost. Also, photonic heat pumps have not yet been commercially realized due to cost/performance issues. A need has arisen for a narrow band thermally driven focused light source.
Electronic displays suffer from high cost, low brightness, poor contrast, perceptive color aberrations due to edge effects color combining of red, green, and blue pixels, various effects of backlighting, and failure of a main light source. A need has arisen for low cost, emissive displays.
Temperature and strain sensors are frequently limited due to size, operating environment or connectivity issues. Thus a need has arisen for tiny, remotely readable, rugged sensors.
Although Photonic Band Gap (PBG) technologies hold promise in all of these applications, they have been severely limited due to the choice of the desired structure, the manufacturability of the structure, and the cost of making the structure.
One structure has been disclosed in Ivan Celanovic, David Perreault, and John Kassakian, “Resonant-cavity enhanced thermal emission”, Physical Review B 72, 075127 (2005), DOI: 10.1103/PhysRevB.72.075127, and is incorporated by reference. Notably, this structure incorporates a 1D PBG structure, a thermal cavity, and a mirror. The PBG structure is composed of alternating layers of 0.17 μm thick silicon and 0.39 μm thick silicon dioxide. The thermal cavity, composed of a 0.78 μm thick silicon dioxide, is a defect in the PBG and increases the emissivity of the device. The mirror is composed of tungsten or silver. Results show quasi-monochromatic thermal emission in the IR around 2.4 μm and good directivity. However, existing manufacturing methods and associated cost has prevented widespread use in any of the above areas.
3D PBG structures have also been disclosed. However, they are very difficult and costly to manufacture.
SUMMARY OF THE INVENTION
A geometrically-shaped spectrally-shaped thermal emitter is disclosed. The geometry of the emitter is key to many applications and fabrication thereof. A high efficiency light source is disclosed, including a 1D PBG structure deposited on a wire substrate. Use of a wire substrate has several key advantages, including low-cost reel-to-reel processing, spatial integration of the directivity of a PBG light source, and compatibility with existing commodity manufacturing processes, bulbs, sockets, and fixtures. Use of a PBG structure allows shaping of the thermal emission spectra, without the use of hazardous materials. Use of a 1D PBG structure, with or without a cavity, allows the simplicity and cost effectiveness of thin-film processing. A further advantage of a 1D structure is that the center emission wavelength is a function of layer thickness; a gradient in the thickness allows easy profiling of the emission spectra. Modification of color temperature and color rendering are as simple as changing the thickness gradient.
A TPV generator is disclosed, including a concave PBG emitter. The 1D PBG emitter is simple and cost-effective to manufacture. Also, PBG emitters are directional. This provides a key advantage in providing a lensing effect, optically concentrating the power density on the PV cell.
An electronically tunable PBG is disclosed. One of the PBG materials is replaced with a piezoelectric material. Application of a voltage changes the resonant wavelength of the structure. Again, the PBG is thermally stimulated to emit light. However, this structure may not be heated and operate in a reflective mode. A pixilated pattern is etched into the PBG on a flexible substrate. This arrangement has the advantage of a single layer of low-cost color-tunable pixels on an emissive flexible display.
Temperature and strain sensors are also disclosed. Use of high CTE materials shifts the central wavelength as a function of temperature. A strain sensor prefers use of higher modulus materials and must be oriented in the direction of strain. A 3D PBG may be used in this application to sense elongation. A key advantage is these sensors may be deposited on irregular shaped surfaces, such as turbine blades, the sensor is read remotely by sensing the emitted wavelength, is emissive and relatively immune to dirt buildup, and requires no electricity or other wiring.
BRIEF DESCRIPTION OF THE DRAWINGS
For a more complete understanding of the invention, and for further features and advantages, reference is now made to the following detailed description, taken in conjunction with the accompanying drawings, in which:
FIG. 1 is a diagram illustrating a cross section of a filament of a selective thermal emitter;
FIG. 2 is a perspective diagram illustrating a longitudinal cross section of a filament of a tapered selective thermal emitter;
FIG. 3 is a diagram illustrating a cross section of a filament of an offset selective thermal emitter;
FIG. 4 illustrates an apparatus for reel-to-reel fabrication of a filament;
FIG. 5 is a diagram illustrating a screw type light bulb;
FIG. 6 is a diagram illustrating a light bulb in a tubular package;
FIG. 7 is a diagram illustrating a directionally focused light bulb;
FIG. 8 is a diagram illustrating a cross section of a focused selective thermal emitter;
FIG. 9 is a diagram illustrating a heat exchanger;
FIG. 10 is a diagram illustrating an electronic display;
FIG. 11 is a diagram illustrating a sensor;
in accordance with the present invention.
DETAILED DESCRIPTION OF EMBODIMENTS OF THE INVENTION
Embodiments of the present invention and their advantages are best understood by referring to FIGS. 1 through 10 of the drawings, in which like numerals refer to like parts. The figures are not to scale, especially the apparent thickness of the thin films
FIG. 1 is a diagram illustrating a cross section of a filament 100 of a selective thermal emitter. Substrate 110 is a metallic wire or other filamentous substrate capable of resistively heating PBG 120 to emit light. Refractory metals are preferred for their melting point and low diffusion. Alternatively, a non-conductive material may be used for substrate 110 and PBG 120 itself is resistively heated. Use of a wire substrate has several key advantages, including low-cost reel to reel processing, integration of the directivity of a PBG light source, no light intensity non-uniformity or radiative losses from the backside of a planar structure, and compatibility with existing commodity manufacturing processes, bulbs, sockets, and fixtures.
PBG 120 consists of a multitude of thin film layers of low dielectric 121 and high dielectric 122 forming a 1D PBG structure. Optionally, a well-known defect layer 123 is added to enhance thermal emissivity in conjunction with a high reflectivity substrate. Only 8 layers are shown as an example. PBG 120 need not actually posses a photonic band gap. A Photonic Crystal is sufficient (for this embodiment and all alternate embodiments), as it modifies the photonic density of states within the structure, and thus shapes the thermal emission spectrum. This structure has the advantage of low-cost thin film processing. Alternatively, PBG 120 may employ a 2D or 3D PBG structure.
Low dielectric 121 and high dielectric 122 are selected for a high contrast in dielectric constant, to give the best spectral shaping; material stability at operating temperature, no melting, no alloying, no chemical decomposition; and a matched CTE, to avoid layer de-lamination. A key advantage is operating temperature of a selective emitter is much less than for an equivalent black body. This allows a much broader selection of materials and a much longer emitter life. For illustrative purposes, some materials which meet these criteria and associated advantages are: Silicon/Alumina for low CTE; Titanium Dioxide/Magnesia for a high CTE; Titanium Dioxide/Silicon Dioxide for higher CTE and piezoelectric effects; and Tungsten/Tungsten Carbide for very high temperature operation. Many other materials are readily envisioned for use in particular applications or to give particular performance.
FIG. 2 is a perspective diagram illustrating a longitudinal cross section of a filament of a tapered selective thermal emitter 200. Substrate 210 and PBG 220 are similar to substrate 110 and PBG 120. PBG 220 incorporates a gradient and/or stepped longitudinal variation in layer thickness. The emission wavelength directly scales with layer thickness. The emission bandwidth without any layer thickness variation is relatively narrow. Variation of the layer thickness of a 1D PBG provides a key advantage: the entire emission spectra can easily be changed, as the integral of the emission spectra of each segment. Modification of color temperature and color rendering are as simple as changing the thickness gradient. Various quasi-monochromatic light colors can also easily be produced. Significant variation in the emission spectra of existing fluorescent and LED based sources requires new material systems with years of research to identify these systems. Advantages over a 2D or 3D PBG are the ease of changing lattice constant and a continuously variable lattice constant. Multiple periods of variation 230 may be included on a single filament. Some portion 235 of filament 200 may have a minimal PBG 220, leading to low emissivity segments. An advantage is the adjustment of the total light output of emitter 200.
FIG. 3 is a diagram illustrating a cross section of a filament of an offset selective thermal emitter 300. Offset emitter 300 is analogous to tapered emitter 200, but with the emission wavelength varied radially instead of longitudinally. Substrate 320 is analogous to substrate 220 and PBG 320 is analogous to PBG 220. Radial variation is accomplished by offsetting the substrate from the material source. Substrate 320 may be coiled or a coil of coils before coating.
FIG. 4 illustrates an apparatus 400 for reel-to-reel fabrication of a filament. Multiple deposition chambers 431 to 438 (only 4 are shown for clarity) each deposit one layer of PBG 420 before the substrate 410 is moved to the next chamber. The drawing is not to scale as the chambers are relatively large and the deposited films are very thin. Walls between the chambers each contain one hole only just large enough to allow the filament to pass and to minimize cross contamination between the chambers. Substrate 410 is passed through the chambers in a reel-to-reel fashion. The source and take-up reels are not shown for clarity. The deposition process may employ well known evaporative deposition, ion beam assisted deposition, chemical vapor deposition, molecular beam epitaxy, sputter deposition, or atomic layer deposition methods. An advantage is large lengths of filament can be made very quickly, very inexpensively, and with minimal user interaction. Furthermore, multiple strands of filaments may be fabricated simultaneously, given enough distance between the strands to ensure an even layer thickness.
FIG. 5 is a diagram illustrating a screw type light bulb 500. Filament 510 is analogous to tapered emitter 200; mounted to filament support wires 520; in stem 530; packaged in an A style or other bulb 540; with Edison or other style base 550. An advantage is compatibility with very common Edison base sockets and fixtures. The advantage is a high efficacy, low cost, non-toxic, fixture compatible, high quality light source.
Optionally, multiple redundant filaments 510a-c may be packaged in a single bulb. Additional control electronics are required to sense the failure of one filament and switch to a new filament. Optionally, the control electronics are smart and report filament failure via a communications link, monitor used and remaining filament life, and provide dimming or color control functions. Alternatively, any number of filaments may be packaged together and independently controlled to dynamically change the color output. Electrical connection may be in either a wye, delta, or independent configuration.
Bulb 540 may be plastic. All plastics are permeable to oxygen. In a typical bulb, a hot tungsten filament is very flammable and would be severely life-limited with any oxygen intrusion. Filament 510 may include an outer layer incorporating a ceramic or glass. Hot ceramic or glass is not subject to rapid attack by permeated atmospheric oxygen. Filament 510 may also incorporate a metal, as selective emission allows an operating temperature much lower than a typical black-body emitter.
FIG. 6 is a diagram illustrating a light bulb in a tubular package 600. Filament 610 with period 630 is analogous to one or more periods 230 of tapered emitter 200; supported along its length by multiple filament support rings 640; packaged in a bulb 650; with end caps 660; and pins 670. Period 630 may have low-emissivity regions to lower the total output power. Bulb 650 may be linear or circular. An advantage is socket compatibility with existing fluorescent bulbs, although the ballast no longer provides a useful function.
FIG. 7 is a diagram illustrating directionally focused light bulb 700. Energy is focused into a pattern by the directional emission spectrum and the shape of filament 710. Filament 710 is a rounded ribbon, instead of a wire, to provide the desired light distribution pattern. Although the substrate of filament 710 is already low emittance, the backside may be covered with a low-emissivity coating. Filament 710 is mounted to filament support wires 720; in stem 730; packaged in bulb 740; with Edison or other style base 750. Several key advantages exist over well known Parabolic Aluminized Reflector (PAR) bulbs: the PBG provides a spectrally shaped emission, efficacy is much higher; and the PBG emissions are directional, thus a reflector is not required, allowing use of commodity A style packaging.
FIG. 8 is a diagram illustrating a cross section of a focused selective thermal emitter 800. Substrate 810 is heated by a heat source from tube 815 and uniformly heats PBG 820. Radiated emissions from PBG 820 are predominantly normal to the substrate. The shape of substrate 810 focuses the radiated emissions from PBG 820 onto PV cell 830 without any optical elements other than the shape of the emitter. Another advantage is an increase in the power density at the PV cell, to match the power capability of the cell, thus increasing the efficiency of the cell and requiring a smaller cell area. Mirror 835 returns energy not incident on PV cell 830 to PBG 820.
FIG. 9 is a diagram illustrating a heat exchanger 900. Substrate 910 and PBG 920 are similar to substrate 810 and PBG 820. PBG 920 covers the interior concave surface of substrate 910 and energy is focused on heat collection element 930. Heat collection element is preferred to be a black body absorber or a PBG absorber and cannot be substantially reflective at the emission wavelengths of PBG 920. The resulting temperature of 930 is higher than substrate 910 due to the geometric concentration of optical energy and due to the selective emission and reflectance spectrum of PBG 920. Substrate 910 and heat collection element 930 are heated and cooled by a thermal transfer fluid.
FIG. 10 is a diagram illustrating an electrically color tunable emitter 1000. One or more layers 1021, 1022, or 1023 include piezoelectric materials, forming an actuated PBG 1020. Individually addressable contacts 1010 form an electrode and a rear mirror for actuated PBG 1020. Insulator 1011 prevents reference electrode 1030 from shorting PBG 1020. Collimator 1060 limits color change due to viewing angle, as the light chromaticity of any PBG is not constant with viewing angle. Substrate 1050 must be heated for a thermally emissive device. Alternatively, the substrate may not be heated and the device operated in a reflective mode. Multiple pixels 1040 are patterned to form an electronic display. Optionally, each pixel may be individually heated for brightness control. Advantages include manufacture of only one color of pixel, no masking between colors, no phosphors, increased resolution of monochromatic displays, true color displays, and IR displays. In an alternate embodiment, a magnetic material is substituted for a piezoelectric material. In an alternative embodiment, tunablity is accomplished by shifting the dielectric constant. Alternatively, the display may not be pixelated and used as an electronically color changeable light source. Uses include architectural or decorative lighting.
The device is operated by varying the color of a selected pixel to a desired value by piezoelectrically changing the dimensions of the PBG. Thus, red, green, and blue pixels, and any other desired color, are readily produced. A black may be produced by shifting the color to the IR or UV. Pulse width modulation between a visible color and black shifts the apparent brightness. In an alternative embodiment, each pixel is individually heated to control brightness level.
FIG. 11 is a diagram illustrating a sensor 1100. Reflective layer 1110 is attached to the object to be sensed. For sensing temperature, one or more layers 1121, 1122, and 1123 of PBG 1120 is selected to include a material with a high Coefficient of Thermal Expansion (CTE). Thus, the thickness of PBG 1120, and thus its central emissive wavelength is a function of temperature. This wavelength is read by spectrometer 1130. Substrate 1140 may be an irregular shape. Sensor 1100 is remotely readable, capable of withstanding high temperatures, presents little mass or aerodynamic load to the device being measured, and is capable of operation in corrosive, toxic, or explosive environments. Another advantage is the sensor is emissive, eliminating the need for a probe beam and allowing operation under dusty and dirty conditions.
In a further embodiment, one spectrometer 1130 reads multiple sensors 1100. For example, a sensor may be placed on each blade in a turbine. Rotation of the blades switches the view of spectrometer 1130 between multiple sensors 1100. Covering an entire blade with sensor 1100 allows a complete measurement of the temperature profile across a blade. Complete accurate temperature profiling of irregular moving surfaces is simply not possible with other technologies. Different wavelengths of sensors may be placed on different blades, to key the collected data to a particular blade.
One potential drawback of temperature sensitive PBG 1120 is that it also inherently measures strain. This limitation may be overcome by placing 2 sensors nearby, one with a large CTE and the other with a small CTE, giving two measurements to solve for both temperature and strain. Using a spectrometer modified for high speed operation, vibration is indicated by changes in strain. In yet another alternate embodiment, electric, magnetic, or chemicals may be sensed by selection of the desired materials.