Shaping a fuel charge in a combustion chamber with multiple drivers and/or ionization control

Information

  • Patent Grant
  • 8365700
  • Patent Number
    8,365,700
  • Date Filed
    Wednesday, July 21, 2010
    14 years ago
  • Date Issued
    Tuesday, February 5, 2013
    11 years ago
Abstract
The present disclosure is directed to injectors with integrated igniters providing efficient injection, ignition, and complete combustion of various types of fuels. These integrated injectors/igniters can include, for example, multiple drivers used to shape charges, controllers used to modify operations based on ionization parameters, and so on.
Description
TECHNICAL FIELD

The following disclosure relates generally to fuel injectors and igniters and associated components for injecting and igniting various fuels in an internal combustion engine.


BACKGROUND

Engines designed for petroleum based fuel operations are notoriously inefficient. Illustratively, during operation, gasoline is mixed with air to form a homogeneous mixture that enters a combustion chamber of an engine during throttled conditions of an intake cycle. The mixture of gasoline (fuel) and air is then compressed to near top dead center (TDC) conditions and ignited by a spark, such as a spark generated by a spark plug or a fuel igniter.


Often, modern engines are designed to minimize curb weight of the engine and to utilize lean fuel-air rations in efforts to limit peak combustion temperatures within the engine. Efforts to limit the peak combustion temperature may also include water injection and various additives to reduce the rate of homogeneous charge combustion. These engines generally contain small cylinders and high piston speeds. Although air throttling limits the amount of air and thus the fuel that can be admitted to achieve a spark-ignitable mixture at all power levels of operation, these engines are also designed to minimize flow impedance of homogeneously mixed fuel and air that enters the combustion chamber, with combustion chamber heads often containing two or three intake valves and two or three exhaust valves. Also, many engines include valves operated by overhead camshafts and other valve operations. These engine components use much of the space available over the pistons in an engine, and limit the area in an engine head in which to insert a direct cylinder fuel injector (for a diesel or compressed-ignition engine) or a spark plug (for a gasoline engine).


In addition to multiple valves restricting the available space for fuel injectors and spark plugs, the multiple valves often supply large heat loads to an engine head due to a greater heat gain during heat transfer from the combustion chamber to the engine head and related components. There may be further heat generated in the engine head by cam friction, valve springs, valve lifters, and other components, particularly in high-speed operations of the valves.


Spark ignition of an engine is a high voltage but low energy ionization of a mixture of air and fuel (such as 0.05 to 0.15 joules for normally aspirated engines equipped with spark plugs that operate with compression ratios of 12:1 or less). In order to maintain a suitable ionization, when the ambient pressure in a spark gap increases, the required voltage should also increase. For example, smaller ratios of fuel to air to provide a lean mixture, a wider spark gap to achieve sustained ignition, supercharging or turbocharging or other conditions may change the ionization potential or ambient pressure in a spark gap, and hence require an increase in the applied voltage.


Applying a high voltage applied to a conventional spark plug or fuel igniter, generally located near the wall of the combustion chamber, often causes heat loss due to combusting the air-fuel mixtures at and near surfaces within the combustion chamber, including the piston, cylinder wall, cylinder head, and valves. Such heat loss reduces the efficiency of the engine and can degrade combustion chamber components susceptible to oxidation, corrosion, thermal fatigue, increased friction due to thermal expansion, distortion, warpage, and wear due to evaporation or loss of viability of overheated or oxidized lubricating films. It follows that the greater the amount of heat lost to combustion chamber surfaces, the greater the degree of failure to complete a combustion process.


Efforts to control air-fuel ratios, providing more advantageous burn conditions for higher fuel efficiency, lower peak combustion temperatures, and reduced production of oxides, often cause numerous problems. Lower or leaner air-fuel ratios burn slower than stoichiometric or fuel-rich mixtures. Slower combustion requires greater time to complete the two- or four-stroke operation of an engine, thus reducing the power potential of the engine design.


These and other problems exist with respect to internal combustion engines.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic view of a suitable injector/igniter.



FIG. 2 is a cross-sectional side view of a suitable injector/igniter.



FIGS. 3A-3C are various side views of suitable ignition systems.



FIGS. 4A-4D illustrate layered burst patterns of fuel injected into a combustion chamber.



FIG. 5 is a flow diagram illustrating a routine for injecting fuel into a combustion chamber.



FIGS. 6A-6B illustrate layered burst patterns of fuel injected into a combustion chamber.



FIG. 7 is a flow diagram illustrating a routine for controlling the ionization of an air-fuel mixture during ignition within a combustion chamber.



FIG. 8 is a flow diagram illustrating a routine for operating a fuel ignition device in a combustion engine.





DETAILED DESCRIPTION

The present application incorporates by reference in their entirety the subject matter of each of the following U.S. patent applications, filed concurrently herewith on Jul. 21, 2010 and titled: INTEGRATED FUEL INJECTORS AND IGNITERS AND ASSOCIATED METHODS OF USE AND MANUFACTURE (Ser. No. 12/841,170); FUEL INJECTOR ACTUATOR ASSEMBLIES AND ASSOCIATED METHODS OF USE AND MANUFACTURE (Ser. No. 12/804,510); INTEGRATED FUEL INJECTORS AND IGNITERS WITH CONDUCTIVE CABLE ASSEMBLIES (Ser. No. 12/841,146); CERAMIC INSULATOR AND METHODS OF USE AND MANUFACTURE THEREOF (Ser. No. 12/841,135); METHOD AND SYSTEM OF THERMOCHEMICAL REGENERATION TO PROVIDE OXYGENATED FUEL, FOR EXAMPLE, WITH FUEL-COOLED FUEL INJECTORS (Ser. No. 12/804,509); and METHODS AND SYSTEMS FOR REDUCING THE FORMATION OF OXIDES OF NITROGEN DURING COMBUSTION IN ENGINES (Ser. No. 12/804,508).


Overview


The present disclosure describes devices, systems, and methods for providing a fuel injector configured to be used with a variety of different fuels. In some embodiments, the fuel injector includes ignition components, such as electrodes, and act as a combination injector-igniter. In some embodiments, the fuel injector includes two or more drivers or force generators configured to impart two or more driving forces to a fuel-dispensing device (e.g., a valve) in order to modify the shape or other characteristics of the fuel when injecting the fuel into a combustion chamber of an engine. For example, the fuel injector may include an electromagnetic driver that causes a valve to open and a piezoelectric driver that causes the open valve to modulate in the opening. Such modulation may provide certain shapes and/or surface area to volume ratios of the fuel entering surplus oxidant, such as fuel aerosols, dispersions, or fogs of varying fuel densities, among other things.


In some embodiments, fuel injection and/or ignition devices are integrated with internal combustion engines, as well as associated systems, assemblies, components, and methods. For example, some embodiments described herein are directed to adaptable fuel injectors/igniters that optimize or improve the injection and/or combustion of various fuels based on combustion chamber conditions, among other benefits.


In some embodiments, controllers associated with fuel injectors and/or ignition systems measure certain characteristics of a combustion chamber and modify operations of the fuel injectors and/or ignition systems accordingly. For example, the controllers may measure the ionization of an air-fuel mixture within a combustion chamber and modify the operation of the fuel injector and/or the fuel igniter based on the measurements. In some cases, the controllers modify the shape or characteristics of injected fuel. In some cases, the controllers modify the operation of the fuel igniters, such as by reversing a polarity of a voltage applied to electrodes of the fuel igniter, among other things. Such modification of the injected fuel and/or the operation of various devices may provide improved or faster ignition of air-fuel mixtures or may reduce or prevent erosion of the electrodes and other internal components, among other benefits.


Certain details are set forth in the following description and in FIGS. 1-8 to provide a thorough understanding of various embodiments of the disclosure. However, other details describing well-known structures and systems often associated with internal combustion engines, injectors, igniters, controllers, and/or other aspects of combustion systems are not set forth below to avoid unnecessarily obscuring the description of various embodiments of the disclosure. Thus, it will be appreciated that several of the details set forth below are provided to describe the following embodiments in a manner sufficient to enable a person skilled in the relevant art to make and use the disclosed embodiments. Several of the details and advantages described herein, however, may not be necessary to practice certain embodiments of the disclosure.


Many of the details, dimensions, angles, shapes, and other features shown in the Figures are merely illustrative of particular embodiments of the disclosure. Accordingly, other embodiments can have other details, dimensions, angles, and features without departing from the spirit or scope of the present disclosure. In addition, those of ordinary skill in the art will appreciate that further embodiments of the disclosure can be practiced without several of the details described below.


Reference throughout this specification to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the present disclosure. Thus, the occurrences of the phrases “in one embodiment” or “in an embodiment” in various places throughout this Specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments. In addition, the headings provided herein are for convenience only and do not interpret the scope or meaning of the claimed disclosure.


Suitable Systems and Devices


As discussed herein, various different fuel injectors and/or fuel igniters may perform some or all of the processes described herein, including modifying the shape of injected fuel, modifying the shape of the mixture of fuel and oxidant, modifying the operation of systems and devices, and so on. FIG. 1 is a schematic view of a suitable integrated injector/igniter 110 configured in accordance with various embodiments of this disclosure. The injector 110 may inject various different fuels into a combustion chamber 104, such as a combustion chamber within a combustion engine. Further, the injector 104 may adaptively adjust the pattern and/or frequency of the fuel injections or bursts based on combustion properties, parameters, and/or conditions within the combustion chamber 104. Thus, the injector 110 may optimize or improve characteristics (e.g., shape of fuel) of injected fuel to achieve benefits such as rapid ignition, to reduce the time for completion of combustion, or to reduce the total distance of fuel travel to achieve complete combustion, or to reduce heat losses from combustion events. In addition to injecting fuel, the injector 110 may also ignite the injected fuel using one or more integrated ignition devices and components that are configured to ignite the injected fuel. As such, the injector 110 can be utilized to convert conventional internal combustion engines for use with many different fuels.


The injector 110 includes a body 112 having a middle portion 116 extending between a base portion 114 and a nozzle portion 118. The nozzle portion 118 extends at least partially through a port in an engine head 107 to position an end portion 119 of the nozzle portion 118 at an interface with the combustion chamber 104. The injector 110 includes a passage or channel 123 extending through the body 112 from the base portion 114 to the nozzle portion 118. The channel 123 is configured to allow fuel to flow through the body 112. The channel 123 is also configured to allow other components, such as an actuator 122, to pass through the body 112, as well as instrumentation components and/or energy source components of the injector 110. In some cases, the actuator 122 is a cable or rod that has a first end portion that is operatively coupled to a flow control device or valve 120 carried by the end portion 119 of the nozzle portion 118. As such, the flow valve 120 is positioned proximate to the interface with the combustion chamber 104. In some cases, the injector 110 can include more than one flow valve as shown in U.S. patent application entitled Fuel Injector Actuator Assemblies and Associated Methods of Use and Manufacture, filed concurrently on Jul. 21, 2010, as well as one or more check valves positioned proximate to the combustion chamber 104, as well as at other locations on the body 112.


The actuator 122 includes a second end portion operatively coupled to a one or more drivers 124, 130, 140. The second end portion can further be coupled to a controller or processor 126. The controller 126 and/or the drivers 124, 130, 140 are configured to cause the valve 120 to inject fuel into the combustion chamber 104 via the actuator 122. In some cases, the actuator 122, driven by one or more of the drivers, causes the flow valve 120 move outwardly (e.g., toward the combustion chamber 104) to meter and control injection of the fuel. In some cases, the actuator 122, driven by one or more of the drivers, causes the flow valve 120 to move inwardly (e.g., away from the combustion chamber 104) to meter and control injection of the fuel.


The drivers 124, 130, 140 are responsive to instructions received from the controller 126 as well as other components providing instruction. Various different drivers may impart forces to the actuator 122, such as acoustic drivers, electromagnetic drivers, piezoelectric drivers, and so on, to achieve a desired frequency, pattern, and/or shape of injected fuel bursts.


As discussed herein, in some embodiments, the fuel injector includes two or more drivers used to impart driving forces on the actuator 122. For example, a first driver 124 may tension the actuator 122 to retain the flow valve 120 in a closed or seated position, or may relax the actuator 122 to allow the flow valve 120 to inject fuel, and vice versa. A second driver 130 or 140 may close, vibrate, pulsate, or modulate the actuator 122 in the open position. Thus, the fuel injector 110 may employ two or more driving forces on the valve 120 to achieve a desired frequency, pattern, and/or shape of injected fuel bursts.


In some embodiments, the fuel injector 110 includes one or more integrated sensing and/or transmitting components to detect combustion chamber properties and conditions. The actuator 122 may be formed from fiber optic cables, from insulated transducers integrated within a rod or cable, or can include other sensors to detect and communicate combustion chamber data. The fuel injector 110 may include other sensors or monitoring instrumentation (not shown) located at various positions on or in the fuel injector 110. The body 112 may include optical fibers integrated into the material of the body 112, or the material of the body 112 may be used to communicate combustion data to one or more controllers, such as controller 126.


In addition, the flow valve 120 may be configured to measure data or carry sensors in order to transmit combustion data to one or more controllers associated with the fuel injector 110. The data may be transmitted via wireless, wired, optical or other transmission devices and protocols. Such feedback enables extremely rapid and adaptive adjustments for optimization of fuel injection factors and characteristics including, for example, fuel delivery pressure, fuel injection initiation timing, fuel injection durations for production of multiple layered or stratified charges, the timing of one, multiple or continuous plasma ignitions or capacitive discharges, preventing erosion of components, and so on.


The controller 126 may include components capable and configured to receive the data measured by the sensors, store the data received from the sensors, store other data associated with fuel injection or operations of a fuel injector or fuel igniter, processors, communication components, and so on. Thus, the controller may include various microprocessors, memory components, communication components, and other components used to adjust and/or modify various operations. These components, modules, or systems described herein, such as components of the controller 126 and/or the drivers 126, 130, 140 may comprise software, firmware, hardware, or any combination(s) of software, firmware, or hardware suitable for the purposes described herein, including wireless communication from remote areas of operation to a central command and control location. The software may be executed by a general-purpose computer, such as a computer associated with an ignition system or vehicle utilizing an ignition system. Those skilled in the relevant art will appreciate that aspects of the system can be practiced with other communications, data processing, or computer system configurations. Furthermore, aspects of the system can be embodied in a special purpose computer or data processor that is specifically programmed, configured, or constructed to perform one or more of the computer-executable instructions explained in detail herein. Data structures described herein may comprise computer files, variables, programming arrays, programming structures, or any electronic information storage schemes or methods, or any combinations thereof, suitable for the purposes described herein. Data and other information, such as data structures, routines, algorithms, and so on, may be stored or distributed on computer-readable media, including magnetically or optically readable computer discs, hard-wired or preprogrammed chips (e.g., EEPROM semiconductor chips), nanotechnology memory, biological memory, or other data storage media.


In some embodiments, the fuel injector 110 includes an ignition and flow adjusting device or cover 121 carried by the end portion 119, adjacent to the engine head 107. The cover 121 at least partially encloses or surrounds the flow valve 120. The cover 121 may also be configured to protect certain components of the injector 110, such as sensors or other monitoring components. The cover 121 may also act as a catalyst, catalyst carrier and/or first electrode for ignition of the injected fuels. Moreover, the cover 121 may be configured to affect the shape, pattern, and/or phase of the injected fuel.


In some embodiments, the flow valve 120 is configured to affect these properties of the injected fuel, and may include one or more electrodes used for ignition of the injected fuels. For example, the cover 121 and/or the flow valve 120 can be configured to create sudden gasification of the fuel flowing past these components. The cover 121 and/or the flow valve 120 can include surfaces having sharp edges, catalysts, or other features that produce gas or vapor from the rapidly entering liquid fuel or mixture of liquid and solid fuel. The acceleration and/or frequency of the flow valve 120 actuation can also suddenly gasify the injected fuel. In operation, sudden gasification causes the vapor or gas emitted from the nozzle portion 118 to rapidly and completely combust. The sudden gasification may be used in various combinations with super heating liquid fuels and plasmas or acoustical impetus of projected fuel bursts. In some cases, the movement of the flow valve 12, such as modulated movement due to multiple driving forces, induces the plasma projection to beneficially affect the shape and/or pattern of the injected fuel.


In some embodiments, at least a portion of the body 112 is made from one or more dielectric materials 117 suitable to enable high energy ignition of injected fuels to combust different fuels, including unrefined fuels or low energy density fuels. These dielectric materials 117 may provide sufficient electrical insulation from high voltages used in the production, isolation, and/or delivery of spark or plasma for ignition. In some cases, the body 112 is made from a single dielectric material 117. In some cases, the body 112 is made from two or more dielectric materials. For example, the middle portion 116 may be made from a first dielectric material having a first dielectric strength, and the nozzle portion 118 may be made from a dielectric material having a second dielectric strength that is greater than the first dielectric strength. With a relatively strong second dielectric strength, the second dielectric material may protect the fuel injector 110 from thermal and mechanical shock, fouling, voltage tracking, and so on.


In some embodiments, the fuel injector 110 is coupled to a power or high voltage source to generate an ignition event and combust injected fuels. A first electrode can be coupled to the power source (e.g., a voltage generation source such as a capacitance discharge, induction, or piezoelectric system) via one or more conductors extending through the fuel injector 110. Regions of the nozzle portion 118, the flow valve 120, and/or the cover 121 may operate as a first electrode to generate an ignition event with a corresponding second electrode at or integrated into the engine head 107. Example ignition events include generating sparks, plasmas, compression ignition operations, high energy capacitance discharges, extended induction sourced sparks, and/or direct current or high frequency plasmas, often in conjunction with the application of ultrasound to quickly induce, impel, and finish combustion.



FIG. 2 is a cross-sectional side view of an example fuel injector 210 for use with an ignition system. The fuel injector 210 includes several features that are generally similar in structure and function to the corresponding features of the injector 110 described above with reference to FIG. 1. For example, the injector 210 includes a body 212 having a middle portion 216 extending between a base portion 214 and a nozzle portion 218. The nozzle portion 218 at least partially extends through an engine head 207 to position the end of the nozzle portion 218 at an interface with a combustion chamber 204. The body 212 includes a channel 263 extending through a portion thereof to allow fuel to flow through the injector 210. Other components can also pass through the channel 263. For example, the injector 210 further includes an actuator such as an assembly including 224, 260 and 222 that is operatively coupled to a controller or processor 226. The actuator rod or cable component 222 is also coupled to a valve or clamp member 260. The actuator 222 extends through the channel 263 from a driver 224 in the base portion 214 to a flow valve 220 in the nozzle portion 218. In certain embodiments, the actuator 222 can be a cable or rod assembly including, for example, fiber optics, electrical signal fibers, and/or acoustic communication fibers along with wireless transducer nodes. The actuator 222 is configured to cause the flow valve 220 to rapidly introduce multiple fuel bursts into the combustion chamber 204. The actuator 222 can also detect and/or transmit combustion properties to the controller 226.


According to one feature of the illustrated embodiment, the actuator 222 retains the flow valve 220 in a closed position seated against a corresponding valve seat 272. The base portion 214 includes two or more force generators 261, or drivers (shown schematically). The force generators 261 may be an electromagnetic force generator, a piezoelectric force generator, a combination of an electromagnetic and piezoelectric force generator, or other suitable types of force generators including pneumatic and hydraulic types and corresponding combinations and permutations. The force generators 261 are configured to produce driving forces that move the drivers 224. The drivers 224 contact the clamp member 260 to move the clamp member 260 along with the actuator 222. For example, the force generator 261 can produce a force that acts on the drivers 224 to pull the clamp member 260 and tension the actuator 222. The tensioned actuator 222 retains the flow valve 220 in the valve seat 272 in the closed position. When the force generator 261 does not produce a force that acts on the driver 224, the actuator 222 is relaxed thereby allowing the flow valve 220 to introduce fuel into the combustion chamber 204.


In the relaxed position, the force generators 261 may produce a second force that causes the actuator 222 to move the flow valve 220, such as by modulating the flow valve's movements at high frequencies. Thus, a first force generator may impart a force to open the valve, and a second force generator may impart forces to vibrate the valve open and closed or modulate the actuator when the valve is open.


The nozzle portion within 218 may include components that facilitate the actuation and positioning of the flow valve 220. For example, the flow valve 220 can be made from a first ferromagnetic material or otherwise incorporate a first ferromagnetic material (e.g., via plating a portion of the flow valve 220). The nozzle portion within 218 such as 270 or 272 can carry a corresponding second ferromagnetic material that is attracted to the first ferromagnetic material. For example, the valve seat 272 can incorporate the second ferromagnetic material. In this manner, these attractive components can help center the flow valve 220 in the valve seat 272, as well as facilitate the rapid actuation of the flow valve 220. In some cases, the actuator 222 passes through one or more centerline bearings (as further shown in Figures associated with concurrently filed application Fuel Injector Actuator Assemblies and Associated Methods of Use and Manufacture incorporated in its entirety by reference) to at least partially center the flow valve 220 in the valve seat 272.


Providing energy to actuate these attractive components of the injector 210 (e.g., the magnetic components associated with the flow valve 220) may expedite the closing of the flow valve 220, as well as provide increased closing forces acting on the flow valve 220. Such a configuration can enable extremely rapid opening and closing cycle times of the flow valve 220, among other benefits. The application of voltage for initial spark or plasma formation may ionize fuel passing near the surface of the valve seat 272, which may also ionize a fuel and air mixture adjacent to the combustion chamber 204 to further expedite complete ignition and combustion.


The base portion 214 also includes heat transfer features 265, such as heat transfer fins (e.g., helical fins). The base portion 214 also includes a first fitting 262a for introducing a suitable coolant including substances chosen for closed loop circulation to a heat rejection device such as a radiator, and substances such as fuel or another reactant that is consumed by the operation of the engine in which such coolants can flow around the heat transfer features 265, as well as a second fitting 262b to allow the coolant to exit the base portion 214. Such cooling of the fuel injector can at least partially prevent condensation and/or ice from forming when cold fuels are used, such as fuels that rapidly cool upon expansion. When hot fuels are used, however, such heat exchange may be utilized to locally reduce or maintain the vapor pressure of fuel contained in the passageway to the combustion chamber and prevent dribbling at undesirable times, among other benefits.


In some embodiments, the flow valve 220 may carry instrumentation 276 for monitoring combustion chamber events. For example, the flow valve 220 may be a ball valve made from a generally transparent material, such as quartz or sapphire. The ball valve 220 can carry the instrumentation 276 (e.g., sensors, transducers, and so on) inside the ball valve 220. In some cases, a cavity is formed in the ball valve 220 by cutting the ball valve 220 in a plane generally parallel with the face of the engine head 207. In this manner, the ball valve 220 can be separated into a base portion 277 as well as a lens portion 278. A cavity, such as a conical cavity, can be formed in the base portion 277 to receive the instrumentation 276. The lens portion 278 can then be reattached (e.g., adhered) to the base portion 277 to retain the generally spherical shape of the ball valve 220 or be modified as desired to provide another type of lens. In this manner, the ball valve 220 positions the instrumentation 276 adjacent to the combustion chamber 204 interface. Accordingly, the instrumentation 276 can measure and communicate combustion data including, for example, pressure data, temperature data, motion data, and other data.


In some cases, the flow valve 220 includes a treated face that protects the instrumentation 276. For example, a face of the flow valve 220 may be protected by depositing a relatively inert substance, such as diamond like plating, sapphire, optically transparent hexagonal boron nitride, BN—AlN composite, aluminum oxynitride (AlON including Al23O27N5 spinel), magnesium aliminate spinel, and/or other suitable protective materials.


The body 212 includes conductive plating 274 extending from the middle portion 216 to the nozzle portion 218. The conductive plating 274 is coupled to an electrical conductor or cable 264. The cable 264 can also be coupled to a power generator, such as a suitable piezoelectric, inductive, capacitive or high voltage circuit, for delivering energy to the injector 210. The conductive plating 274 is configured to deliver the energy to the nozzle portion 218. For example, the conductive plating 274 at the valve seat 272 can act as a first electrode that generates an ignition event (e.g., spark or plasma) with corresponding conductive portions of the engine head 207.


In one embodiment, the nozzle portion 218 includes an exterior sleeve 268 comprised of material that is resistant to spark erosion. The sleeve 268 can also resist spark deposited material that is transferred to or from conductor 274, 272 or the conductive plating 274 (e.g., the electrode zones of the nozzle portion 218). The nozzle portion 218 may include a reinforced heat dam or protective portion 266 that is configured to at least partially protect the injector 210 from heat and other degrading combustion chamber factors. The protective portion 266 can also include one or more transducers or sensors for measuring or monitoring combustion parameters, such as temperature, thermal and mechanical shock, and/or pressure events in the combustion chamber 204.


The middle portion 216 and the nozzle portion 218 include a dielectric insulator, including a first insulator 217a at least partially surrounding a second insulator 217b. The second insulator 217b extends from the middle portion 216 to the nozzle portion 218. Accordingly, at least a segment of the second insulator 217b is positioned adjacent to the combustion chamber 204. In some cases, the second insulator 217b is of a greater dielectric strength than the first insulator 217a. In this manner, the second insulator 217b can be configured to withstand the harsh combustion conditions proximate to the combustion chamber 204. In some cases, the injector 210 includes an insulator made from a single material.


In some embodiments, at least a portion of the second insulator 217b in the nozzle portion 218 is spaced apart from the combustion chamber 204. This forms a gap or volume of air space 270 between the engine head 207 (e.g., the second electrode) and the conductive plating 274 (e.g., the first electrode) of the nozzle portion 218. The injector 210 can form plasma of ionized oxidant such as air in the space 270 before a fuel injection event. This plasma projection of ionized air can accelerate the combustion of fuel that enters the plasma. Moreover, the plasma projection can affect the shape of the rapidly combusting fuel according to predetermined combustion chamber characteristics. Similarly, the injector 210 can also ionize components of the fuel, or ionize mixtures of fuel components and oxidant to produce high energy plasma, which can also affect or change the shape of the distribution pattern of the combusting fuel.


Thus, fuel injectors 110 and 210 include various components and devices, such as drivers, force generators, and so on, capable of imparting multiple driving forces on valves and other fuel dispensing devices in order to create and/or modify various fuel shapes or patterns. The fuel injectors 110 and 210 also include various components and devices, such as controllers, capable of measuring parameters and other data associated with combustion events within combustion chambers and modifying operations of fuel injectors and fuel igniters based on the conditions within ignition systems. Various suitable ignition environments will now be discussed.



FIG. 3A is a side view illustrating a suitable ignition environment for an internal combustion system 300 having a fuel injector 310. A combustion chamber 302 is formed between a head portion containing the fuel injector 310 and valves, a movable piston 301 and the inner surface of a cylinder 303. Of course, other environments may implement the fuel injector 310, such as environments with other types of combustion chambers and/or energy transferring devices, including various vanes, axial and radial piston expanders, numerous types of rotary combustion engines, and so on.


The fuel injector 310 may include several features that not only allow the injection and ignition of different fuels within the combustion chamber 302, but also enable the injector 310 to adaptively inject and ignite these different fuels according to different combustion conditions or requirements. For example, the injector 310 may include one or more insulative materials configured to enable high-energy ignition of different fuel types, including unrefined fuels or low energy density fuels. The insulative materials may also withstand conditions required to combust different fuel types, including, for example, high voltage conditions, fatigue conditions, impact conditions, oxidation, erosion, and corrosion degradation.


The injector 310 may include instrumentation for sensing various properties of the combustion in the combustion chamber 302 (e.g., properties of the combustion process, the combustion chamber 302, the engine 304, and so on). In response to these sensed conditions, the injector 310 can adaptively optimize the fuel injection and ignition characteristics to achieve increased fuel efficiency and power production, as well as decrease noise, engine knock, heat losses and/or vibration to extend the engine and/or vehicle life, among other benefits.


The injector 310 may include actuating components to inject the fuel into the combustion chamber 302 to achieve specific flow or spray patterns 305, as well as the phase, of the injected fuel. For example, the injector 310 may include one or more valves positioned proximate to the interface of the combustion chamber 302. The actuating components, such as multiple drivers or force generators of the injector 310 provide for precise, high frequency operation of the valve to control at least the following features: the timing of fuel injection initiation and completion, the frequency and duration of repeated fuel injections, the shape of injected fuel, the timing and selection of ignition events, and so on.



FIG. 3B shows partial views of characteristic engine block and head components and of injector 328 that operates as disclosed regarding embodiments with an appropriate fuel valve operator located in the upper insulated portion and that is electrically separated from the fuel flow control valve located very near the combustion chamber in which the stratified charge fuel injection pattern 326 is asymmetric as shown to accommodate the combustion chamber geometry shown. Such asymmetric fuel penetration patterns are preferably created by making appropriately larger fuel delivery passageways such as wider gaps in portions of slots shown in previous Figures to cause greater penetration of fuel entering the combustion chamber on appropriate fuel penetration rays of pattern 327 as shown to provide for optimized air utilization as a combustant and as an excess air insulator surrounding combustion to minimize heat losses to piston 324, components of the head including intake or exhaust valve 322, or the engine block including coolant in passages.



FIG. 3C is a schematic cross-sectional side view of a suitable ignition system 340. The ignition system 340 includes an integrated fuel injector/igniter 342 (e.g., an injector as described herein), a combustion chamber 346, one or more unthrottled air flow valves 348 (identified individually as a first valve 348a and a second valve 348b), and an energy transferring device, or piston 344. The injector 342 is configured to inject a layered or stratified charge of fuel 352 into the combustion chamber 346. The ignition system 340 is configured to inject and ignite the fuel 352 in an abundance or excess amount of an oxidant, such as air. The valves 348 enable admission of oxidant such as air at ambient pressure or even a positive pressure in the combustion chamber 346 prior to the combustion event. For example, the system 340 can operate without throttling or otherwise impeding air flow into the combustion chamber such that a vacuum is not created by restricting air entering the combustion chamber 346 prior to igniting the fuel 352. Due to the ambient or positive pressure in the combustion chamber 346, the excess oxidant forms an insulative barrier 350 adjacent to the surfaces of the combustion chamber (e.g., the cylinder walls, piston, engine head, and so on).


In operation, the fuel injector 342 injects the layered or stratified fuel 352 into the combustion chamber 346 in the presence of the excess oxidant. In some cases, the injection occurs when the piston 344 is at or past the top dead center position. In some cases, the fuel injector 342 injects the fuel 352 before the piston 344 reaches top dead center. Because the injector 342 is configured to adaptively inject the fuel including production of layered charges 352 as described herein, the fuel 352 is configured to rapidly ignite and completely combust in the presence of the insulative barrier 350 of the oxidant. As such, the insulative zone of surplus oxidant serves as a type of barrier 350 that substantially shields the walls of the combustion chamber 346 from heat given off from the fuel 352 when the fuel 352 ignites, thereby avoiding heat loss to the walls of the combustion chamber 346. As a result, the heat released by the rapid combustion of the fuel 352 is converted into work to drive the piston 344, rather than being transferred as a loss to the combustion chamber surfaces.


As discussed herein, fuel is injected in various burst patterns or shapes. FIGS. 4A-4D illustrate several fuel burst patterns 405 (identified individually as 405a-405d) of injected fuel. As those of ordinary skill in the art will appreciate, the illustrated patterns 405 are merely representative of various patterns and others are of course possible. Although the patterns 405 have different shapes and configurations, these patterns 405 share the feature of having sequential fuel layers 407. The individual layers 407 of the corresponding patterns 405 provide the benefit of relatively large surface to volume ratios of the injected fuel. The large surface to volume ratios provide higher combustion rates of the fuel charges, and assist in insulating and accelerating complete combustion of the fuel charges. Fast and complete combustion provides several advantages over slower burning fuel charges. For example, slower burning fuel charges require earlier ignition, cause significant heat losses to combustion chamber surfaces, and produce more backwork or output torque loss to overcome early pressure rise from the earlier ignition.


Multiple Driving Forces


As discussed herein, systems, devices, and processes described herein optimize various combustion requirements for different fuel types. They include fuel injector/igniters having multiple actuators or drivers (e.g., piezoelectric, magnetic, hydraulic, and so on) that act together to inject certain fuel spray patterns or otherwise modulate the introduction of fuel into a combustion chamber of a combustion engine.



FIG. 5 is a flow diagram illustrating a routine 500 for injecting fuel into a combustion chamber. In step 510, a controller, associated with fuel injector, receives feedback regarding ignition conditions in a combustion engine, such as conditions associated with a combustion chamber. The controller may employ a number of different sensors to measure and receive information and data, such as sensors integrated into a fuel injector. The sensors may measure data associated with various parameters of ignition and combustion events within the combustion chamber, including pressure, temperature, fuel penetration into the oxidant inventory, subsequent fuel distribution patterns, motion of fuel distribution pattern, data associated with the ionization of an air-fuel mixture during a combustion of the mixture, rate of combustion of the mixtures produced, the ratio of fuel to air in a combusted mixture, penetration of the products of combustion into excess oxidant, patterns of the products of combustion, motion of the products of combustion and so on.


In step 520, the controller causes an actuator of the fuel injector to impart a first driving force to a valve or other fuel-dispensing device of the fuel injector. For example, the controller may provide instructions including adjustment of the fuel injection pressure, adjustment of the beginning timing of each fuel injection, adjustment of the timing that each fuel injection event ends, adjustment of the time between each fuel injection event, and adjustments to a driver or force generator to impart certain driving forces that cause the fuel control valve at the combustion chamber interface such as 120 or 200 or various other configurations of copending applications (filed concurrently on Jul. 21, 2010 and incorporated by reference in the disclosure above) to open and close at certain frequencies in order to inject fuel into the combustion chamber with a desired shape or pattern, such as those shown in FIGS. 4A-4D.


In step 530, the controller causes the actuator to impart a second driving force to the valve or other fuel-dispensing device of the fuel injector. In some cases, the controller causes an actuator within the fuel injector to impart the second driving force to vibrate the valve between open and closed positions or to further modify the shape or pattern of fuel during injection of the fuel. For example, the controller may modulate movement of the valve at high frequencies when the valve is open and allowing fuel to flow from the fuel injector and into the combustion chamber. The high frequency modulation generates fuel or charge shapes having various surface area to volume ratios. In some cases, the controller performs the modulation based on the information received in step 510, in order to provide suitable and effective fuel shapes with respect to conditions within a combustion chamber.


Fuel injectors capable of performing routine 500 may employ a variety of different drivers. In cases of high piston speeds, the first driver may be a piezoelectric valve driver and the second driver may be a piezoelectric driver. In some cases, any drivers capable of imparting a resonant vibration to an actuator cable may act as a second driver. For example, a solenoid may apply pulses using a pulse width modulation to an actuator cable in order to achieve modulation (similar to plucking a violin string). The pulse width modulation may be adaptively adjusted to produce the desired shape and surface to volume ratios of the multiple fuel injections. In other examples, the denser layer(s) and less dense layer(s) of fuel may be generated by various multiples of the resonant vibration of the valve or the control cable. In cases of large chambers, the first driver may be a hydraulic or pneumatic valve driver and the second driver may utilize solenoids, piezoelectric drivers, hydraulic drivers, pneumatic drivers, and the like.


In some cases, plasma within the combustion chamber or within cavities of the fuel injector may impart a second force on an injected fuel shape. The plasma work performance depends upon the voltage and current applied to suddenly heat, expand, thrust and propel the fuel, fuel-air mixture, or air before and/or after each fuel injection. Thus, the plasma generated during an ignition event may modify the fuel shape. Permanent or electromagnetic acceleration of the electric current produced during an ignition event may assist the plasma in modifying the fuel shape.


Illustratively, plasma generation in an oxidant such as air before each fuel injection creates thrust of ionized oxidant into the remaining oxidant within the combustion chamber. The inventory of ionized oxidant greatly accelerates ignition and completion of combustion of fuel that subsequently enters the combustion chamber. The pattern of ionized oxidant projecting into the combustion chamber helps impart the flow of remaining oxidant into fuel that follows the path of ionized air. Plasma generation within fuel entering the combustion chamber may be increased to provide sufficient electrical energy to accelerate the fuel for the purpose of overtaking the flow of ionized oxidant. In other modes plasma may be generated in fuel that is subsequently injected to produce additional groups of vectors that penetrate the oxidant within the combustion chamber. An example of such plasma thrusting of directed rays or vectors 327 regarding plasma projected fuel are shown in FIG. 3B. This provides optimal utilization of the oxidant in the combustion chamber in instances that an asymmetric location is provided for fuel injector 326 as shown.


Plasma shaping and characterization of fuel injection and oxidation events include:

    • 1) Plasma ionization of oxidant prior to the arrival of fuel;
    • 2) Plasma ionization of oxidant prior to the arrival of fuel followed by continued ionization of injected fuel;
    • 3) Plasma ionization of fuel that is injected into oxidant within the combustion chamber;
    • 4) Plasma ionization of at least a layer of oxidant adjacent to a layer of fuel;
    • 5) Plasma ionization of a layer of oxidant adjacent to a layer of fuel adjacent to a layer of oxidant;
    • 6) Plasma ionization of a mixture of fuel and oxidant;
    • 7) Plasma ionization of oxidant after any of the above described events;
    • 8) Plasma production of ion currents that are electromagnetically thrust into the combustion chamber; and
    • 9) Plasma production of ion currents that are electromagnetically thrust and magnetically accelerated to desired vectors within the combustion chamber.


Plasma thrusting of oxidant, mixtures of oxidant and fuel, or fuel ions is provided by the electromagnetic forces that are generated by high current discharges. The general approach of such plasma generation is disclosed in exemplary references such as U.S. Pat. Nos. 4,122,816; 4,774,914 and 5,076,223, herein incorporated in their entirety by reference, and may utilize various high voltage generation systems including the type disclosed in U.S. Pat. No. 4,677,960, herein incorporated in its entirety by reference. Shaping of the plasma that may be generated in oxidant, fuel, and/or mixtures of oxidant and fuel may be accomplished by an electromagnetic lens such as utilized to selectively aim streams of electrons in a cathode ray tube or as disclosed in U.S. Pat. No. 4,760,820, herein incorporated in its entirety by reference, regarding streams of ions. Generally it is undesirable to incur the engine efficiency penalty and loss of selectivity of the type of ion generation desired and adaptive ion distribution shaping capabilities that the present invention achieves by reliance upon a high-pressure fuel delivery system (such as a high-pressure fuel delivery system disclosed in U.S. Pat. No. 5,377,633, herein incorporated in its entirety by reference).


In operation, plasma generation in an oxidant, such as excess air, before each fuel injection event, selectively creates a thrust of ionized oxidant into the remaining oxidant within the combustion chamber. The inventory of ionized oxidant greatly accelerates ignition and completion of combustion of fuel that subsequently enters the combustion chamber.


The pattern of ionized oxidant projecting into the combustion chamber is controlled by the voltage and current applied to the plasma that is formed and helps impart the flow of remaining oxidant into fuel that follows the path of ionized air. Plasma generation within fuel entering the combustion chamber may be increased to provide sufficient electrical energy to electromagnetically accelerate the fuel for the purpose of overtaking the flow of ionized oxidant.


In other modes of operation plasma generation may be modulated by control of the voltage and amperage delivered in injected fuel to provide greater velocity and penetration of fuel-rich layers or bursts into an oxidant within the combustion chamber.


Another embodiment of the disclosure provides for interchangeable utilization of fuel selections including mixtures of fuels such as diesel fuel; melted paraffin; gasoline; casing head or “drip” gasoline; methane; ethane; propane; butane; fuel alcohols; wet fuels such as 160-proof mixtures of water and one or more alcohols such as methanol, ethanol, butanol, or isopropanol; producer gas; and hydrogen. This is enabled by adaptive adjustment to provide sufficient plasma in each fuel injection delivery to suddenly produce fuel alterations including fuel evaporation/vaporization and chemical cracking to subdivide large molecules into smaller components including ionized species. Thus a wide variety of fuel selections, particularly very low cost fuels, are acceptable including fuels with contaminants such as water and cetane ratings that are far outside of acceptable “diesel fuel” specifications. Furthermore the plasma may be generated by electrode nozzles that produce sufficient plasma thrust of such ionized fuel species to penetrate desired distances into oxidant within the combustion chamber to allow relatively low fuel delivery pressures compared to typical diesel fuel pressurization requirements for achieving similar oxidant utilization. This overcomes the disadvantages and limitations of cetane-characterized fuel selection, “diesel delay,” knock and relatively uncontrolled peak combustion temperatures that characterize conventional compression-ignition systems.


Such plasma induced fuel preparation and thrust generation to develop desired shapes and surface-to-volume characterizations of stratified fuel deliveries enables efficient utilization of harvested energy. An illustrative embodiment provides for regenerative braking of a vehicle, elevator or similar event to produce electrical energy and/or conversion of combustion chamber sourced radiation, pressure, thermal or vibration energy whereby such harvested electricity is utilized to produce the desired plasma. This overcomes the substantial loss of engine efficiency due to the pressure-volume work required to compress an oxidant sufficiently to heat it 370° C. (700° F.) or more including losses of such work-generated heat through the intentionally cooled walls of the combustion chamber along with the substantial work required to pump and pressurize diesel fuel to high pressures such as 1360 bar (20,000 PSI).


According to further aspects of the disclosure and as described herein, using multiple driving forces (e.g., the opening of the valve and modulation of the movement of the valve) provides for a variety of different fuel shapes. FIGS. 6A-6B illustrate layered burst patterns of fuel injected into a combustion chamber based on multiple forces. The fuel shapes 600, 650 may be dependent on the injection nozzle geometry, fuel delivery pressure gradients, fuel viscosities, compression ratios, oxidant temperatures, and so on. The shapes may include regions of fuel dense air-fuel mixtures 610, 660 separated by air dense air-fuel mixtures 620, 670, surrounded by surplus air 630, 680.


That is, imparting a second driving force (e.g., modulating an injection nozzle or valve, impacting a fuel pattern with a plasma, and so on) causes the fuel injector to generate different fuel patterns (FIGS. 6A-6B) than the fuel patterns (FIGS. 4A-4D) generated by simply opening a valve to inject a fuel into a combustion chamber. The shapes and patterns of FIG. 6A-6B may be established by transparent fuel in transparent oxidant but thought of as fog-like in density, with fuel-dense regions layered with air-dense regions within the fog. For example, the fog-like regions containing denser fuel rich fuel-air regions may be interspersed with less dense fuel rich regions, air rich regions, and/or air fuel regions to provide desirable surface area to volume ratios of the air-fuel mixture, enabling faster ignition times and complete ignition of the mixture, among other benefits.


Controlling the Ionization of a Air-fuel Mixture During an Ignition Event


As discussed herein, in some embodiments a controller modifies operation of a fuel injector or fuel igniter based on certain measured and/or detected conditions within a combustion chamber and associated with an ignition or combustion event of an injected fuel and air mixture. In some cases, the measured condition is associated with the ionization of the air-fuel mixture during the ignition event. Modifying operations based on monitoring and/or determining the ionization of an air-fuel mixture enables a fuel injection system to reduce or eliminate spark erosion of electrodes within the combustion chamber, among other benefits.


For example, the controller may reverse the polarity of a voltage applied to electrodes (that is, switch between using one electrode as a cathode and an anode) within a combustion chamber at high frequencies. The frequent reversal of polarity enables an ignition system to create many ions within an air-fuel mixture by greatly reducing or preventing net transfer of ions from one electrode to another and causing erosion to the electrodes, among other benefits, as such ions are rotated between the reversing polarity and/or thrust into the combustion chamber.



FIG. 7 is a flow diagram illustrating a routine 700 for controlling the ionization of an air-fuel mixture during ignition within a combustion chamber. In step 710, a controller imparts a first driving force on a valve of a fuel injector. For example, the system causes a valve to open and dispense fuel into a combustion chamber.


In step 720, a controller imparts a second driving force on the valve of the fuel injector or on an injected fuel or air-fuel mixture. For example, the controller modulates the movement of the valve when the valve is in the open position, causing the valve to generate modified fuel shapes having certain surface area to volume ratios.


In step 730, a fuel igniter ignites an air-fuel mixture within the combustion chamber by applying a voltage to electrodes within the chamber. For example, the system generates a spark between a first electrode located on the fuel injector and a second electrode located within the combustion chamber at the engine head. During ignition, oxidant and/or fuel molecules are ionized and the ionized fuel molecules and surrounding air (i.e., a plasma) are ignited to produce energy.


In step 740, various sensors measure parameters of the ionization of an air-fuel mixture between the two electrodes in the combustion. Examples of measured parameters include the degree of ionization, the space potential, the magnetization of the ions, the size of the ionized area, the lifetime of the ionization, the density of ions, the temperature of the ionized area, electrical characteristics of the ionized area, and other parameters, such as those discussed herein. Of course, other parameters may be measured, including trends associated with certain parameters. For example, the sensors may provide information indicating a trend of increasing temperature during ignition events, indicating ignition events are increasingly ionized.


In step 750, the controller adjusts the operation of the fuel injection based on the measured parameters. For example the controller may adjust the polarity of a voltage applied to the electrodes, may raise or lower the frequency of polarity reversal between electrodes (that is, the frequency of changing the first electrode from a cathode to an anode).


In engines that it is desired to utilize a portion of the head such as the bore within 207 as an electrode without the protection of liner 268, spark erosion of the bore can be avoided by reversing polarity. Such reversal of polarity may be at very high rates including megahertz frequencies to avoid spark erosion.


As discussed herein, the inventors have identified conditions under which operating an ignition system may degrade or otherwise erode components within the ignition system, such as electrodes used to ignite air-fuel mixtures in a combustion chamber. FIG. 8 is a flow diagram illustrating a routine 800 for operating a fuel ignition device in a combustion engine.


In another illustrative embodiment during a first engine cycle, an ignition system, in step 810, combusts an air-fuel mixture using an ignition device at a first polarity. That is, the ignition system applies a voltage at a first polarity across two electrodes, such as a first electrode on a fuel injector and a second electrode in a combustion chamber, two electrodes of a spark plug, and so on.


In step 820, the ignition system reverses the polarity of the ignition device based on operating parameters of the ignition system, such as predetermined parameters, measured parameters, and so on. For example, the ignition system may reverse the polarity every engine cycle (e.g., for a four stroke engine at 6000 RPM, the systems reverse the polarity every other crank rotation or at 50 Hz). As another example, the ignition system may reverse the polarity upon detecting certain parameters, such as parameters that may lead to undesirable erosion of the electrodes.


After reversing the polarity, the ignition system, in step 830, combusts the air-fuel mixture using the ignition device at the second polarity. That is, the ignition system applies a voltage at a polarity reversed from the first polarity across the two electrodes. Thus, the “cathode” in a previous cycle acts as the “anode” in a subsequent cycle, and vice versa.


CONCLUSION

Unless the context clearly requires otherwise, throughout the description and the claims, the words “comprise,” “comprising,” and the like are to be construed in an inclusive sense as opposed to an exclusive or exhaustive sense; that is to say, in a sense of “including, but not limited to.” Words using the singular or plural number also include the plural or singular number, respectively. When the claims use the word “or” in reference to a list of two or more items, that word covers all of the following interpretations of the word: any of the items in the list, all of the items in the list, and any combination of the items in the list.


The various embodiments described above can be combined to provide further embodiments. All of the U.S. patents, U.S. patent application publications, U.S. patent applications, foreign patents, foreign patent applications and non-patent publications referred to in this specification and/or listed in the Application Data Sheet are incorporated herein by reference, in their entirety. Aspects of the disclosure can be modified, if necessary, to employ fuel injectors and ignition devices with various configurations, and concepts of the various patents, applications, and publications to provide yet further embodiments of the disclosure.


These and other changes can be made to the disclosure in light of the above-detailed description. In general, in the following claims, the terms used should not be construed to limit the disclosure to the specific embodiments disclosed in the specification and the claims, but should be construed to include all systems and methods that operate in accordance with the claims. Accordingly, the invention is not limited by the disclosure, but instead its scope is to be determined broadly by the following claims.

Claims
  • 1. A fuel injector, comprising: a body having a middle portion extending between a base portion and a nozzle portion; wherein the body includes a channel configured to allow fuel to pass between the base portion and the nozzle portion to a combustion chamber of a fuel combustion engine;an actuator contained within the channel of the body, the actuator having a distal end and a proximal end;a valve operably coupled to the distal end of the actuator;a driver operably connected to the proximal end of the actuator;a first force generator positioned adjacent the driver and configured to impart a force to the driver to move the actuator and operate the valve between an open position and a closed position; and a second force generator positioned adjacent the driver and configured to impart a force to the driver to produce a vibration of the actuator and the valve while the valve is in the open position.
  • 2. The fuel injector-igniter of claim 1, further comprising a controller operably connected to the first force generator and the second force generator and configured to provide operating instructions to the first force generator and the second force generator, the instructions including operating parameters that modify the vibration of the actuator and the valve to shape a pattern of a fuel burst injected into the fuel combustion engine.
  • 3. The fuel injector-igniter of claim 1, wherein the first force generator is an electromagnetic component configured to cause the actuator to move the valve laterally with respect to the channel and the second force generator is a piezoelectric component configured to modulate the lateral movements of the valve.
  • 4. The fuel injector-igniter of claim 1, further comprising a controller operably connected to the first force generator and the second force generator and configured to provide operating instructions to the first force generator and the second force generator, the instructions including operating parameters to open and vibrate the valve to inject a patterned fuel burst into the fuel combustion engine.
  • 5. The fuel injector-igniter of claim 1, further comprising: a controller operably connected to the first force generator and the second force generator and configured to provide operating instructions to the first force generator and the second force generator;a sensor configured to measure parameters associated with a fuel ignition event within the fuel combustion engine; anda flow modification component located at the controller and configured to modify the operating instructions provided to the first force generator and the second force generator based on data received from the sensor and associated with the measured parameters.
  • 6. The fuel injector of claim 1 wherein the valve includes a first ferromagnetic material, wherein the nozzle portion includes a valve seat having a second ferromagnetic material, and wherein the first and second ferromagnetic materials are mutually attracted to facilitate rapid actuation of the valve.
  • 7. A method in a controller of a fuel injector for injecting fuel into a direct fuel injection engine, comprising: measuring at least one parameter associated with an air-fuel mixture inside a combustion chamber of a direct fuel injection engine; andtransmitting instructions to one or more drivers that manipulate a valve of the fuel injector, wherein the instructions include: information associated with movement of the valve into an open position to dispense fuel from the fuel injector into the combustion chamber; andinstructions associated with inducing a vibration of the valve when the valve is in the open position to modify the shape of the fuel dispensed into the combustion chamber to produce a layered pattern of fuel.
  • 8. The method of claim 7, wherein measuring at least one parameter associated with the air-fuel mixture includes measuring a degree of ionization of the air-fuel mixture during an ignition of the air-fuel mixture within the combustion chamber.
  • 9. The method of claim 7, wherein measuring at least one parameter associated with the air-fuel mixture includes measuring a ratio of air to fuel within the air-fuel mixture.
  • 10. The method of claim 7, wherein measuring at least one parameter associated with the air-fuel mixture includes measuring a rate of combustion of the air-fuel mixture during an ignition event within the combustion chamber.
  • 11. A fuel injection system configured to inject fuel into a combustion chamber of a combustion engine, the system comprising: a fuel dispensing component including a valve, wherein the fuel dispensing component is configured to dispense fuel having a certain ratio of surface area to volume into the combustion chamber;a measurement component, wherein the measurement component is configured to measure conditions within the combustion chamber; anda control component in communication with the fuel dispensing component and the measurement component, wherein the control component is configured to provide instructions to the fuel dispensing component to induce a vibration of the valve to produce a stratified burst of fuel into the combustion chamber.
  • 12. The system of claim 11, wherein the fuel dispensing component includes: a body having a middle portion extending between a base portion and a nozzle portion, wherein the nozzle portion is configured to connect the body to the combustion engine;a channel located within the body configured to store fuel and allow fuel to flow from the base portion to the nozzle portion;an actuator located within the channel and having a distal end and a proximal end;a first driver operably connected to the proximal end of the actuator, wherein the first driver receives at least a first portion of the instructions provided by the control component associated with opening of the valve; anda second driver operably connected to the proximal end of the actuator, wherein the second driver receives at least a second potion of the instructions provided by the control component associated with the vibration of the valve.
  • 13. The system of claim 11, wherein the measurement component is configured to measure an ionization parameter of an air-fuel mixture within the combustion chamber during a combustion event.
  • 14. The system of claim 11, wherein the measurement component is a sensor located within the fuel dispensing component.
  • 15. The system of claim 11, wherein the control component includes a processor and memory, wherein the memory contains a relational database that includes entries relating various ratios of surface area to volume for dispensed fuel with respect to conditions within the combustion chamber.
  • 16. The system of claim 11 wherein the valve includes a first ferromagnetic material, wherein the fuel dispensing component includes a nozzle portion having a valve seat that includes a second ferromagnetic material, and wherein the first and second ferromagnetic materials are mutually attracted to facilitate rapid actuation of the valve.
  • 17. A method for injecting fuel into a combustion chamber of an engine, the method comprising: applying a first driving force to a valve of a fuel injector, wherein the first driving force opens the valve and causes fuel having a certain shape within the fuel injector to flow into a combustion chamber of an engine; andapplying a second driving force to the valve of the fuel injector, wherein the second driving force vibrates the valve at a certain frequency and causes the fuel to flowing into the combustion chamber to have a modified shape.
  • 18. The method of claim 17, further comprising: receiving information associated with ionization of a mixture of the fuel and air during an ignition event within the combustion chamber; andapplying the second driving force to move the valve at a frequency different than the certain frequency based on the received ionization information.
  • 19. The method of claim 17, wherein the certain shape is defined by a certain ratio of the surface area of the fuel to the volume of the fuel.
  • 20. The method of claim 17, further comprising ionizing the fuel to produce a plasma.
  • 21. The method of claim 17, further comprising ionizing an oxidant to produce a plasma.
  • 22. The method of claim 17, further comprising providing excess air as an insulant to minimize heat losses.
CROSS-REFERENCE TO RELATED APPLICATION(S)

The present application claims priority to and the benefit of U.S. Provisional Application No. 61/237,425, filed Aug. 27, 2009 and titled OXYGENATED FUEL PRODUCTION; U.S. Provisional Application No. 61/237,466, filed Aug. 27, 2009 and titled MULTIFUEL MULTIBURST; U.S. Provisional Application No. 61/237,479, filed Aug. 27, 2009 and titled FULL SPECTRUM ENERGY; U.S. Provisional Application No. 61/304,403, filed Feb. 13, 2010 and titled FULL SPECTRUM ENERGY AND RESOURCE INDEPENDENCE; and U.S. Provisional Application No. 61/312,100, filed Mar. 9, 2010 and titled SYSTEM AND METHOD FOR PROVIDING HIGH VOLTAGE RF SHIELDING, FOR EXAMPLE, FOR USE WITH A FUEL INJECTOR. The present application is a continuation-in-part of PCT Application No. PCT/US09/67044, filed Dec. 7, 2009 and titled INTEGRATED FUEL INJECTORS AND IGNITERS AND ASSOCIATED METHODS OF USE AND MANUFACTURE. The present application is a continuation-in-part of U.S. patent application Ser. No. 12/653,085, filed Dec. 7, 2009 and titled INTEGRATED FUEL INJECTORS AND IGNITERS AND ASSOCIATED METHODS OF USE AND MANUFACTURE; which is a continuation-in-part of U.S. patent application Ser. No. 12/006,774 (now U.S. Pat. No. 7,628,137), filed Jan. 7, 2008 and titled MULTIFUEL STORAGE, METERING, AND IGNITION SYSTEM; and which claims priority to and the benefit of U.S. Provisional Application No. 61/237,466, filed Aug. 27, 2009 and titled MULTIFUEL MULTIBURST. The present application is a continuation-in-part of U.S. patent application Ser. No. 12/581,825, filed Oct. 19, 2009 and titled MULTIFUEL STORAGE, METERING, AND IGNITION SYSTEM; which is a divisional of U.S. patent application Ser. No. 12/006,774 (now U.S. Pat. No. 7,628,137), filed Jan. 7, 2008 and titled MULTIFUEL STORAGE, METERING, AND IGNITION SYSTEM. Each of these applications is incorporated herein by reference in its entirety.

US Referenced Citations (366)
Number Name Date Kind
1451384 Whyte Apr 1923 A
1765237 King Jul 1938 A
2255203 Wiegand Sep 1941 A
2441277 Lamphere May 1948 A
2721100 Bodine, Jr. Oct 1955 A
3058453 May Oct 1962 A
3060912 May Oct 1962 A
3081758 May Mar 1963 A
3243335 Faile Mar 1966 A
3286164 De Huff Nov 1966 A
3373724 Papst Mar 1968 A
3391680 Benson Jul 1968 A
3520961 Suda et al. Jul 1970 A
3594877 Suda et al. Jul 1971 A
3608050 Carman et al. Sep 1971 A
3689293 Beall Sep 1972 A
3926169 Leshner et al. Dec 1975 A
3931438 Beall et al. Jan 1976 A
3960995 Kourkene Jun 1976 A
3976039 Henault Aug 1976 A
3997352 Beall Dec 1976 A
4020803 Thuren et al. May 1977 A
4066046 McAlister Jan 1978 A
4095580 Murray et al. Jun 1978 A
4105004 Asai et al. Aug 1978 A
4116389 Furtah et al. Sep 1978 A
4122816 Fitzgerald et al. Oct 1978 A
4135481 Resler, Jr. Jan 1979 A
4172921 Keifer Oct 1979 A
4183467 Sheraton et al. Jan 1980 A
4203393 Giardini May 1980 A
4281797 Kimata et al. Aug 1981 A
4293188 McMahon Oct 1981 A
4330732 Lowther May 1982 A
4332223 Dalton Jun 1982 A
4364342 Asik Dec 1982 A
4364363 Miyagi et al. Dec 1982 A
4368707 Leshner et al. Jan 1983 A
4377455 Kadija et al. Mar 1983 A
4381740 Crocker May 1983 A
4382189 Wilson May 1983 A
4448160 Vosper May 1984 A
4469160 Giamei Sep 1984 A
4483485 Kamiya et al. Nov 1984 A
4511612 Huther et al. Apr 1985 A
4528270 Matsunaga Jul 1985 A
4536452 Stempin et al. Aug 1985 A
4567857 Houseman et al. Feb 1986 A
4574037 Samejima et al. Mar 1986 A
4677960 Ward Jul 1987 A
4684211 Weber et al. Aug 1987 A
4688538 Ward et al. Aug 1987 A
4700891 Hans et al. Oct 1987 A
4716874 Hilliard et al. Jan 1988 A
4733646 Iwasaki Mar 1988 A
4736718 Linder Apr 1988 A
4742265 Giachino et al. May 1988 A
4760818 Brooks et al. Aug 1988 A
4760820 Tozzi Aug 1988 A
4774914 Ward Oct 1988 A
4774919 Matsuo et al. Oct 1988 A
4777925 Lasota Oct 1988 A
4834033 Larsen May 1989 A
4841925 Ward Jun 1989 A
4922883 Iwasaki May 1990 A
4932263 Wlodarczyk Jun 1990 A
4967708 Linder et al. Nov 1990 A
4977873 Cherry et al. Dec 1990 A
4982708 Stutzenberger Jan 1991 A
5034852 Rosenberg Jul 1991 A
5035360 Green et al. Jul 1991 A
5036669 Earleson et al. Aug 1991 A
5055435 Hamanaka et al. Oct 1991 A
5056496 Morino et al. Oct 1991 A
5069189 Saito Dec 1991 A
5072617 Weiss Dec 1991 A
5076223 Harden et al. Dec 1991 A
5095742 James et al. Mar 1992 A
5107673 Sato et al. Apr 1992 A
5109817 Cherry May 1992 A
5131376 Ward et al. Jul 1992 A
5150682 Magnet Sep 1992 A
5193515 Oota et al. Mar 1993 A
5207208 Ward May 1993 A
5211142 Matthews et al. May 1993 A
5220901 Morita et al. Jun 1993 A
5222481 Morikawa Jun 1993 A
5267601 Dwivedi Dec 1993 A
5297518 Cherry Mar 1994 A
5305360 Remark et al. Apr 1994 A
5328094 Goetzke et al. Jul 1994 A
5329606 Andreassen Jul 1994 A
5343699 McAlister Sep 1994 A
5377633 Wakeman Jan 1995 A
5390546 Wlodarczyk Feb 1995 A
5392745 Beck Feb 1995 A
5394838 Chandler Mar 1995 A
5394852 McAlister Mar 1995 A
5421195 Wlodarczyk Jun 1995 A
5421299 Cherry Jun 1995 A
5435286 Carroll, III et al. Jul 1995 A
5439532 Fraas Aug 1995 A
5456241 Ward Oct 1995 A
5475772 Hung et al. Dec 1995 A
5497744 Nagaosa et al. Mar 1996 A
5517961 Ward May 1996 A
5531199 Bryant et al. Jul 1996 A
5549746 Scott et al. Aug 1996 A
5568801 Paterson et al. Oct 1996 A
5584490 Inoue et al. Dec 1996 A
5588299 DeFreitas Dec 1996 A
5605125 Yaoita Feb 1997 A
5607106 Bentz et al. Mar 1997 A
5608832 Pfandl et al. Mar 1997 A
5662389 Trugilio et al. Sep 1997 A
5676026 Tsuboi et al. Oct 1997 A
5694761 Griffin Dec 1997 A
5699253 Puskorius et al. Dec 1997 A
5702761 DiChiara, Jr. et al. Dec 1997 A
5704321 Suckewer et al. Jan 1998 A
5704553 Wieczorek et al. Jan 1998 A
5714680 Taylor et al. Feb 1998 A
5715788 Tarr et al. Feb 1998 A
5738818 Atmur et al. Apr 1998 A
5745615 Atkins et al. Apr 1998 A
5746171 Yaoita May 1998 A
5767026 Kondoh et al. Jun 1998 A
5797427 Buescher Aug 1998 A
5806581 Haasch et al. Sep 1998 A
5816217 Wong Oct 1998 A
5853175 Udagawa Dec 1998 A
5863326 Nause et al. Jan 1999 A
5876659 Yasutomi et al. Mar 1999 A
5915272 Foley et al. Jun 1999 A
5930420 Atkins et al. Jul 1999 A
5941207 Anderson et al. Aug 1999 A
5947091 Krohn et al. Sep 1999 A
5975032 Iwata Nov 1999 A
5983855 Benedikt et al. Nov 1999 A
6000628 Lorraine Dec 1999 A
6015065 McAlister Jan 2000 A
6017390 Charych et al. Jan 2000 A
6026568 Atmur et al. Feb 2000 A
6029627 Vandyne Feb 2000 A
6042028 Xu Mar 2000 A
6062498 Klopfer May 2000 A
6081183 Mading et al. Jun 2000 A
6085990 Augustin Jul 2000 A
6092501 Matayoshi et al. Jul 2000 A
6092507 Bauer et al. Jul 2000 A
6093338 Tani et al. Jul 2000 A
6102303 Bright et al. Aug 2000 A
6131607 Cooke Oct 2000 A
6138639 Hiraya et al. Oct 2000 A
6155212 McAlister Dec 2000 A
6173913 Shafer et al. Jan 2001 B1
6185355 Hung Feb 2001 B1
6189522 Moriya Feb 2001 B1
6253728 Matayoshi et al. Jul 2001 B1
6267307 Pontoppidan Jul 2001 B1
6281976 Taylor et al. Aug 2001 B1
6302080 Kato et al. Oct 2001 B1
6318306 Komatsu Nov 2001 B1
6335065 Steinlage et al. Jan 2002 B1
6338445 Lambert et al. Jan 2002 B1
6340015 Benedikt et al. Jan 2002 B1
6360721 Schuricht et al. Mar 2002 B1
6378485 Elliott Apr 2002 B2
6386178 Rauch May 2002 B1
6446597 McAlister Sep 2002 B1
6453660 Johnson et al. Sep 2002 B1
6455173 Marijnissen et al. Sep 2002 B1
6455451 Brodkin et al. Sep 2002 B1
6478007 Miyashita et al. Nov 2002 B2
6483311 Ketterer Nov 2002 B1
6490391 Zhao et al. Dec 2002 B1
6501875 Zhao et al. Dec 2002 B2
6503584 McAlister Jan 2003 B1
6506336 Beall et al. Jan 2003 B1
6516114 Zhao et al. Feb 2003 B2
6517011 Ayanji et al. Feb 2003 B1
6517623 Brodkin et al. Feb 2003 B1
6532315 Hung et al. Mar 2003 B1
6536405 Rieger et al. Mar 2003 B1
6542663 Zhao et al. Apr 2003 B1
6543700 Jameson et al. Apr 2003 B2
6549713 Pi et al. Apr 2003 B1
6550458 Yamakado et al. Apr 2003 B2
6556746 Zhao et al. Apr 2003 B1
6561168 Hokao et al. May 2003 B2
6567599 Hung May 2003 B2
6571035 Pi et al. May 2003 B1
6578775 Hokao Jun 2003 B2
6583901 Hung Jun 2003 B1
6584244 Hung Jun 2003 B2
6585171 Boecking Jul 2003 B1
6587239 Hung Jul 2003 B1
6599028 Shu et al. Jul 2003 B1
6615810 Funk et al. Sep 2003 B2
6615899 Woodward et al. Sep 2003 B1
6619269 Stier et al. Sep 2003 B1
6621964 Quinn et al. Sep 2003 B2
6647948 Kyuuma et al. Nov 2003 B2
6663027 Jameson et al. Dec 2003 B2
6668630 Kuglin et al. Dec 2003 B1
6672277 Yasuoka et al. Jan 2004 B2
6700306 Nakamura et al. Mar 2004 B2
6705274 Kubo Mar 2004 B2
6719224 Enomoto et al. Apr 2004 B2
6722339 Elliott Apr 2004 B2
6722340 Sukegawa et al. Apr 2004 B1
6722840 Fujisawa et al. Apr 2004 B2
6725826 Esteghlal Apr 2004 B2
6745744 Suckewer et al. Jun 2004 B2
6748918 Rieger et al. Jun 2004 B2
6749043 Brown et al. Jun 2004 B2
6755175 McKay et al. Jun 2004 B1
6756140 McAlister Jun 2004 B1
6763811 Tamol, Sr. Jul 2004 B1
6776352 Jameson Aug 2004 B2
6779513 Pellizzari et al. Aug 2004 B2
6796516 Maier et al. Sep 2004 B2
6799513 Schafer Oct 2004 B2
6802894 Brodkin et al. Oct 2004 B2
6811103 Gurich et al. Nov 2004 B2
6814313 Petrone et al. Nov 2004 B2
6832472 Huang et al. Dec 2004 B2
6832588 Herden et al. Dec 2004 B2
6845920 Sato et al. Jan 2005 B2
6851413 Tamol, Sr. Feb 2005 B1
6854438 Hilger et al. Feb 2005 B2
6871630 Herden et al. Mar 2005 B2
6883490 Jayne Apr 2005 B2
6898355 Johnson et al. May 2005 B2
6899076 Funaki et al. May 2005 B2
6904893 Hotta et al. Jun 2005 B2
6912998 Rauznitz et al. Jul 2005 B1
6925983 Herden et al. Aug 2005 B2
6940213 Heinz et al. Sep 2005 B1
6954074 Zhu et al. Oct 2005 B2
6955154 Douglas Oct 2005 B1
6959693 Oda Nov 2005 B2
6976683 Eckert et al. Dec 2005 B2
6984305 McAlister Jan 2006 B2
6993960 Benson Feb 2006 B2
6994073 Tozzi et al. Feb 2006 B2
7007658 Cherry et al. Mar 2006 B1
7007661 Warlick Mar 2006 B2
7013863 Shiraishi et al. Mar 2006 B2
7025358 Ueta et al. Apr 2006 B2
7032845 Dantes et al. Apr 2006 B2
7070126 Shinogle Jul 2006 B2
7073480 Shiraishi et al. Jul 2006 B2
7077100 Vogel et al. Jul 2006 B2
7077108 Fujita et al. Jul 2006 B2
7077379 Taylor Jul 2006 B1
7086376 McKay Aug 2006 B2
7104246 Gagliano et al. Sep 2006 B1
7104250 Yi et al. Sep 2006 B1
7121253 Shiraishi et al. Oct 2006 B2
7131426 Ichinose et al. Nov 2006 B2
7137382 Zhu et al. Nov 2006 B2
7138046 Roychowdhury Nov 2006 B2
7140347 Suzuki et al. Nov 2006 B2
7140353 Rauznitz et al. Nov 2006 B1
7140562 Holzgrefe et al. Nov 2006 B2
7198208 Dye et al. Apr 2007 B2
7201136 McKay et al. Apr 2007 B2
7204133 Benson et al. Apr 2007 B2
7214883 Leyendecker May 2007 B2
7228840 Sukegawa et al. Jun 2007 B2
7249578 Fricke et al. Jul 2007 B2
7255290 Bright et al. Aug 2007 B2
7272487 Christen et al. Sep 2007 B2
7278392 Zillmer et al. Oct 2007 B2
7305971 Fujii Dec 2007 B2
7309029 Boecking Dec 2007 B2
7340118 Wlodarczyk et al. Mar 2008 B2
7367319 Kuo et al. May 2008 B2
7386982 Runkle et al. Jun 2008 B2
7404395 Yoshimoto Jul 2008 B2
7409929 Miyahara et al. Aug 2008 B2
7418940 Yi et al. Sep 2008 B1
7481043 Hirata et al. Jan 2009 B2
7484369 Myhre Feb 2009 B2
7513222 Orlosky Apr 2009 B2
7527041 Wing et al. May 2009 B2
7540271 Stewart et al. Jun 2009 B2
7554250 Kadotani et al. Jun 2009 B2
7588012 Gibson et al. Sep 2009 B2
7625531 Coates et al. Dec 2009 B1
7626315 Nagase Dec 2009 B2
7628137 McAlister Dec 2009 B1
7650873 Hofbauer et al. Jan 2010 B2
7703775 Matsushita et al. Apr 2010 B2
7707832 Commaret et al. May 2010 B2
7714483 Hess et al. May 2010 B2
7728489 Heinz et al. Jun 2010 B2
7849833 Toyoda Dec 2010 B2
7880193 Lam Feb 2011 B2
7886993 Bachmaier et al. Feb 2011 B2
7898258 Neuberth et al. Mar 2011 B2
7918212 Verdejo et al. Apr 2011 B2
7938102 Sherry May 2011 B2
7942136 Lepsch et al. May 2011 B2
8069836 Ehresman Dec 2011 B2
20020017573 Sturman Feb 2002 A1
20020070287 Jameson et al. Jun 2002 A1
20020084793 Hung et al. Jul 2002 A1
20020131171 Hung Sep 2002 A1
20020131666 Hung et al. Sep 2002 A1
20020131673 Hung Sep 2002 A1
20020131674 Hung Sep 2002 A1
20020131686 Hung Sep 2002 A1
20020131706 Hung Sep 2002 A1
20020131756 Hung Sep 2002 A1
20020141692 Hung Oct 2002 A1
20020150375 Hung et al. Oct 2002 A1
20020151113 Hung et al. Oct 2002 A1
20020166536 Hitomi et al. Nov 2002 A1
20030012985 McAlister Jan 2003 A1
20030042325 D'Arrigo Mar 2003 A1
20030127531 Hohl Jul 2003 A1
20040008989 Hung Jan 2004 A1
20040050977 Rieger et al. Mar 2004 A1
20040256495 Baker Dec 2004 A1
20050045146 McKay et al. Mar 2005 A1
20050098663 Ishii May 2005 A1
20050255011 Greathouse et al. Nov 2005 A1
20050257776 Bonutti Nov 2005 A1
20060005738 Kumar Jan 2006 A1
20060005739 Kumar Jan 2006 A1
20060016916 Petrone et al. Jan 2006 A1
20060037563 Raab et al. Feb 2006 A1
20060102140 Sukegawa et al. May 2006 A1
20060108452 Anzinger et al. May 2006 A1
20060169244 Allen Aug 2006 A1
20070142204 Park et al. Jun 2007 A1
20070189114 Reiner et al. Aug 2007 A1
20070283927 Fukumoto et al. Dec 2007 A1
20080072871 Vogel et al. Mar 2008 A1
20080081120 Van Ooij et al. Apr 2008 A1
20080098984 Sakamaki May 2008 A1
20080103672 Ueda et al. May 2008 A1
20090078798 Gruendl et al. Mar 2009 A1
20090093951 McKay et al. Apr 2009 A1
20090204306 Goeke et al. Aug 2009 A1
20090264574 Van Ooij et al. Oct 2009 A1
20100020518 Bustamante Jan 2010 A1
20100043758 Caley Feb 2010 A1
20100077986 Chen Apr 2010 A1
20100108023 McAlister May 2010 A1
20100183993 McAlister Jul 2010 A1
20110036309 McAlister Feb 2011 A1
20110042476 McAlister Feb 2011 A1
20110048371 McAlister Mar 2011 A1
20110048374 McAlister Mar 2011 A1
20110048381 McAlister Mar 2011 A1
20110057058 McAlister Mar 2011 A1
20110132319 McAlister Jun 2011 A1
20110134049 Lin et al. Jun 2011 A1
20110146619 McAlister Jun 2011 A1
20110210182 McAlister Sep 2011 A1
20110233308 McAlister Sep 2011 A1
20110253104 McAlister Oct 2011 A1
20110297753 McAlister Dec 2011 A1
Foreign Referenced Citations (15)
Number Date Country
3443022 May 1986 DE
102005060139 Jun 2007 DE
392594 Oct 1990 EP
671555 Sep 1995 EP
1972606 Sep 2008 EP
1038490 Aug 1966 GB
61-023862 Feb 1986 JP
02-259268 Oct 1990 JP
08-049623 Feb 1996 JP
2004-324613 Nov 2004 JP
2008-334077 Dec 2008 JP
2007-0026296 Mar 2007 KR
2008-0073635 Aug 2008 KR
WO-2007031157 Mar 2007 WO
WO-2008-017576 Feb 2008 WO
Non-Patent Literature Citations (41)
Entry
“Ford DIS/EDIS “Waste Spark” Ignition System.” Accessed: Jul. 15, 2010. Printed: Jun. 8, 2011. <http://rockledge.home.comcast.net/˜rockledge/RangerPictureGallery/DIS—EDIS.htm>. pp. 1-4.
“P dV's Custom Data Acquisition Systems Capabilities.” PdV Consulting. Accessed: Jun. 28, 2010. Printed: May 16, 2011. <http://www.pdvconsult.com/capabilities%20-%20daqsys.html>. pp. 1-10.
“Piston motion equations.” Wikipedia, the Free Encyclopedia. Published: Jul. 4, 2010. Accessed: Aug. 7, 2010. Printed: Aug. 7, 2010. <http://en.wikipedia.org/wiki/Dopant>. pp. 1-6.
“Piston Velocity and Acceleration.” EPI, Inc. Accessed: Jun. 28, 2010. Printed: May 16, 2011. <http://www.epi-eng.com/piston—engine—technology/piston—velocity—and—acceleration.htm>. pp. 1-3.
“SmartPlugs—Aviation.” SmartPlugs.com. Published: Sep. 2000. Accessed: May 31, 2011. <http://www.smartplugs.com/news/aeronews0900.htm>. pp. 1-3.
Bell et al. “A Super Solar Flare.” NASA Science. Published: May 6, 2008. Accessed: May 17, 2011. <http://science.nasa.gov/science-news/science-at-nasa/2008/06may—carringtonflare/>. pp. 1-5.
Birchenough, Arthur G. “A Sustained-arc Ignition System for Internal Combustion Engines.” Nasa Technical Memorandum (NASA TM-73833). Lewis Research Center. Nov. 1977. pp. 1-15.
Britt, Robert Roy. “Powerful Solar Storm Could Shut Down U.S. for Months—Science News | Science & Technology | Technology News—FOXNews.com.” FoxNews.com, Published: Jan. 9, 2009. Accessed: May 17, 2011. <http://www.foxnews.com/story/0,2933,478024,00.html>. pp. 1-2.
Brooks, Michael. “Space Storm Alert: 90 Seconds from Catastrophe.” NewScientist. Mar. 23, 2009. pp. 1-7.
Doggett, William. “Measuring Internal Combustion Engine In-Cylinder Pressure with LabVIEW.” National Instruments. Accessed: Jun. 28, 2010. Printed: May 16, 2011. <http://sine.ni.com/cs/app/doc/p/id/cs-217>. pp. 1-2.
Hodgin, Rick. “NASA Studies Solar Flare Dangers to Earth-based Technology.” TG Daily. Published: Jan. 6, 2009. Accessed: May 17, 2011. <http://www.tgdaily.com/trendwatch/40830-nasa-studies-solar-flare-dangers-to-earth-based-technology>. pp. 1-2.
InfraTec GmbH. “Evaluation Kit for FPI Detectors | Datasheet—Detector Accessory.” 2009. pp. 1-2.
International Search Report and Written Opinion for Application No. PCT/US2009/067044; Applicant: McAlister Technologies, LLC.; Date of Mailing: Apr. 14, 2010 (11 pages).
International Search Report and Written Opinion for Application No. PCT/US2010/002076; Applicant: McAlister Technologies, LLC.; Date of Mailing: Apr. 29, 2011 (8 pages).
International Search Report and Written Opinion for Application No. PCT/US2010/002077; Applicant: McAlister Technologies, LLC.; Date of Mailing: Apr. 29, 2011 (8 pages).
International Search Report and Written Opinion for Application No. PCT/US2010/002078; Applicant: McAlister Technologies, LLC.; Date of Mailing: Dec. 17, 2010 (9 pages).
International Search Report and Written Opinion for Application No. PCT/US2010/042812; Applicant: McAlister Technologies, LLC.; Date of Mailing: May 13, 2011 (9 pages).
International Search Report and Written Opinion for Application No. PCT/US2010/042815; Applicant: McAlister Technologies, LLC.; Date of Mailing: Apr. 29, 2011 (10 pages).
International Search Report and Written Opinion for Application No. PCT/US2010/042817; Applicant: McAlister Technologies, LLC.; Date of Mailing: Apr. 29, 2011 (8 pages).
Lewis Research Center. “Fabry-Perot Fiber-Optic Temperature Sensor.” NASA Tech Briefs. Published: Jan. 1, 2009. Accessed: May 16, 2011. <http://www.techbriefs.com/content/view/2114/32/>.
Non-Final Office Action for U.S. Appl. No. 12/006,774; Applicant: McAlister Technologies, LLC; Date of Mailing: Jan. 30, 2009, 18 pages.
Non-Final Office Action for U.S. Appl. No. 12/581,825; Applicant: McAlister Technologies, LLC; Date of Mailing: Mar. 25, 2011 (15 pages).
Non-Final Office Action for U.S. Appl. No. 12/804,510; Applicant: McAlister Technologies, LLC; Date of Mailing: Mar. 1, 2011 (10 pages).
Non-Final Office Action for U.S. Appl. No. 12/961,453; Applicant: McAlister Technologies, LLC; Date of Mailing: Jun. 9, 2011 (4 pages).
Notice of Allowance for U.S. Appl. No. 12/006,774; Applicant: McAlister Technologies, LLC; Date of Mailing: Jul. 27, 2009, 20 pages.
Pall Corporation, Pall Industrial Hydraulics. Increase Power Output and Reduce Fugitive Emissions by Upgrading Hydrogen Seal Oil System Filtration. 2000. pp. 1-4.
Riza et al. “All-Silicon Carbide Hybrid Wireless-Wired Optics Temperature Sensor Network Basic Design Engineering for Power Plant Gas Turbines.” International Journal of Optomechatronics, vol. 4, Issue 1. Jan. 2010. pp. 83-91.
Riza et al. “Hybrid Wireless-Wired Optical Sensor for Extreme Temperature Measurement in Next Generation Energy Efficient Gas Turbines.” Journal of Engineering for Gas Turbines and Power, vol. 132, Issue 5. May 2010. pp. 051601-1-51601-11.
Salib et al. “Role of Parallel Reformable Bonds in the Self-Healing of Cross-Linked Nanogel Particles.” Langmuir, vol. 27, Issue 7. 2011. Pages 3991-4003.
Erjavec, Jack. “Automotive Technology: a Systems Approach, vol. 2.” Thomson Delmar Learning. Clifton Park, NY. 2005. p. 845.
Hollembeak, Barry. “Automotive Fuels & Emissions.” Thomson Delmar Learning. Clifton Park, NY. 2005. p. 298.
International Search Report and Written Opinion for Application No. PCT/US2010/002080; Applicant: McAlister Technologies, LLC.; Date of Mailing: Jul. 7, 2011 (8 pages).
Final Office Action for U.S. Appl. No. 13/027,051; Applicant: McAlister Technologies, LLC; Date of Mailing: Oct. 20, 2011, 10 pages.
International Search Report and Written Opinion for Application No. PCT/US2011/024778 Applicant: McAllister Technologies, LLC.; Date of Mailing: Sep. 27, 2011 (10 pages).
Non-Final Office Action for U.S. Appl. No. 12/961,461; Applicant: McAlister et al.; Date of Mailing: Jan. 17, 2012, 39 pages.
International Search Report and Written Opinion for Application No. PCT/US2010/054361; Applicant: McAlister Technologies, LLC.; Date of Mailing: Jun. 30, 2011, 9 pages.
International Search Report and Written Opinion for Application No. PCT/US2010/054364; Applicant: McAlister Technologies, LLC.; Date of Mailing: Aug. 22, 2011, 8 pages.
International Search Report and Written Opinion for Application No. PCT/US2010/059146; Applicant: McAlister Technologies, LLC.; Date of Mailing: Aug. 31, 2011, 11 pages.
International Search Report and Written Opinion for Application No. PCT/US2010/059147; Applicant: McAlister Technologies, LLC.; Date of Mailing: Aug. 31, 2011, 11 pages.
Non-Final Office Action for U.S. Appl. No. 13/027,051; Applicant: McAlister Technologies, LLC; Date of Mailing: Sep. 1, 2011, 7 pages.
Non-Final Office Action for U.S. Appl. No. 13/141,062; Applicant: McAlister Technologies, LLC; Date of Mailing: Aug. 11, 2011, 12 pages.
Related Publications (1)
Number Date Country
20110056458 A1 Mar 2011 US
Provisional Applications (6)
Number Date Country
61237425 Aug 2009 US
61237466 Aug 2009 US
61237479 Aug 2009 US
61304403 Feb 2010 US
61312100 Mar 2010 US
61237466 Aug 2009 US
Divisions (1)
Number Date Country
Parent 12006774 US
Child 12581825 US
Continuation in Parts (5)
Number Date Country
Parent PCT/US2009/067044 Dec 2009 US
Child 12841149 US
Parent 12653085 Dec 2009 US
Child PCT/US2009/067044 US
Parent 12006774 Jan 2008 US
Child 12653085 US
Parent 12841149 US
Child 12653085 US
Parent 12581825 Oct 2009 US
Child 12841149 US