This application is based on and claims priority under 35 USC 119 from Japanese Patent Application No. 2016-011700 filed on Jan. 25, 2016.
Technical Field
The present invention relates to a shaping apparatus.
Summary
According to an aspect of the invention, there is provided a shaping apparatus comprising: a bench unit that has a light shielding wall around the bench unit; a moving unit that moves reciprocally and relatively with respect to the bench unit; an ejecting unit that is provided at the moving unit and ejects a droplet of a light curable shaping liquid from an ejection surface toward the bench unit; an irradiating unit that is provided at the moving unit and irradiates the ejected droplet on the bench unit with irradiation light; a control section that controls the moving unit, the ejecting unit and the irradiating unit, and shapes a three-dimensional object on the bench unit by repeating ejecting the droplet and curing the droplet performed with the irradiation light, while moving the moving unit relatively with respect to the bench unit; and an emission surface that is provided at the irradiating unit and emits the irradiation light of which an emission spectrum in a moving direction of the moving unit is set such that, in a state where the ejecting unit is moved to the moving direction to be outside from the light shielding wall, at least an end portion, on an opposite side in the direction to which the ejecting unit is moved, of the three-dimensional object shaped on the bench unit is able to be irradiated with the irradiation light.
An example of a shaping apparatus according to an exemplary embodiment of the present invention will be described. An apparatus width direction of a shaping apparatus 10 will be referred to as an X-direction, an apparatus depth direction will be referred to as a Y-direction, and an apparatus height direction will be referred to as a Z-direction.
First, an overall configuration of the shaping apparatus 10 which is a so-called three-dimensional printer will be described.
As illustrated in
As illustrated in
The below-described shaping section main body 210 ejects the droplets DA and DB and radiates the irradiation light LA1, the irradiation light LA2, and the irradiation light LB while moving reciprocally in the X-direction and relatively with respect to the workbench 122. Accordingly, there are cases where the X-direction is expressed as a moving direction. In reciprocating movement, a forward direction will be referred to as a positive A-direction, and a backward direction will be referred to as a negative A-direction.
The control section 16 illustrated in
The working section 100 illustrated in
As illustrated in
The top surface of the workbench 122 is a base surface 122A. The three-dimensional object V (see
The workbench 122 and the wall portion 124 configured to be included in the working section main body 120 are coated in black such that the irradiation light LA1, the irradiation light LA2, and the irradiation light LB (described below) are unlikely to be reflected. It is desirable that the coating is a dull mat finish.
The working section driving unit 110 illustrated in
As illustrated in
The shaping section main body 210 has an ejector unit 20, the irradiator unit 50, light shielding shutters 41 and 42, and a flattening roller 46 which is an example of a flattening unit. The ejector unit 20, the irradiator unit 50, the light shielding shutters 41 and 42, and the flattening roller 46 are provided in a carriage CR. Accordingly, the ejector unit 20, the irradiator unit 50, the light shielding shutters 41 and 42, and the flattening roller 46 configured to be included in the shaping section main body 210 are integrated and move relatively with respect to the workbench 122.
The ejector unit 20 has the first ejecting unit 22 and the second ejecting unit 24 which are disposed in the X-direction apart from each other.
The first ejecting unit 22 and the second ejecting unit 24 respectively have model material ejecting heads 22A and 24A and support material ejecting heads 22B and 24B. The model material ejecting heads 22A and 24A and the support material ejecting heads 22B and 24B are elongated and are disposed while having the longitudinal directions along the apparatus depth direction (Y-direction). The model material ejecting heads 22A and 24A and the support material ejecting heads 22B and 24B are disposed in the apparatus width direction (X-direction) so as to be adjacent to or in contact with each other.
As illustrated in
The model material ejecting heads 22A and 24A and the support material ejecting heads 22B and 24B in the present exemplary embodiment have structures similar to each other except that the type of the shaping liquids to be ejected are different from each other. Multiple nozzles (not illustrated) ejecting the droplets DA and DB are arranged on the bottom surfaces of the model material ejecting heads 22A and 24A and the support material ejecting heads 22B and 24B facing the base surface 122A of the workbench 122, from one end side to the other end side in the longitudinal direction (Y-direction) in a zigzag manner. The nozzles of the support material ejecting heads 22B and 24B are disposed so as to respectively overlap all the nozzles of the model material ejecting heads 22A and 24A in the apparatus width direction. The nozzles of the second ejecting unit 24 are disposed so as to be misaligned from the nozzles of the first ejecting unit 22 by half a pitch in the apparatus depth direction (Y-direction).
In a case where there is no need to distinguish between the model material ejecting heads 22A and 24A and the support material ejecting heads 22B and 24B, description will be given while applying the expression of the first ejecting unit 22 and the second ejecting unit 24. Without distinguishing between the model material ejecting heads 22A and 24A and the support material ejecting heads 22B and 24B, the bottom surfaces on which the nozzles of the first ejecting unit 22 and the second ejecting unit 24 are formed will be referred to as an ejection surface 22C and an ejection surface 24C, as illustrated in
Here, the model material (droplets DA) and the support material (droplets DB) are examples of the shaping liquid having a light curable resin. The light curable resin in the present exemplary embodiment is an ultraviolet ray curing-type resin having properties of absorbing ultraviolet rays and being cured.
As illustrated in
As illustrated in
A gap between the first ejecting unit 22 or the second ejecting unit 24, and the first irradiating unit 54 will be referred to as a gap W1.
The second irradiating unit 51 and the second irradiating unit 52 have structures similar to each other except that the disposed positions are different from each other. The second irradiating units 51 and 52 have widths in the moving direction (X-direction) wider than that of the first irradiating unit 54. The second irradiating unit 52 is disposed outside the first ejecting unit 22 in the X-direction (outside in the positive A-direction), and the second irradiating unit 51 is disposed outside the second ejecting unit 24 in the X-direction (outside in the negative A-direction).
Here, emission spectrums SA of emission surfaces 51A and 52A of the second irradiating units 51 and 52 illustrated in
In other words, as illustrated in
In the shaping apparatus 10 of the present exemplary embodiment, the emission spectrum SA is set such that the end portion VT of the three-dimensional object V on the upstream side in a case of being shaped closest to the inner wall surface 128B of the light shielding wall 128 is able to be irradiated with the irradiation light LA1 and the irradiation light LA2.
Moreover, in the present exemplary embodiment, the emission spectrum SA is set such that the entire area of the three-dimensional object V in the moving direction shaped on the workbench 122 is able to be irradiated in a state where the first ejecting unit 22 and the second ejecting unit 24 move outside the light shielding wall 128 of the workbench 122 in the X-direction.
A gap between the first ejecting unit 22 and the second irradiating unit 52, and a gap between the second ejecting unit 24 and the second irradiating unit 51 will be referred to as a gap W2. The gap W2 is narrower than the above-described gap W1 between the first ejecting unit 22 or the second ejecting unit 24 and the first irradiating unit 54.
As illustrated in
As illustrated in
The flattening roller 46 is a roller having the longitudinal direction along the Y-direction. The flattening roller 46 of the present exemplary embodiment is configured to be made from metal such as SUS. However, the material thereof is not limited thereto. The flattening roller 46 may be configured to be made from a resin, a rubber material, or the like.
The flattening roller 46 rotates in an R-direction by a rotation mechanism 48 which is controlled by the control section 16 illustrated in
The flattening roller 46 is lifted and lowered in the apparatus height direction by a lifting and lowering mechanism 49 which is controlled by the control section 16 illustrated in
The flattening roller 46 is lowered and fixed by the lifting and lowering mechanism 49 when flattening the three-dimensional object V. When not flattening the three-dimensional object V, the flattening roller 46 is withdrawn above by the lifting and lowering mechanism 49.
In
The shaping section driving unit 202 illustrated in
Subsequently, an example of a method of shaping the three-dimensional object V (shaping object VM) performed by the shaping apparatus 10 of the present exemplary embodiment will be described. First, an overview of the shaping method will be described, and then, the shaping method will be described in detail.
As illustrated in
As illustrated in
Subsequently, the shaping method will be described in detail.
First, when the control section 16 (see
Subsequently, the control section 16 causes the working section driving unit 110 to control the working section main body 120 and to move the working section main body 120 in the negative A-direction such that the shaping section main body 210 moves relatively with respect to the workbench 122 in the positive A-direction. Subsequently, the droplets DA (model material) and the droplets DB (support material) are ejected from the model material ejecting head 22A and the support material ejecting head 22B of the first ejecting unit 22 configured to be included in the shaping section main body 210. The control section 16 causes the first irradiating unit 54 having a narrow width to irradiate the applied droplets DA (model material) and the applied droplets DB (support material) with the irradiation light LB. When the droplets DA and the droplets DB are applied to the base surface 122A of the workbench 122 and are moved to locations below the first irradiating unit 54, the droplets DA and the droplets DB are irradiated with the irradiation light LB, thereby being cured. After the droplets DA and the droplets DB pass through, radiation of the irradiation light LB stops.
In the present exemplary embodiment, since radiation is performed once, the droplets DA and DB are not completely cured after being subjected to curing, and are thereby in a semi-cured state. Minute irregularity is generated on surfaces of the semi-cured droplets DA and DB before radiation (before curing). The minute irregularity on the surfaces of the droplets DA and DB in a semi-cured state after radiation is flattened by the flattening roller 46 which moves relatively in the positive A-direction while rotating in the R-direction. Specifically, the minute irregularity is pressed by the flattening roller 46, thereby being evenly flattened.
Subsequently, as illustrated in
As illustrated in
As illustrated in
Before performing radiation, the light shielding shutter 41 is moved until a lower end portion 41A is positioned on a side lower than the upper end portion 128A of the light shielding wall 128.
A layer LR2 (second layer) is formed after the workbench 122 is lowered as much as the thickness of the layer LR while performing an operation of forming the above-described layer LR1 (first layer) by moving the shaping section main body 210 relatively with respect to the workbench 122 in the negative A-direction (backward direction).
In other words, the control section 16 causes the working section main body 120 to move in the positive A-direction such that the shaping section main body 210 moves relatively with respect to the workbench 122 in the negative A-direction. Subsequently, the droplets DA (model material) and the droplets DB (support material) are ejected from the model material ejecting head 24A and the support material ejecting head 24B of the second ejecting unit 24 configured to be included in the shaping section main body 210.
Irregularity which is significantly undulating due to unevenness of the droplets or the like is generated on the surfaces of the droplets DA and DB applied on the layer LR1 (first layer). The significantly undulating irregularity generated before performing radiation is flattened by the flattening roller 46 which moves in the negative A-direction while rotating in the R-direction. Specifically, the irregularity (precisely, convex portions of the irregularity) is attached to the flattening roller 46, thereby being flattened. The droplets DA and DB which are attached to the flattening roller 46 are scraped by a scraper (not illustrated), are removed, and are collected by a collecting mechanism unit (not illustrated).
The control section 16 causes the first irradiating unit 54 having a narrow width to irradiate the applied droplets DA (model material) and the applied droplets DB (support material) with the irradiation light LB. When the droplets DA and the droplets DB are applied to the layer LR1 (first layer) and are moved to locations below the irradiator unit 50, the droplets DA and the droplets DB are irradiated with the irradiation light LB, thereby being cured. After the droplets DA and the droplets DB pass through, radiation of the irradiation light LB stops.
Subsequently, as illustrated in
As illustrated in
As illustrated in
Before performing radiation, the light shielding shutter 42 is moved until a lower end portion 42A is positioned on a side lower than the upper end portion 128A of the light shielding wall 128.
The layers LR for the third and succeeding layers are formed by repeating an operation similar to the above-described operations of forming the layer LR1 (first layer) and the layer LR2 (second layer).
Ejecting the droplets DA and the droplets DB, and curing the droplets DA and the droplets DB performed through radiation of the irradiation light LA1, the irradiation light LA2, and the irradiation light LB are repeated, thereby shaping the three-dimensional object V on the workbench 122 by stacking the layers LR. As described above, the support portion VN is removed from the three-dimensional object V, and then, the shaping object VM having a desired shape is able to be obtained. In the shaping object VM, the support portion VN is not shaped in a case where there is no portion of which a lower portion is an empty space. Therefore, the droplets DB are not ejected from the support material ejecting heads 22B and 24B.
Subsequently, an operation of the present exemplary embodiment will be described.
As illustrated in
As illustrated in
Similarly, as illustrated in
As illustrated in
In this manner, compared to a case where radiation from the second irradiating units 51 and 52 is performed while the first ejecting unit 22 and the second ejecting unit 24 are moving on the inside of the light shielding wall 128 of the workbench 122 (see a comparative example described below), the intensity of the reflected light LX1 and the reflected light LX2 radiated to the ejection surface 22C of the first ejecting unit 22 and the ejection surface 24C of the second ejecting unit 24 is reduced.
When the irradiation light LA1 and the irradiation light LA2 are respectively radiated from the second irradiating units 51 and 52, the first ejecting unit 22 and the second ejecting unit 24 move to the outside from the inner wall surface 128B of the light shielding wall 128, and the intensity of the reflected light LX1 and the reflected light LX2 of the irradiation light LA1 and the irradiation light LA2 toward the ejection surfaces 22C and 24C is low. Therefore, a distance between the second irradiating unit 51 and the second ejecting unit 24, and a distance between the second irradiating unit 52 and the first ejecting unit 22 may be narrowed. Moreover, the first ejecting unit 22 and the second ejecting unit 24 may move only near a location outside the light shielding wall 128. Accordingly, a relative moving amount between the shaping section main body 210 and the workbench 122 in the X-direction may be reduced. As a result, the shaping time may be shortened.
Here, the emission spectrums SA of the emission surfaces 51A and 52A of the second irradiating units 51 and 52 of the present exemplary embodiment in the moving direction (X-direction) respectively emitting the irradiation light LA1 and the irradiation light LA2 are set such that the end portion VT of the three-dimensional object V on the upstream side in the moving direction shaped on the workbench 122 is able to be irradiated with the irradiation light LA1 and the irradiation light LA2 in a state where the first ejecting unit 22 and the second ejecting unit 24 of the ejector unit 20 move to the outside from the inner wall surface 128B of the light shielding wall 128 of the workbench 122 (see
In contrast, in the comparative example illustrated in
Accordingly, as illustrated in
In other words, when the emission spectrum SA of the emission surfaces 51A and 52A of the second irradiating units 51 and 52 of the present exemplary embodiment in the moving direction (X-direction) respectively emitting the irradiation light LA1 and the irradiation light LA2 are set such that at least the end portion VT of the three-dimensional object V on the upstream side in the moving direction shaped on the workbench 122 is able to be irradiated with the irradiation light LA1 and the irradiation light LA2 in a state where the first ejecting unit 22 and the second ejecting unit 24 move to the outside from the light shielding wall 128 of the workbench 122, a moving amount of the shaping section main body in the X-direction with respect to the workbench 122 is reduced, and thus, the shaping time is shortened.
As illustrated in
As illustrated in
When moving in the positive A-direction (forward path), the surfaces of the droplets DA and DB after radiation are flattened by the flattening roller 46. Moreover, when moving in the negative A-direction (backward path), the surfaces of the droplets DA and DB before radiation are flattened by the same flattening roller 46.
Here, it is possible to consider a case where multiple flattening rollers 46 are provided in the carriage CR. Particularly, in a case where multiple ejecting units are included, there are provided multiple flattening rollers 46. For example, in a case where the carriage CR is provided with two flattening rollers such as a flattening roller 46 which performs flattening when moving in the forward direction and another flattening roller 46 which performs flattening when moving in the backward direction, there is a need to control the positional accuracy in the heights of the two flattening rollers 46 with high precision (for example, within 10% of the layer LR), and it is extremely difficult to control the positional accuracy in the heights of the two flattening rollers 46 with high precision. As a result, when two flattening rollers 46 are provided, there is concern that precision in flattening is deteriorated.
However, in the shaping apparatus 10 of the present exemplary embodiment, the carriage CR is provided with only one flattening roller 46. Accordingly, there is no need to align the positions of the heights of multiple flattening rollers 46 with each other. Therefore, compared to a case where multiple flattening rollers 46 are provided in the carriage CR, precision in flattening of a shaping liquid G is improved.
Subsequently, a modification example of the present exemplary embodiment will be described. Specifically, a shaping method in a case of shaping a three-dimensional object V having a width narrow in the X-direction will be described.
As illustrated in
Accordingly, it is clear from the comparison between
The present invention is not limited to the above-described exemplary embodiment.
For example, the light shielding shutters 41 and 42 and the flattening roller 46 do not have to be provided.
For example, in the above-described exemplary embodiment, as illustrated in
The emission spectrum SA is acceptable as long as the emission spectrum SA is set such that at least the end portion VT of the three-dimensional object V on the upstream side in the moving direction shaped on the workbench 122 is able to be irradiated with the irradiation light LA1 and the irradiation light LA2 in a state where the first ejecting unit 22 and the second ejecting unit 24 move to the outside in the X-direction from the light shielding wall 128 of the workbench 122.
For example, in the configuration of the above-described exemplary embodiment, the first ejecting unit 22 and the second ejecting unit 24 are respectively disposed on both sides next to the first irradiating unit 54 having a narrow width, and the second irradiating unit 51 and the second irradiating unit 52 having wide widths are respectively disposed on the outsides of the second ejecting unit 24 and the first ejecting unit 22. However, the exemplary embodiment is not limited thereto. The exemplary embodiment may be configured to be provided with the first ejecting unit 22 and at least any one of the second irradiating unit 52 and the second irradiating unit 51.
For example, in the above-described exemplary embodiment, the model material and the support material are ultraviolet ray curing-type shaping liquid which is cured by being irradiated with ultraviolet rays. However, the exemplary embodiment is not limited thereto. The model material and the support material may be shaping liquid which is cured by being irradiated with light other than the ultraviolet rays. The irradiator unit 50 appropriately copes with a structure of emitting light which copes with the shaping liquid.
For example, in the above-described exemplary embodiment, the working section main body 120 in its entirety moves in the X-direction, and the workbench 122 moves in the Z-direction, thereby shaping the three-dimensional object V (shaping object VM). However, the exemplary embodiment is not limited thereto. The shaping section main body 210 may move in the X-direction, the Y-direction, and the Z-direction and shape the three-dimensional object V. Otherwise, the shaping section main body 210 may move in the X-direction, and the workbench 122 may move in the Z-direction. The point is that the structure is acceptable as long as the workbench 122 and the shaping section main body 210 move relatively in the X-direction and the Z-direction.
As a configuration of an image forming apparatus, various types of configurations are able to be applied without being limited to the configuration of the above-described exemplary embodiment. Moreover, it is not necessary to mention that various aspects are able to be executed without departing from the gist and scope of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
2016-011700 | Jan 2016 | JP | national |