Embodiments of the disclosure relate to communication antennas and more particularly to antenna solution for wireless charging and near field communication in wireless devices.
Cellular communication systems continue to grow in popularity and have become an integral part of both personal and business communications. As the functionality of cellular communications devices such as mobile devices, smartphones, PDA's etc. continues to increase, so does the demand for smaller devices that are easier and more convenient for users to carry. Nevertheless, the move towards multi-functional devices makes miniaturization more difficult as the requisite number of installed components increases. Indeed, a typical cellular communication device includes several antennas, for example, a Near field communication antenna, a Wi-Fi antenna, a global positioning antenna, and a wireless charging antenna. Near field communication (NFC) is an emerging technology for short range wireless communication operating at 13.56 MHz. The size of the antenna used in NFC devices is large since an NFC device work on the principle of inductive coupling in which voltage/current is generated in one coil due to a change in voltage/current in another coil. For a typical NFC device, the antenna size is approximately 30 mm*50 mm. Wireless charging is based on the principle of magnetic induction to transfer the power for charging. Wireless charging works at frequencies as low as 120 KHz. Thus, the size of the antenna required for wireless charging is considerably large.
Designing a single antenna for NFC and wireless charging would give a huge advantage to the cellular communication device manufacturers. However, there are inherent problems in designing such an antenna. Firstly, NFC requires the antenna to be impedance matched to the cellular device. An antenna used for wireless charging of cellular device has high inductance which makes it difficult to do impedance matching and use it for NFC. Secondly, the voltage limits for wireless charging may be much higher than the voltage tolerance limits of the NFC device. This can damage the NFC device during the wireless charging operation. In addition, NFC devices tend to load the charging coil during wireless charging operation which results in loss of efficiency.
This Summary is provided to comply with 37 C.F.R. §1.73, requiring a summary of the invention briefly indicating the nature and substance of the invention. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
An embodiment provides an antenna arrangement. The antenna arrangement includes an outer antenna structure in a form of a flat coil having N1 number of turns and an inner antenna structure in a form of a flat coil having N2 number of turns. N1 and N2 are integers. The outer antenna structure and the inner antenna structure are separated by a distance D.
Another example embodiment provides a computing device. The computing device includes a wireless charging unit coupled to an antenna arrangement and a NFC transceiver block coupled to the antenna arrangement. The antenna arrangement includes an outer antenna structure and an inner antenna structure. The inner antenna structure is coplanar with the outer antenna structure and placed within the outer antenna structure. The outer antenna structure and the inner antenna structure are separated by a distance D to reduce an effective inductance offered to the NFC transceiver block.
Another embodiment provides a method of coupling a first port of a single antenna to a first coupling circuit and a second port of the single antenna to a second coupling circuit. A wireless charging unit is coupled to the first coupling unit and an NFC transceiver block is coupled to the second coupling circuit. The single antenna is isolated from the wireless charging unit during a time interval when the NFC transceiver block is operational and the single antenna is isolated from the NFC transceiver block during a time interval when the wireless charging unit is operational.
Other aspects and example embodiments are provided in the Drawings and the Detailed Description that follows.
The operation of the antenna arrangement 100 illustrated in
The antenna arrangement 100 has a wide variety of application. One of the many application areas is industrial applications which has high isolation requirement. In an embodiment, an integrated circuit (IC) with an antenna arrangement 100 is used for communication with an industrial mechanical device such as motor which is placed in a hostile environment. This communication is accomplished without the use of direct physical path. In such a case the IC with an antenna arrangement 100 utilizes magnetic coupling for establishing the communication. Also, the antenna arrangement 100 is used for transferring power from the industrial mechanical device to the IC without jeopardizing any isolation requirement. Thus the antenna arrangement 100 avoids the use of long running cables to provide power to the IC.
In some embodiments, the computing device 300 comprises a megacell or a system-on-chip (SoC) which includes control logic such as a CPU 312 (Central Processing Unit), a storage 314 (e.g., random access memory (RAM)) and a tester 310. The CPU 312 can be, for example, a CISC-type (Complex Instruction Set Computer) CPU, RISC-type CPU (Reduced Instruction Set Computer), or a digital signal processor (DSP). The storage 314 (which can be memory such as RAM, flash memory, or disk storage) stores one or more software applications 316 (e.g., embedded applications) that, when executed by the CPU 312, perform any suitable function associated with the computing device 300. The tester 310 comprises logic that supports testing and debugging of the computing device 300 executing the software application 316. For example, the tester 310 can be used to emulate a defective or unavailable component(s) of the computing device 300 to allow verification of how the component(s), were it actually present on the computing device 300, would perform in various situations (e.g., how the component(s) would interact with the software application 316). In this way, the software application 316 can be debugged in an environment which resembles post-production operation.
The CPU 312 typically comprises memory and logic which store information frequently accessed from the storage 314. The computing device 300 includes a GSM (Global system for mobile communication) transceiver 320 and an antenna 325. The GSM transceiver transmits and receives GSM signals using antenna 325. In one embodiment, the computing device includes a CDMA (code-division multiple access) transceiver or other cellular transceiver. A wireless charging unit 330 is coupled to a first coupling circuit 335 which is coupled to antenna 340. An NFC transceiver block 350 is coupled to a second coupling circuit 355 which is coupled to antenna 340. Antenna 340 is used by both wireless charging unit 330 and NFC transceiver block 350 for transmission and reception of the corresponding signal types, and is therefore referred to as a single antenna. The antenna 340 is similar in connection and operation to antenna arrangement 100 illustrated in
Wireless energy transmission techniques are based on inductive coupling between a transmit antenna embedded, for example, in a “charging” mat and a receive antenna (antenna 340) embedded in the computing device to be charged. A radiant field is received by antenna 340 and the energy is coupled to the first coupling circuit 335. In one embodiment, the first coupling circuit 335 includes a rectifier, a capacitor and an amplifier. The rectifier generates a DC signal from received signal and the capacitor temporarily stores the generated signal. The amplifier amplifies the stored signal. The amplified signal is stored in the wireless charging unit. The different components of the computing device 300 may be implemented on a same integrated circuit (IC) or on different ICs, or using discrete components. In one embodiment, the coupling circuits 335 and 355 are implemented using discrete components, or within an IC.
In the foregoing discussion, the terms “connected” means at least either a direct electrical connection between the devices connected or an indirect connection through one or more passive intermediary devices. The term “circuit” means at least either a single component or a multiplicity of passive components, that are connected together to provide a desired function. The term “signal” means at least one current, voltage, charge, data, or other signal. Also, the terms “coupled to” or “couples with” (and the like) are intended to describe either an indirect or direct electrical connection. Thus, if a first device is coupled to a second device, that connection can be through a direct electrical connection, or through an indirect electrical connection via other devices and connections. The term “on” applied to a transistor or group of transistors is generally intended to describe gate biasing to enable current flow through the transistor or transistors.
The foregoing description sets forth numerous specific details to convey a thorough understanding of the invention. However, it will be apparent to one skilled in the art that the invention may be practiced without these specific details. Well-known features are sometimes not described in detail in order to avoid obscuring the invention. Other variations and embodiments are possible in light of above teachings, and it is thus intended that the scope of invention not be limited by this Detailed Description, but only by the following Claims.