Shared pending interest table in a content centric network

Information

  • Patent Grant
  • 10425503
  • Patent Number
    10,425,503
  • Date Filed
    Thursday, April 7, 2016
    8 years ago
  • Date Issued
    Tuesday, September 24, 2019
    4 years ago
Abstract
One embodiment provides a pending interest table (PIT) sharing system that facilitates sharing of a PIT. During operation, the system receives, by a local interface, a first message comprising an interest from a node of origin. The hop count for the interest has not been decreased. The system creates an entry, which includes a name of the interest, in a PIT for the interest. If the system receives a content object associated with the name, the system retrieves and removes the entry from the PIT, and sends the content object to the node of origin in a second message.
Description
RELATED APPLICATIONS

The subject matter of this application is related to the subject matter in the following applications:

    • U.S. patent application Ser. No. 13/847,814, entitled “ORDERED-ELEMENT NAMING FOR NAME-BASED PACKET FORWARDING,” by inventor Ignacio Solis, filed 20 Mar. 2013 (hereinafter “U.S. patent application Ser. No. 13/847,814”);
    • U.S. patent application Ser. No. 12/338,175, entitled “CONTROLLING THE SPREAD OF INTERESTS AND CONTENT IN A CONTENT CENTRIC NETWORK,” by inventors Van L. Jacobson and Diana K. Smetters, filed 18 Dec. 2008 (hereinafter “U.S. patent application Ser. No. 12/338,175”); and
    • U.S. patent application Ser. No. 14/595,060, entitled “AUTO-CONFIGURABLE TRANSPORT STACK,” by inventors Ignacio Solis and Glenn C. Scott, filed 12 Jan. 2015 (hereinafter “U.S. patent application Ser. No. 14/595,060”); the disclosures of which are herein incorporated by reference in their entirety.


BACKGROUND
Field

This disclosure is generally related to the distribution of digital content. More specifically, this disclosure is related to a shared and distributed pending interest table in a content-centric network.


Related Art

The proliferation of the Internet and e-commerce continues to create a vast amount of digital content. Content-centric network (CCN) architectures have been designed to facilitate accessing and processing such digital content. A CCN includes entities, or nodes, such as network clients, forwarders (e.g., routers), and content producers, which communicate with each other by sending “interest” packets for various content items and receiving “content object” packets in return. CCN interests and content objects are identified by their unique names, which are typically hierarchically structured variable-length identifiers (HSVLI). An HSVLI can include contiguous name components ordered from a most general level to a most specific level.


A CCN node stores an interest in an entry in a pending interest table (PIT), which includes the name and a receiving interface associated with the interest. When the node receives the corresponding content object, the node consumes (i.e., retrieves and removes) the PIT entry and forwards the content object via the interface specified in the PIT entry.


The node can have limited resources (e.g., limited amount of memory) to store its PIT. If the node forwards a large volume of data flow, the node can receive a large number of interests for content objects. As a result, the node's PIT can quickly become full (i.e., the memory available for the PIT is occupied and a new interest cannot be incorporated). The node typically does not accept interests if the local PIT is full. As a result, the node drops any subsequent interests.


SUMMARY

One embodiment provides a pending interest table (PIT) sharing system that facilitates sharing of a PIT. During operation, the system receives, by a local interface, a first message comprising an interest from a node of origin. The hop count for the interest has not been decreased. The system creates an entry, which includes a name of the interest, in a PIT for the interest. If the system receives a content object associated with the name, the system retrieves and removes the entry from the PIT, and sends the content object to the node of origin in a second message.


In a variation on this embodiment, the name of the interest is based on one or more of: a hierarchically structured variable-length identifier (HSVLI), which comprises contiguous name components ordered from a most general level to a most specific level. The HSVLI is applicable in a portal instance corresponding to the stack; a flat name that does not indicate any hierarchy; a role of the component within the stack; and a unique identifier, which is specific to the component of the stack.


In a variation on this embodiment, the first and second messages also include an interface of origin indicating an interface via which the node of origin has received the interest. The entry then further includes an identifier of the interface of origin.


In a further variation, the PIT is a proxy PIT dedicated for interests from the node of origin. The proxy PIT is distinct from a local PIT for interests from a locally coupled device.


In a further variation, the entry also includes an identifier of a tunnel interface of a tunnel coupling the node of origin.


In a variation on this embodiment, the first and second messages are tunnel-encapsulated messages. A respective interface of origin is associated with an individual tunnel.


In a variation on this embodiment, the interest from the node of origin is distinguished from interests from a locally coupled device based on distinct namespaces.





BRIEF DESCRIPTION OF THE FIGURES


FIG. 1 illustrates an exemplary content-centric network (CCN) that facilitates a shared PIT, in accordance with an embodiment of the present invention.



FIG. 2A illustrates an exemplary PIT sharing based on a proxy PIT, in accordance with an embodiment of the present invention.



FIG. 2B illustrates an exemplary PIT sharing based on a proxy interface mapping, in accordance with an embodiment of the present invention.



FIG. 2C illustrates an exemplary PIT sharing based on a tunnel mapping, in accordance with an embodiment of the present invention.



FIG. 3 presents a flow chart illustrating a method for offloading an interest to a proxy node, in accordance with an embodiment of the present invention.



FIG. 4A presents a flow chart illustrating a method of a proxy node sharing a PIT based on a proxy PIT, in accordance with an embodiment of the present invention.



FIG. 4B presents a flow chart illustrating a method of a proxy node sharing a PIT based on a proxy interface mapping, in accordance with an embodiment of the present invention.



FIG. 4C presents a flow chart illustrating a method of a proxy node sharing a PIT based on a tunnel mapping at a node of origin, in accordance with an embodiment of the present invention.



FIG. 5A presents a flow chart illustrating a method for forwarding a content object based on PIT sharing, in accordance with an embodiment of the present invention.



FIG. 5B presents a flow chart illustrating a method for forwarding a content object based on PIT sharing and a tunnel mapping, in accordance with an embodiment of the present invention.



FIG. 6 illustrates an exemplary apparatus that facilitates PIT sharing, in accordance with an embodiment of the present invention.



FIG. 7 illustrates an exemplary computer system that facilitates PIT sharing, in accordance with an embodiment of the present invention.





In the figures, like reference numerals refer to the same figure elements.


DETAILED DESCRIPTION

The following description is presented to enable any person skilled in the art to make and use the embodiments, and is provided in the context of a particular application and its requirements. Various modifications to the disclosed embodiments will be readily apparent to those skilled in the art, and the general principles defined herein may be applied to other embodiments and applications without departing from the spirit and scope of the present disclosure. Thus, the present invention is not limited to the embodiments shown, but is to be accorded the widest scope consistent with the principles and features disclosed herein.


Overview


Embodiments of the present invention solve the problem of extending a pending interest table (PIT) by sharing the PIT with a proxy node. With existing technologies, when a CCN node receives a large number of interests, its PIT can become full. As a result, the node drops any subsequent interest until a content object returns. To solve this problem, the node can offload some of the PIT entries to another node, which can be referred to as a proxy node. The proxy node maintains a set of proxy PIT entries for the node (i.e., the node of origin). When the proxy node receives the content object for an interest with a proxy PIT entry, the proxy node forwards the content object to the node.


In some embodiments, the node establishes a tunnel with the proxy node. Upon receiving an interest, the node determines whether the interest should be in a local PIT entry or a proxy PIT entry. The node can allocate different namespace for local and proxy PIT entries. For example, the node can determine that any interest with a prefix “/a/b/” should be in a local PIT entry and any interest with a prefix “/p1/” should be in a proxy PIT entry. Upon determining an interest to be a candidate for a proxy PIT entry, the node sends the interest and an interface of origin (i.e., the interface via which the node has received the interest) to the proxy node via the tunnel. The proxy node then creates a proxy PIT entry (e.g., either in a different proxy PIT or in its local PIT) comprising the name of the interest and the interface of origin. The proxy node then forwards the interest.


When the proxy node receives the content object for the interest, the proxy node retrieves and removes the proxy PIT entry, and sends the content object and the interface of origin back to the node via the tunnel. The node receives the content object and the interface of origin, and forwards the content object via the interface of origin. In this way, the node shares PIT entries with the proxy node, thereby extending the capacity of its PIT. It should be noted that forwarding information via a tunnel includes encapsulating the information in a tunnel encapsulation.


In some embodiments, a PIT operates under the CCN architecture. In CCN, each piece of content is individually named, and each piece of data is bound to a unique name that distinguishes the data from any other piece of data, such as other versions of the same data or data from other sources. This unique name allows a network device to request the data by disseminating a request or an interest that indicates the unique name, and can obtain the data independent from the data's storage location, network location, application, and means of transportation. The following terms are used to describe the CCN architecture:


Content Object (or “content object”): A single piece of named data, which is bound to a unique name. Content Objects are “persistent,” which means that a Content Object can move around within a computing device, or across different computing devices, but does not change. If any component of the Content Object changes, the entity that made the change creates a new Content Object that includes the updated content, and binds the new Content Object to a new unique name.


Unique Names: A name in a CCN is typically location-independent and uniquely identifies a Content Object. A data-forwarding device can use the name or name prefix to forward a packet toward a network node that generates or stores the Content Object, regardless of a network address or physical location for the Content Object. In some embodiments, the name may be a hierarchically structured variable-length identifier (HSVLI). The HSVLI can be divided into several hierarchical components, which can be structured in various ways. For example, the individual name components parc, home, ccn, and test.txt can be structured in a left-oriented prefix-major fashion to form the name “/parc/home/ccn/test.txt.” Thus, the name “/parc/home/ccn” can be a “parent” or “prefix” of “/parc/home/ccn/test.txt.” Additional components can be used to distinguish among different versions of the content item, such as a collaborative document.


In some embodiments, the name can include an identifier, such as a hash value that is derived from the Content Object's data (e.g., a checksum value) and/or from elements of the Content Object's name. A description of a hash-based name is described in U.S. patent application Ser. No. 13/847,814, which is herein incorporated by reference. A name can also be a flat label. Hereinafter, “name” is used to refer to any name for a piece of data in a name-data network, such as a hierarchical name or name prefix, a flat name, a fixed-length name, an arbitrary-length name, or a label (e.g., a Multiprotocol Label Switching (MPLS) label).


Interest (or “interest”): A packet that indicates a request for a piece of data, and includes a name (or a name prefix) for the piece of data. A data consumer can disseminate a request or Interest across an information-centric network, which CCN/NDN routers can propagate toward a storage device (e.g., a cache server) or a data producer that can provide the requested data to satisfy the request or Interest.


In addition, “lci” and “ccnx” refer to labeled content information and indicate a Universal Resource Indicator (URI) compliant identifier in which name segments carry a label. Network protocols such as CCN can use labeled content information by applying specific labels to each name segment of a URI. In a hierarchically structured name, a labeled content name assigns a semantic type or label to each segment. For example, a type of name segment can include a name segment, which is a generic name segment that includes arbitrary octets, which allows a CCN to use a binary on-the-wire representation for messages.


The methods disclosed herein are not limited to CCN networks and are applicable to other architectures as well. A description of a CCN architecture is described in U.S. patent application Ser. No. 12/338,175, which is herein incorporated by reference.


Exemplary Network and Communication



FIG. 1A illustrates an exemplary content-centric network (CCN) that facilitates a shared PIT, in accordance with an embodiment of the present invention. A network 100, which can be a CCN, can include client devices 116 and 120, a content-producing device 118, and a router or other forwarding device at nodes 102, 104, 106, 108, 110, 112, and 114. A node can be a computer system, an endpoint representing users, and/or a device that can generate interests or originate content. In a CCN network, the interfaces (e.g., on a transport link adapter) are often configured based on configuration files comprising prepared configuration specifications. The configuration of these interfaces is usually modified by explicit administrative commands at runtime. Suppose that peer nodes 102 and 114 are coupled to each other via interface 142 of node 102 and interface 144 of node 114. Devices 116 and 120 are coupled with nodes 102 and 114 via interfaces 146 and 148, respectively.


With existing technologies, when node 102 receives a large number of interests, its PIT can become full. As a result, node 102 drops any subsequent interest from device 116 until a content object returns. To solve this problem, node 102 can offload some of the PIT entries to a proxy node 114. Node 114 maintains a set of proxy PIT entries for node 102. In some embodiments, node 102 establishes a tunnel 140 with node 114 between interfaces 142 and 144. Upon receiving an interest 132 from device 116 via interface 146, node 102 determines whether the interest should be in a local PIT entry or a proxy PIT entry. Node 102 can allocate different namespaces 152 and 154 for local and proxy PIT entries, respectively. For example, the node can allocate namespace 152 as prefix “/a/b/” and namespace 154 as prefix “/p1/.” Namespace 154 can be referred to as a proxy namespace.


Suppose that interest 132 is for a content object identified by a name “/p1/q1,” which is in namespace 154. As a result, node 102 determines interest 132 to be a candidate for a proxy PIT entry. Node 102 then includes interest 132 and an interface of origin 134 in a message 130, which can be a tunnel message (i.e., a message encapsulated in a tunneling protocol) and sends message 130 via tunnel 140. Message 130 can be referred to as a proxy message. In some embodiments, interface of origin 134 can be an identifier of interface 146. Node 114 receives message 130 and obtains interest 132 and interface of origin 134 by decapsulating message 130. Node 114 creates a proxy PIT entry (e.g., either in a different proxy PIT or in its local PIT) comprising name “/p1/q1” and the identifier of interface 146. The proxy node then forwards interest 132 in network 100.


Suppose that device 118 is the producer of the content object. When device 118 receives interest 132, device 118 sends the content object associated with name “/p1/q1” to node 114. Node 114 receives the content object, and retrieves and removes the proxy PIT entry associated with name “/p1/q1.” Node 114 includes the content object and interface of origin 134 in a message 136, which can be an encapsulated message that can be forwarded via a tunnel, and sends message 136 via tunnel 140 to node 102. Node 102 receives message 136, and obtains the content object and interface of origin 134 by decapsulating message 136. Since interface of origin 134 is an identifier of interface 146, node 102 forwards the content object via interface 146 to device 116. In this way, node 102 shares PIT entries with proxy node 114, thereby extending the capacity of node 102's PIT.


It should be noted that even though node 102 is sharing a PIT with node 114, these nodes construct and maintain their own forwarding information base (FIB). Furthermore, the distribution of namespaces 152 and 154 ensures distribution of interests received at node 102 between nodes 102 and 114. However, node 102 remains the node of origin. As a result, in contrast to load balancing techniques, content objects associated with both namespaces 152 and 154 are eventually forwarded to node 102.


Exemplary PIT Sharing



FIG. 2A illustrates an exemplary PIT sharing based on a proxy PIT, in accordance with an embodiment of the present invention. In this example, device 250 is coupled with node 102 via interface 252. During operation, node 102 receives interests 132 and 204 from devices 116 and 250, respectively. Suppose that interests 132 and 204 are for content objects associated with names “/a/b/c/d” and “/p1/q1,” respectively. Similarly, node 114 receives interest 206 from device 120 for a content object associated with name “/x/y/z.” Since interest 132 is for a name in namespace 154, node 102 sends message 130 comprising interest 132 and an identifier of interface 146 via tunnel 140 to node 114. While forwarding interest 132 to node 114, node 102 does not decrement the hop count for interest 132 while traversing tunnel 140.


Suppose that node 114, which is the proxy node of node 102, maintains PIT 220 for local entry and proxy PIT 225 for proxy entries. PIT 220 stores an interest name 222 and a local interface 224 via which node 114 has received a local interest. Proxy PIT 225 stores an interest name 226 and an interface of origin 228, which is an interface of node 102. Here, storing an interface indicates storing an identifier of the interface. This identifier can be a local and internal identifier of a node.


Upon receiving message 130, node 114 obtains interest 132 and an identifier of interface 136 by decapsulating message 130. Node 114 determines that name “/p1/q1” in interest 132 is in namespace 154 and hence, should be in a proxy PIT entry. Node 114 then creates an entry in a proxy PIT 225 comprising name “/p1/q1” and the identifier of interface 146. Node 114 then forwards interest 132 in network 100. When node 114 receives a content object 202, node 114 retrieves and removes the proxy PIT entry associated with name “/p1/q1.” Node 114 includes content object 202 and the identifier of interface 146 in message 136 and sends message 136 via tunnel 140 to node 102.


Node 102 receives message 136, and obtains content object 202 and the identifier of interface 146 by decapsulating message 136. Since node 102 has received message 136 via tunnel 140, node 102 is aware that message 136 includes a content object and the interface via which content object 202 should be forwarded. In some embodiments, node 102 determines that name “/p1/q1” of content object 202 is in namespace 154 and hence, content object 202 has already “consumed” a proxy PIT entry. Node 102 then forwards content object 202 via interface 146 to device 116 without consulting its local PIT 210. In this way, node 102 uses proxy node 114 to extend the capacity of node 102's PIT while continuing using a local PIT.


However, when node 102 receives interest 204 from device 250, node 102 determines that name “/a/b/c/d” in interest 204 is in namespace 152 and hence, should be in a local PIT entry. Node 102 then creates an entry in PIT 210. PIT 210 stores an interest name 212 and an interface 214. The entry comprises name “/a/b/c/d” of interest 204 and the identifier of interface 252. Node 102 then forwards interest 204 in network 100. Suppose that node 102 receives a corresponding content object 205 from node 114. Upon receiving content object 205, node 102 determines that name “a/b/c/d” of content object 205 is in namespace 152 and hence, should be processed based on a local PIT entry. Node 102 retrieves and removes the proxy PIT entry associated with name “a/b/c/d” to obtain an identifier of interface 252. Node 102 then forwards content object 205 via interface 252 to device 250.


In the same way, when node 114 receives interest 206 from device 120, node 114 determines that name “/x/y/z” in interest 206 is from a local interface 148 and hence, should be in a local PIT entry. Node 114 then creates an entry in PIT 220 comprising name “x/y/z” and the identifier of interface 148. Node 114 then forwards interest 206 in network 100. Suppose that node 102 receives a corresponding content object 207. Upon receiving content object 207, node 114 determines that name “x/y/z” of content object 207 is not in namespace 154 and hence, should been processed based on a local PIT entry. Node 114 retrieves and removes the PIT entry associated with name “x/y/z” to obtain an identifier of interface 148. Node 114 then forwards content object 207 via interface 148 to device 120.



FIG. 2B illustrates an exemplary PIT sharing based on a proxy interface mapping, in accordance with an embodiment of the present invention. In this example, node 114 stores proxy entries and local entries in the same PIT 230. PIT 230 stores an interest name 232, a proxy interface 234 (i.e., the interface via which node 114 has received a proxy message), and an interface of origin 236. Interface of origin 236 represents the interface via which nodes 114 and 102 have received an interest. Here, storing an interface indicates storing an identifier of the interface. In some embodiments, node 114 maintains a mapping between proxy interface 232 and interface of origin 236 in a separate table. PIT 230 then can store an interest name 232 and an interface of origin 236.


If an entry in PIT 230 is a proxy entry, node 114 stores both the proxy interface (i.e., the interface via which node 114 has received a proxy message) and the interface of origin. On the other hand, if an entry in PIT 230 is a local entry, node 114 stores an identifier of the interface via which the interest has been received. In some embodiments, if an entry in PIT 230 is a local entry, node 114 also stores a value indicating that the entry is a local entry. Examples of the value include, but are not limited to, a null value, an empty value (or string), and a value sufficiently distinct from an identifier of an interface.


Upon receiving message 130 via interface 144, node 114 obtains interest 132 and an identifier of interface 136 by decapsulating message 130. Node 114 determines that name “/p1/q1” in interest 132 is in namespace 154 and hence, should be in a proxy entry. Node 114 then creates an entry in PIT 230 comprising name “/p1/q1,” the identifier of proxy interface 144, and the identifier of interface 146. Node 114 then forwards interest 132 in network 100. When node 114 receives content object 202, node 114 retrieves and removes the PIT entry associated with name “/p1/q1.” Node 114 includes content object 202 and the identifier of interface 146 in message 136 and sends message 136 via proxy interface 144.


On the other hand, when node 114 receives interest 206 from device 120, node 114 determines that name “/x/y/z” in interest 206 is from a local interface 148 and hence, should be in a local PIT entry. Node 114 then creates an entry in PIT 230 comprising name “x/y/z,” a value 210, which indicates the PIT entry to be a local PIT entry, and the identifier of interface 148. Here, node 114 can use value 210 in place of a proxy interface value (i.e., in the same column) to use the same PIT for both local and proxy entries. In the same way, node 114 uses the same column to store identifiers of interfaces 146 and 148. Node 114 then forwards interest 206 in network 100. Suppose that node 102 receives a corresponding content object 207. Upon receiving content object 207, node 114 retrieves and removes the PIT entry associated with name “x/y/z” to obtain value 210 and an identifier of interface 148. Node 114 determines that value 210 is present in the entry and hence, the entry is a local entry. Node 114 then forwards content object 207 via interface 148 to device 120.



FIG. 2C illustrates an exemplary PIT sharing based on a tunnel mapping, in accordance with an embodiment of the present invention. In this example, nodes 102 and 114 maintain a tunnel for a respective interface of origin. For example, tunnel 140 can correspond to interface 146. As a result, when node 102 receives a content object from tunnel 140 via interface 142, node 102 forwards that content object via interface 146. In some embodiments, node 102 maintains a mapping 280 between a tunnel interface 282 and an interface of origin 284. Mapping 280 includes a mapping between interface 142 and interface 146.


Since node 102 maintains mapping 280, node 114 stores proxy entries and local entries in the same PIT 240. PIT 240 stores an interest name 242 and an interface 244. Interface 244 represents the local interface via which node 114 has received an interest or a proxy message. Here, storing an interface indicates storing an identifier of the interface. In this example, node 102 encapsulates interest 132 in message 131 and forwards message 131 via interface 142. Upon receiving message 131 via interface 144, node 114 obtains interest 132 by decapsulating message 131. Node 114 then creates an entry in PIT 240 comprising name “/p1/q1” and the identifier of interface 144 via which node 114 has received interest 132. Node 114 then forwards interest 132 in network 100. When node 114 receives content object 202, node 114 retrieves and removes the PIT entry associated with name “/p1/q1.” Node 114 includes content object 202 in message 138 and sends message 138 via obtained interface 144.


Upon receiving message 138 via interface 142, node 102 decapsulates message 138 to obtain content object 202. Node 102 determines that message 138 is received via tunnel 140 and hence, is from a proxy node. In some embodiments, node 102 determines that name “/p1/q1” of content object 202 is in namespace 154 and hence, content object 202 has already “consumed” a proxy PIT entry. Node 102 then looks up interface 142 in mapping 280 to obtain interface 146 as the interface via which content object 202 should be forwarded. Node 102 then forwards content object 202 via interface 146 to device 116 without consulting its local PIT 210.


Forwarding Interest to the Proxy Node


When node 102 forwards interest 132 to node 114, node 102 uses tunnel 140 to forward interest 132. FIG. 3 presents a flow chart 300 illustrating a method for offloading an interest to a proxy node, in accordance with an embodiment of the present invention. During operation, a node of origin receives an interest for a content object via a local interface (operation 302). The node determines whether the name of the content object is in a proxy namespace (operation 304). The proxy namespace determines whether interests corresponding to the namespace should be forwarded to a proxy node.


If the name is not in the proxy namespace, the node creates a local PIT entry comprising the name and the local interface (operation 306). The node then forwards the interest based on the local FIB (operation 310). If the name is in the proxy namespace, the node encapsulates the interest and an interface of origin, which is the local interface, in a tunnel message (operation 308). The node may not include the interface of origin in the tunnel message if the node maintains a tunnel mapping, as described in conjunction with FIG. 2C. The node then forwards the tunnel message to the proxy node based on the local FIB (operation 310). It should be noted that the local interface is represented in a PIT entry or the tunnel message by an identifier of the local interface.


Operations of the Proxy Node



FIG. 4A presents a flow chart 400 illustrating a method of a proxy node sharing a PIT based on a proxy PIT, in accordance with an embodiment of the present invention. During operation, a proxy node receives a tunnel message comprising an interest and an interface of origin (operation 402). The node decapsulates the tunnel message (operation 404) and determines the interest as a proxy interest since the name of the interest is in a proxy namespace (operation 406). The node creates an entry comprising the name of the interest and the interface of origin obtained from the message in a proxy PIT (operation 408). The node then forwards the interest based on a local FIB (operation 410).


This interest travels though the network and the corresponding content object comes back to the node. The node receives the content object associated with the name (operation 412) and selects the proxy PIT based on the name matching a proxy namespace (operation 414). The node obtains the interface of origin associated with the name from the proxy PIT and removes the corresponding PIT entry (operation 416). Since the name is in the proxy namespace, the node selects the interface of the proxy tunnel as the outgoing interface (operation 418). The node encapsulates the content object and the interface of origin in a tunnel message (operation 420) and forwards the tunnel message via the selected interface (operation 422).



FIG. 4B presents a flow chart 430 illustrating a method of a proxy node sharing a PIT based on a proxy interface mapping, in accordance with an embodiment of the present invention. During operation, a proxy node receives a tunnel message comprising an interest and an interface of origin via a local proxy interface (operation 432). The node decapsulates the tunnel message (operation 434) and determines the interest as a proxy interest since the name of the interest is in a proxy namespace (operation 436). The node creates an entry comprising the name of the interest, the proxy interface (the local tunnel interface), and the interface of origin in the local PIT (operation 438). If the entry is not a proxy entry, an entry can include the name of the interest, the interface of origin, and a value indicating the entry to be a local entry. The node then forwards the interest based on a local FIB (operation 440).


This interest travels though the network and the corresponding content object comes back to the node. The node receives the content object associated with the name (operation 442). The node obtains the interface of origin and the proxy interface associated with the name from the PIT and removes the corresponding PIT entry (operation 444). Since the name is in the proxy namespace, the node determines the interface of the proxy tunnel to be the outgoing interface. The node encapsulates the content object and the interface of origin in a tunnel message (operation 446) and forwards the tunnel message via the obtained proxy interface (operation 448).



FIG. 4C presents a flow chart 460 illustrating a method of a proxy node sharing a PIT based on a tunnel mapping at a node of origin, in accordance with an embodiment of the present invention. During operation, a proxy node receives a tunnel message comprising an interest via a local proxy interface (operation 462). The node decapsulates the tunnel message (operation 464) and creates an entry comprising the name of the interest and the proxy interface (the local tunnel interface) in the local PIT (operation 466). The node then forwards the interest based on a local FIB (operation 468).


This interest travels though the network and the corresponding content object comes back to the node. The node receives the content object associated with the name (operation 470). The node obtains the proxy interface associated with the name from the PIT and removes the corresponding PIT entry (operation 472). The node encapsulates the content object in a tunnel message (operation 474) and forwards the tunnel message via the obtained proxy interface (operation 476).


Forwarding Content Object



FIG. 5A presents a flow chart 500 illustrating a method for forwarding a content object based on PIT sharing, in accordance with an embodiment of the present invention. During operation, a node of origin receives a tunnel message comprising the content object and the interface of origin (operation 502). The node decapsulates the tunnel message to obtain the content object and the interface of origin (operation 504). The node then forwards the content object via the obtained interface of origin without consulting the local PIT (operation 506).



FIG. 5B presents a flow chart 550 illustrating a method for forwarding a content object based on PIT sharing and a tunnel mapping, in accordance with an embodiment of the present invention. During operation, a node of origin receives a tunnel message comprising the content object (operation 552). The node decapsulates the tunnel message to obtain the content object (operation 554). The node identifies the interface of origin mapped to the tunnel interface (operation 556). The node then forwards the content object via the identified interface of origin without consulting the local PIT (operation 558).


Exemplary Apparatus and Computer System



FIG. 6 illustrates an exemplary apparatus that facilitates PIT sharing, in accordance with an embodiment of the present invention. Apparatus 600 can comprise a plurality of modules, which may communicate with one another via a wired or wireless communication channel. Apparatus 600 may be realized using one or more integrated circuits, and may include fewer or more modules than those shown in FIG. 6. Further, apparatus 600 may be integrated in a computer system, or realized as a separate device that is capable of communicating with other computer systems and/or devices. Specifically, apparatus 600 can comprise a communication module 602, a tunneling module 604, a PIT management module 606, and a proxy management module 608.


In some embodiments, communication module 602 can send and/or receive data packets to/from other network nodes across a computer network, such as a content-centric network. Communication module 602 can create, send. and receive tunnel-encapsulated messages. Such messages can include one or more of: an interest, a content object, an interface of origin, and a proxy interface. Tunneling module 604 can encapsulate a notification message in a tunnel encapsulation (e.g., based on a tunneling protocol).


PIT management module 606 allows apparatus 600 to operate as a proxy node. PIT management module 606 maintains and manages proxy entries in a PIT (either in a separate or a combined PIT) for interests from a node of origin. Proxy management module 608 allows apparatus 600 to operate as a node of origin. Proxy management module 608 determines a proxy node and a proxy namespace. PIT management module 606 also determines whether a name is in a proxy namespace. In some embodiments, proxy management module 608 maintains a mapping between a tunnel interface and an interface of origin.



FIG. 7 illustrates an exemplary computer system that facilitates PIT sharing, in accordance with an embodiment of the present invention. Computer system 702 includes a processor 704, a memory 706, and a storage device 708. Memory 706 can include a volatile memory (e.g., RAM) that serves as a managed memory, and can be used to store one or more memory pools. Furthermore, computer system 702 can be coupled to a display device 710, a keyboard 712, and a pointing device 714. Storage device 708 can store an operating system 716, a PIT sharing system 718, and data 732.


PIT sharing system 718 can include instructions, which when executed by computer system 702, can cause computer system 702 to perform methods and/or processes described in this disclosure. Specifically, PIT sharing system 718 may include instructions for sending and/or receiving data packets to/from other network nodes across a computer network, such as a content-centric network (communication module 720). Further, PIT sharing system 718 may include instructions for sending and/or receiving data packets to/from other network nodes across a computer network, such as a content-centric network. This packet can be an encapsulated message.


PIT sharing system 718 can include instructions for encapsulating a notification message in a tunnel encapsulation (e.g., based on a tunneling protocol) (tunneling module 722). PIT sharing system 718 can also include instructions for maintaining and managing proxy entries in a PIT (either in a separate or a combined PIT) for interests from a node of origin (PIT management module 724). In addition, PIT sharing system 718 can include instructions for determining whether a name is in a proxy namespace (PIT management module 724). Furthermore, PIT sharing system 718 can also include instructions for a proxy node and a proxy namespace, and for maintaining a mapping between a tunnel interface and an interface of origin (proxy management module 726).


Data 732 can include any data that is required as input or that is generated as output by the methods and/or processes described in this disclosure. Specifically, data 732 can store one or more PITs and a mapping. Data 732 can also include an FIB of computer system 702.


The data structures and code described in this detailed description are typically stored on a computer-readable storage medium, which may be any device or medium that can store code and/or data for use by a computer system. The computer-readable storage medium includes, but is not limited to, volatile memory, non-volatile memory, magnetic and optical storage devices such as disk drives, magnetic tape, CDs (compact discs), DVDs (digital versatile discs or digital video discs), or other media capable of storing computer-readable media now known or later developed.


The methods and processes described in the detailed description section can be embodied as code and/or data, which can be stored in a computer-readable storage medium as described above. When a computer system reads and executes the code and/or data stored on the computer-readable storage medium, the computer system performs the methods and processes embodied as data structures and code and stored within the computer-readable storage medium.


Furthermore, the methods and processes described above can be included in hardware modules. For example, the hardware modules can include, but are not limited to, application-specific integrated circuit (ASIC) chips, field-programmable gate arrays (FPGAs), and other programmable-logic devices now known or later developed. When the hardware modules are activated, the hardware modules perform the methods and processes included within the hardware modules.


The foregoing descriptions of embodiments of the present invention have been presented for purposes of illustration and description only. They are not intended to be exhaustive or to limit the present invention to the forms disclosed. Accordingly, many modifications and variations will be apparent to practitioners skilled in the art. Additionally, the above disclosure is not intended to limit the present invention. The scope of the present invention is defined by the appended claims.

Claims
  • 1. A computer-implemented method performed in a content-centric network, comprising: receiving, by a local interface, a first message comprising an interest from a node of origin, wherein a hop count for the interest has not been decreased;creating an entry in a proxy pending interest table (PIT) for the interest, wherein the entry comprises a name of the interest, and wherein the proxy PIT is distinct from a local PIT for interests from a locally coupled device; andin response to receiving a content object associated with the name, retrieving and removing the entry from the proxy PIT; andsending the content object to the node of origin in a second message.
  • 2. The method of claim 1, wherein the name of the interest is based on one or more of: a hierarchically structured variable-length identifier (HSVLI), which comprises contiguous name components ordered from a most general level to a most specific level, wherein the HSVLI is applicable in a portal instance corresponding to the stack;a flat name that does not indicate any hierarchy;a role of the component of the stack; anda unique identifier, which is specific to the component of the stack.
  • 3. The method of claim 1, wherein the first and second messages further comprise an interface of origin indicating an interface via which the node of origin has received the interest; and wherein the entry further comprises an identifier of the interface of origin.
  • 4. The method of claim 3, wherein the proxy PIT is dedicated for interests from the node of origin.
  • 5. The method of claim 3, wherein the entry further comprises an identifier of a tunnel interface of a tunnel coupling the node of origin.
  • 6. The method of claim 1, wherein the first and second messages are tunnel-encapsulated messages, and wherein a respective interface of origin is associated with an individual tunnel.
  • 7. The method of claim 1, wherein the interest from the node of origin is distinguished from interests from a locally coupled device based on distinct namespaces.
  • 8. A non-transitory computer-readable storage medium storing instructions that when executed by a computer cause the computer to perform a method performed in a content-centric network, the method comprising: receiving, by a local interface, a first message comprising an interest from a node of origin, wherein a hop count for the interest has not been decreased;creating an entry in a proxy pending interest table (PIT) for the interest, wherein the entry comprises a name of the interest, and wherein the proxy PIT is distinct from a local PIT for interests from a locally coupled device; andin response to receiving a content object associated with the name, retrieving and removing the entry from the proxy PIT; andsending the content object to the node of origin in a second message.
  • 9. The storage medium of claim 8, wherein the name of the interest is based on one or more of: a hierarchically structured variable-length identifier (HSVLI), which comprises contiguous name components ordered from a most general level to a most specific level, wherein the HSVLI is applicable in a portal instance corresponding to the stack;a flat name that does not indicate any hierarchy;a role of the component of the stack; anda unique identifier, which is specific to the component of the stack.
  • 10. The storage medium of claim 8, wherein the first and second messages further comprise an interface of origin indicating an interface via which the node of origin has received the interest; and wherein the entry further comprises an identifier of the interface of origin.
  • 11. The storage medium of claim 10, wherein the proxy PIT is dedicated for interests from the node of origin.
  • 12. The storage medium of claim 11, wherein the entry further comprises an identifier of a tunnel interface of a tunnel coupling the node of origin.
  • 13. The storage medium of claim 8, wherein the first and second messages are tunnel-encapsulated messages, and wherein a respective interface of origin is associated with an individual tunnel.
  • 14. The storage medium of claim 8, wherein the interest from the node of origin is distinguished from interests from a locally coupled device based on distinct namespaces.
  • 15. A computer system for facilitating forwarding of packets in a content-centric network, the system comprising: a processor; anda storage device storing instructions that when executed by the processor cause the processor to perform a method, the method comprising:receiving, by a local interface, a first message comprising an interest from a node of origin, wherein a hop count for the interest has not been decreased;creating an entry in a proxy pending interest table (PIT) for the interest, wherein the entry comprises a name of the interest, and wherein the proxy PIT is distinct from a local PIT for interests from a locally coupled device; andin response to receiving a content object associated with the name, retrieving and removing the entry from the proxy PIT; andsending the content object to the node of origin in a second message.
  • 16. The computer system of claim 15, wherein a name of the interest is based on one or more of: a hierarchically structured variable-length identifier (HSVLI), which comprises contiguous name components ordered from a most general level to a most specific level, wherein the HSVLI is applicable in a portal instance corresponding to the stack;a flat name that does not indicate any hierarchy;a role of the component of the stack; anda unique identifier, which is specific to the component of the stack.
  • 17. The computer system of claim 15, wherein the first and second messages further comprise an interface of origin indicating an interface via which the node of origin has received the interest; and wherein the entry further comprises an identifier of the interface of origin.
  • 18. The computer system of claim 17, wherein the proxy PIT is dedicated for interests from the node of origin.
  • 19. The computer system of claim 17, wherein the entry further comprises an identifier of a tunnel interface of a tunnel coupling the node of origin.
  • 20. The computer system of claim 15, wherein the interest from the node of origin is distinguished from interests from a locally coupled device based on distinct namespaces.
US Referenced Citations (610)
Number Name Date Kind
817441 Niesz Apr 1906 A
4309569 Merkle Jan 1982 A
4921898 Lenney May 1990 A
5070134 Oyamada Dec 1991 A
5110856 Oyamada May 1992 A
5214702 Fischer May 1993 A
5377354 Scannell Dec 1994 A
5506844 Rao Apr 1996 A
5629370 Freidzon May 1997 A
5845207 Amin Dec 1998 A
5870605 Bracho Feb 1999 A
6021464 Yao Feb 2000 A
6047331 Medard Apr 2000 A
6052683 Irwin Apr 2000 A
6085320 Kaliski Jul 2000 A
6091724 Chandra Jul 2000 A
6105122 Muller Aug 2000 A
6128623 Mattis Oct 2000 A
6128627 Mattis Oct 2000 A
6173364 Zenchelsky Jan 2001 B1
6209003 Mattis Mar 2001 B1
6226618 Downs May 2001 B1
6233617 Rothwein May 2001 B1
6233646 Hahm May 2001 B1
6289358 Mattis Sep 2001 B1
6292880 Mattis Sep 2001 B1
6332158 Risley Dec 2001 B1
6363067 Chung Mar 2002 B1
6366988 Skiba Apr 2002 B1
6574377 Cahill Jun 2003 B1
6654792 Verma Nov 2003 B1
6667957 Corson Dec 2003 B1
6681220 Kaplan Jan 2004 B1
6681326 Son Jan 2004 B2
6732273 Byers May 2004 B1
6769066 Botros Jul 2004 B1
6772333 Brendel Aug 2004 B1
6775258 vanValkenburg Aug 2004 B1
6834272 Naor Dec 2004 B1
6862280 Bertagna Mar 2005 B1
6901452 Bertagna May 2005 B1
6915307 Mattis Jul 2005 B1
6917985 Madruga Jul 2005 B2
6957228 Graser Oct 2005 B1
6968393 Chen Nov 2005 B1
6981029 Menditto Dec 2005 B1
7007024 Zelenka Feb 2006 B2
7013389 Srivastava Mar 2006 B1
7031308 Garcia-Luna-Aceves Apr 2006 B2
7043637 Bolosky May 2006 B2
7061877 Gummalla Jun 2006 B1
7080073 Jiang Jul 2006 B1
RE39360 Aziz Oct 2006 E
7149750 Chadwick Dec 2006 B2
7152094 Jannu Dec 2006 B1
7177646 ONeill Feb 2007 B2
7206860 Murakami Apr 2007 B2
7206861 Callon Apr 2007 B1
7210326 Kawamoto May 2007 B2
7233948 Shamoon Jun 2007 B1
7246159 Aggarwal Jul 2007 B2
7257837 Xu Aug 2007 B2
7287275 Moskowitz Oct 2007 B2
7315541 Housel Jan 2008 B1
7339929 Zelig Mar 2008 B2
7350229 Lander Mar 2008 B1
7362727 ONeill Apr 2008 B1
7382787 Barnes Jun 2008 B1
7395507 Robarts Jul 2008 B2
7430755 Hughes Sep 2008 B1
7444251 Nikovski Oct 2008 B2
7466703 Arunachalam Dec 2008 B1
7472422 Agbabian Dec 2008 B1
7496668 Hawkinson Feb 2009 B2
7509425 Rosenberg Mar 2009 B1
7523016 Surdulescu Apr 2009 B1
7535926 Deshpande May 2009 B1
7542471 Samuels Jun 2009 B2
7543064 Juncker Jun 2009 B2
7552233 Raju Jun 2009 B2
7555482 Korkus Jun 2009 B2
7555563 Ott Jun 2009 B2
7564812 Elliott Jul 2009 B1
7567547 Mosko Jul 2009 B2
7567946 Andreoli Jul 2009 B2
7580971 Gollapudi Aug 2009 B1
7623535 Guichard Nov 2009 B2
7636767 Lev-Ran Dec 2009 B2
7647507 Feng Jan 2010 B1
7660324 Oguchi Feb 2010 B2
7685290 Satapati Mar 2010 B2
7698463 Ogier Apr 2010 B2
7698559 Chaudhury Apr 2010 B1
7769887 Bhattacharyya Aug 2010 B1
7779467 Choi Aug 2010 B2
7801069 Cheung Sep 2010 B2
7801177 Luss Sep 2010 B2
7816441 Elizalde Oct 2010 B2
7831733 Sultan Nov 2010 B2
7873619 Faibish Jan 2011 B1
7908337 Garcia-Luna-Aceves Mar 2011 B2
7924837 Shabtay Apr 2011 B1
7953014 Toda May 2011 B2
7953885 Devireddy May 2011 B1
7979912 Roka Jul 2011 B1
8000267 Solis Aug 2011 B2
8010691 Kollmansberger Aug 2011 B2
8069023 Frailong Nov 2011 B1
8074289 Carpentier Dec 2011 B1
8117441 Kurien Feb 2012 B2
8160069 Jacobson Apr 2012 B2
8204060 Jacobson Jun 2012 B2
8214364 Bigus Jul 2012 B2
8224985 Takeda Jul 2012 B2
8225057 Zheng Jul 2012 B1
8239331 Shanmugavelayutham Aug 2012 B2
8271578 Sheffi Sep 2012 B2
8271687 Turner Sep 2012 B2
8312064 Gauvin Nov 2012 B1
8332357 Chung Dec 2012 B1
8375420 Farrell Feb 2013 B2
8386622 Jacobson Feb 2013 B2
8447851 Anderson May 2013 B1
8462781 McGhee Jun 2013 B2
8467297 Liu Jun 2013 B2
8473633 Eardley Jun 2013 B2
8553562 Allan Oct 2013 B2
8572214 Garcia-Luna-Aceves Oct 2013 B2
8654649 Vasseur Feb 2014 B2
8665757 Kling Mar 2014 B2
8667172 Ravindran Mar 2014 B2
8677451 Bhimaraju Mar 2014 B1
8688619 Ezick Apr 2014 B1
8699350 Kumar Apr 2014 B1
8718055 Vasseur May 2014 B2
8750820 Allan Jun 2014 B2
8761022 Chiabaut Jun 2014 B2
8762477 Xie Jun 2014 B2
8762570 Qian Jun 2014 B2
8762707 Killian Jun 2014 B2
8767627 Ezure Jul 2014 B2
8817594 Gero Aug 2014 B2
8826381 Kim Sep 2014 B2
8832302 Bradford Sep 2014 B1
8836536 Marwah Sep 2014 B2
8861356 Kozat Oct 2014 B2
8862774 Vasseur Oct 2014 B2
8868779 ONeill Oct 2014 B2
8874842 Kimmel Oct 2014 B1
8880682 Bishop Nov 2014 B2
8903756 Zhao Dec 2014 B2
8923293 Jacobson Dec 2014 B2
8934496 Vasseur Jan 2015 B2
8937865 Kumar Jan 2015 B1
8972969 Gaither Mar 2015 B2
8977596 Montulli Mar 2015 B2
9002921 Westphal Apr 2015 B2
9032095 Traina May 2015 B1
9071498 Beser Jun 2015 B2
9112895 Lin Aug 2015 B1
9137152 Xie Sep 2015 B2
9253087 Zhang Feb 2016 B2
9270598 Oran Feb 2016 B1
9280610 Gruber Mar 2016 B2
9609014 Solis Mar 2017 B2
20020002680 Carbajal Jan 2002 A1
20020010795 Brown Jan 2002 A1
20020038296 Margolus Mar 2002 A1
20020048269 Hong Apr 2002 A1
20020054593 Morohashi May 2002 A1
20020077988 Sasaki Jun 2002 A1
20020078066 Robinson Jun 2002 A1
20020138551 Erickson Sep 2002 A1
20020152305 Jackson Oct 2002 A1
20020176404 Girard Nov 2002 A1
20020188605 Adya Dec 2002 A1
20020199014 Yang Dec 2002 A1
20030004621 Bousquet Jan 2003 A1
20030009365 Tynan Jan 2003 A1
20030033394 Stine Feb 2003 A1
20030046396 Richter Mar 2003 A1
20030046421 Horvitz et al. Mar 2003 A1
20030046437 Eytchison Mar 2003 A1
20030048793 Pochon Mar 2003 A1
20030051100 Patel Mar 2003 A1
20030061384 Nakatani Mar 2003 A1
20030074472 Lucco Apr 2003 A1
20030088696 McCanne May 2003 A1
20030097447 Johnston May 2003 A1
20030099237 Mitra May 2003 A1
20030140257 Peterka Jul 2003 A1
20030229892 Sardera Dec 2003 A1
20040024879 Dingman Feb 2004 A1
20040030602 Rosenquist Feb 2004 A1
20040064737 Milliken Apr 2004 A1
20040071140 Jason Apr 2004 A1
20040073617 Milliken Apr 2004 A1
20040073715 Folkes Apr 2004 A1
20040139230 Kim Jul 2004 A1
20040196783 Shinomiya Oct 2004 A1
20040218548 Kennedy Nov 2004 A1
20040221047 Grover Nov 2004 A1
20040225627 Botros Nov 2004 A1
20040233916 Takeuchi Nov 2004 A1
20040246902 Weinstein Dec 2004 A1
20040252683 Kennedy Dec 2004 A1
20040267902 Yang Dec 2004 A1
20050003832 Osafune Jan 2005 A1
20050028156 Hammond Feb 2005 A1
20050043060 Brandenberg Feb 2005 A1
20050050211 Kaul Mar 2005 A1
20050066121 Keeler Mar 2005 A1
20050074001 Mattes Apr 2005 A1
20050132207 Mourad Jun 2005 A1
20050149508 Deshpande Jul 2005 A1
20050159823 Hayes Jul 2005 A1
20050198351 Nog Sep 2005 A1
20050238050 Pung Oct 2005 A1
20050249196 Ansari Nov 2005 A1
20050259637 Chu Nov 2005 A1
20050262217 Nonaka Nov 2005 A1
20050281288 Banerjee Dec 2005 A1
20050286535 Shrum Dec 2005 A1
20050289222 Sahim Dec 2005 A1
20060010249 Sabesan Jan 2006 A1
20060029102 Abe Feb 2006 A1
20060039379 Abe Feb 2006 A1
20060051055 Ohkawa Mar 2006 A1
20060072523 Richardson Apr 2006 A1
20060099973 Nair May 2006 A1
20060129514 Watanabe Jun 2006 A1
20060133343 Huang Jun 2006 A1
20060146686 Kim Jul 2006 A1
20060173831 Basso Aug 2006 A1
20060193295 White Aug 2006 A1
20060203804 Whitmore Sep 2006 A1
20060206445 Andreoli Sep 2006 A1
20060215684 Capone Sep 2006 A1
20060223504 Ishak Oct 2006 A1
20060242155 Moore Oct 2006 A1
20060256767 Suzuki Nov 2006 A1
20060268792 Belcea Nov 2006 A1
20060288237 Goodwill Dec 2006 A1
20070019619 Foster Jan 2007 A1
20070073888 Madhok Mar 2007 A1
20070094265 Korkus Apr 2007 A1
20070112880 Yang May 2007 A1
20070124412 Narayanaswami May 2007 A1
20070127457 Mirtorabi Jun 2007 A1
20070156998 Gorobets Jul 2007 A1
20070160062 Morishita Jul 2007 A1
20070162394 Zager Jul 2007 A1
20070171828 Dalal Jul 2007 A1
20070189284 Kecskemeti Aug 2007 A1
20070195765 Heissenbuttel Aug 2007 A1
20070204011 Shaver Aug 2007 A1
20070209067 Fogel Sep 2007 A1
20070239892 Ott Oct 2007 A1
20070240207 Belakhdar Oct 2007 A1
20070245034 Retana Oct 2007 A1
20070253418 Shiri Nov 2007 A1
20070255677 Alexander Nov 2007 A1
20070255699 Sreenivas Nov 2007 A1
20070255781 Li Nov 2007 A1
20070274504 Maes Nov 2007 A1
20070275701 Jonker Nov 2007 A1
20070276907 Maes Nov 2007 A1
20070283158 Danseglio Dec 2007 A1
20070294187 Scherrer Dec 2007 A1
20080005056 Stelzig Jan 2008 A1
20080005223 Flake Jan 2008 A1
20080010366 Duggan Jan 2008 A1
20080037420 Tang Feb 2008 A1
20080043989 Furutono Feb 2008 A1
20080046340 Brown Feb 2008 A1
20080059631 Bergstrom Mar 2008 A1
20080080440 Yarvis Apr 2008 A1
20080082662 Dandliker Apr 2008 A1
20080095159 Suzuki Apr 2008 A1
20080101357 Iovanna May 2008 A1
20080103896 Flake May 2008 A1
20080107034 Jetcheva May 2008 A1
20080107259 Satou May 2008 A1
20080123862 Rowley May 2008 A1
20080133583 Artan Jun 2008 A1
20080133755 Pollack Jun 2008 A1
20080151755 Nishioka Jun 2008 A1
20080159271 Kutt Jul 2008 A1
20080165775 Das Jul 2008 A1
20080186901 Itagaki Aug 2008 A1
20080200153 Fitzpatrick Aug 2008 A1
20080215669 Gaddy Sep 2008 A1
20080216086 Tanaka Sep 2008 A1
20080243992 Jardetzky Oct 2008 A1
20080250006 Dettinger Oct 2008 A1
20080256138 Sim-Tang Oct 2008 A1
20080256359 Kahn Oct 2008 A1
20080270618 Rosenberg Oct 2008 A1
20080271143 Stephens Oct 2008 A1
20080287142 Keighran Nov 2008 A1
20080288580 Wang Nov 2008 A1
20080291923 Back Nov 2008 A1
20080298376 Takeda Dec 2008 A1
20080320148 Capuozzo Dec 2008 A1
20090006659 Collins Jan 2009 A1
20090013324 Gobara Jan 2009 A1
20090022154 Kiribe Jan 2009 A1
20090024641 Quigley Jan 2009 A1
20090030978 Johnson Jan 2009 A1
20090037763 Adhya Feb 2009 A1
20090052660 Chen Feb 2009 A1
20090067429 Nagai Mar 2009 A1
20090077184 Brewer Mar 2009 A1
20090092043 Lapuh Apr 2009 A1
20090097631 Gisby Apr 2009 A1
20090103515 Pointer Apr 2009 A1
20090113068 Fujihira Apr 2009 A1
20090116393 Hughes May 2009 A1
20090117922 Bell May 2009 A1
20090132662 Sheridan May 2009 A1
20090135728 Shen May 2009 A1
20090144300 Chatley Jun 2009 A1
20090157887 Froment Jun 2009 A1
20090185745 Momosaki Jul 2009 A1
20090193101 Munetsugu Jul 2009 A1
20090198832 Shah Aug 2009 A1
20090222344 Greene Sep 2009 A1
20090228593 Takeda Sep 2009 A1
20090254572 Redlich Oct 2009 A1
20090268905 Matsushima Oct 2009 A1
20090274158 Sharp Nov 2009 A1
20090276396 Gorman Nov 2009 A1
20090285209 Stewart Nov 2009 A1
20090287835 Jacobson Nov 2009 A1
20090287853 Carson Nov 2009 A1
20090288076 Johnson Nov 2009 A1
20090288143 Stebila Nov 2009 A1
20090288163 Jacobson Nov 2009 A1
20090292743 Bigus Nov 2009 A1
20090293121 Bigus Nov 2009 A1
20090296719 Maier Dec 2009 A1
20090300079 Shitomi Dec 2009 A1
20090300407 Kamath Dec 2009 A1
20090300512 Ahn Dec 2009 A1
20090307286 Laffin Dec 2009 A1
20090307333 Welingkar Dec 2009 A1
20090323632 Nix Dec 2009 A1
20100005061 Basco Jan 2010 A1
20100027539 Beverly Feb 2010 A1
20100046546 Ram Feb 2010 A1
20100057929 Merat Mar 2010 A1
20100058346 Narang Mar 2010 A1
20100088370 Wu Apr 2010 A1
20100094767 Miltonberger Apr 2010 A1
20100094876 Huang Apr 2010 A1
20100098093 Ejzak Apr 2010 A1
20100100465 Cooke Apr 2010 A1
20100103870 Garcia-Luna-Aceves Apr 2010 A1
20100124191 Vos May 2010 A1
20100125911 Bhaskaran May 2010 A1
20100131660 Dec May 2010 A1
20100150155 Napierala Jun 2010 A1
20100165976 Khan Jul 2010 A1
20100169478 Saha Jul 2010 A1
20100169503 Kollmansberger Jul 2010 A1
20100180332 Ben-Yochanan Jul 2010 A1
20100182995 Hwang Jul 2010 A1
20100185753 Liu Jul 2010 A1
20100195653 Jacobson Aug 2010 A1
20100195654 Jacobson Aug 2010 A1
20100195655 Jacobson Aug 2010 A1
20100217874 Anantharaman Aug 2010 A1
20100217985 Fahrny Aug 2010 A1
20100232402 Przybysz Sep 2010 A1
20100232439 Dham Sep 2010 A1
20100235516 Nakamura Sep 2010 A1
20100246549 Zhang Sep 2010 A1
20100250497 Redlich Sep 2010 A1
20100250939 Adams Sep 2010 A1
20100257149 Cognigni Oct 2010 A1
20100268782 Zombek Oct 2010 A1
20100272107 Papp Oct 2010 A1
20100281263 Ugawa Nov 2010 A1
20100284309 Allan Nov 2010 A1
20100284404 Gopinath Nov 2010 A1
20100293293 Beser Nov 2010 A1
20100316052 Petersen Dec 2010 A1
20100322249 Thathapudi Dec 2010 A1
20100332595 Fullagar Dec 2010 A1
20110013637 Xue Jan 2011 A1
20110019674 Iovanna Jan 2011 A1
20110022812 vanderLinden Jan 2011 A1
20110029952 Harrington Feb 2011 A1
20110055392 Shen Mar 2011 A1
20110055921 Narayanaswamy Mar 2011 A1
20110060716 Forman Mar 2011 A1
20110060717 Forman Mar 2011 A1
20110090908 Jacobson Apr 2011 A1
20110106755 Hao May 2011 A1
20110131308 Eriksson Jun 2011 A1
20110137919 Ryu Jun 2011 A1
20110145597 Yamaguchi Jun 2011 A1
20110145858 Philpott Jun 2011 A1
20110149858 Hwang Jun 2011 A1
20110153840 Narayana Jun 2011 A1
20110158122 Murphy Jun 2011 A1
20110161408 Kim Jun 2011 A1
20110202609 Chaturvedi Aug 2011 A1
20110219093 Ragunathan Sep 2011 A1
20110219427 Hito Sep 2011 A1
20110219727 May Sep 2011 A1
20110225293 Rathod Sep 2011 A1
20110231578 Nagappan Sep 2011 A1
20110239256 Gholmieh Sep 2011 A1
20110258049 Ramer Oct 2011 A1
20110264824 Venkata Subramanian Oct 2011 A1
20110265159 Ronda Oct 2011 A1
20110265174 Thornton Oct 2011 A1
20110271007 Wang Nov 2011 A1
20110280214 Lee Nov 2011 A1
20110286457 Ee Nov 2011 A1
20110286459 Rembarz Nov 2011 A1
20110295783 Zhao Dec 2011 A1
20110299454 Krishnaswamy Dec 2011 A1
20120011170 Elad Jan 2012 A1
20120011551 Levy Jan 2012 A1
20120023113 Ferren Jan 2012 A1
20120036180 Thornton Feb 2012 A1
20120045064 Rembarz Feb 2012 A1
20120047361 Erdmann Feb 2012 A1
20120066727 Nozoe Mar 2012 A1
20120079056 ZoltÃ?Âin Mar 2012 A1
20120102136 Srebrny Apr 2012 A1
20120106339 Mishra May 2012 A1
20120110159 Richardson May 2012 A1
20120114313 Phillips May 2012 A1
20120120803 Farkas May 2012 A1
20120127994 Ko May 2012 A1
20120136676 Goodall May 2012 A1
20120136936 Quintuna May 2012 A1
20120136945 Lee May 2012 A1
20120137367 Dupont May 2012 A1
20120141093 Yamaguchi Jun 2012 A1
20120155464 Kim Jun 2012 A1
20120158973 Jacobson Jun 2012 A1
20120163373 Lo Jun 2012 A1
20120166433 Tseng Jun 2012 A1
20120170913 Isozaki Jul 2012 A1
20120179653 Araki Jul 2012 A1
20120197690 Agulnek Aug 2012 A1
20120198048 Loffe Aug 2012 A1
20120221150 Arensmeier Aug 2012 A1
20120224487 Hui Sep 2012 A1
20120226902 Kim Sep 2012 A1
20120257500 Lynch Oct 2012 A1
20120284791 Miller Nov 2012 A1
20120290669 Parks Nov 2012 A1
20120290919 Melnyk Nov 2012 A1
20120291102 Cohen Nov 2012 A1
20120300669 Zahavi Nov 2012 A1
20120307629 Vasseur Dec 2012 A1
20120314580 Hong Dec 2012 A1
20120317307 Ravindran Dec 2012 A1
20120317643 Kim Dec 2012 A1
20120317655 Zhang Dec 2012 A1
20120322422 Frecks Dec 2012 A1
20120323933 He Dec 2012 A1
20120331112 Chatani Dec 2012 A1
20130024560 Vasseur Jan 2013 A1
20130041982 Shi Feb 2013 A1
20130051392 Filsfils Feb 2013 A1
20130054971 Yamaguchi Feb 2013 A1
20130060962 Wang Mar 2013 A1
20130061084 Barton Mar 2013 A1
20130066823 Sweeney Mar 2013 A1
20130073552 Rangwala Mar 2013 A1
20130073882 Inbaraj Mar 2013 A1
20130074155 Huh Mar 2013 A1
20130090942 Robinson Apr 2013 A1
20130091237 Ambalavanar Apr 2013 A1
20130091539 Khurana Apr 2013 A1
20130110987 Kim May 2013 A1
20130111063 Lee May 2013 A1
20130128786 Sultan May 2013 A1
20130132719 Kobayashi May 2013 A1
20130139245 Thomas May 2013 A1
20130151584 Westphal Jun 2013 A1
20130151646 Chidambaram Jun 2013 A1
20130152070 Bhullar Jun 2013 A1
20130163426 Beliveau Jun 2013 A1
20130166668 Byun Jun 2013 A1
20130173822 Hong Jul 2013 A1
20130182568 Lee Jul 2013 A1
20130182931 Fan Jul 2013 A1
20130185406 Choi Jul 2013 A1
20130191412 Kitamura Jul 2013 A1
20130197698 Shah Aug 2013 A1
20130198119 Eberhardt, III Aug 2013 A1
20130212185 Pasquero Aug 2013 A1
20130219038 Lee Aug 2013 A1
20130219081 Qian Aug 2013 A1
20130219478 Mahamuni Aug 2013 A1
20130223237 Hui Aug 2013 A1
20130227048 Xie Aug 2013 A1
20130227114 Vasseur Aug 2013 A1
20130227166 Ravindran Aug 2013 A1
20130242996 Varvello Sep 2013 A1
20130250809 Hui Sep 2013 A1
20130262365 Dolbear Oct 2013 A1
20130262698 Schwan Oct 2013 A1
20130275544 Westphal Oct 2013 A1
20130282854 Jang Oct 2013 A1
20130282860 Zhang Oct 2013 A1
20130282920 Zhang Oct 2013 A1
20130304758 Gruber Nov 2013 A1
20130304937 Lee Nov 2013 A1
20130325888 Oneppo Dec 2013 A1
20130329696 Xu Dec 2013 A1
20130332971 Fisher Dec 2013 A1
20130336103 Vasseur Dec 2013 A1
20130336323 Srinivasan Dec 2013 A1
20130339481 Hong Dec 2013 A1
20130343408 Cook Dec 2013 A1
20140003232 Guichard Jan 2014 A1
20140003424 Matsuhira Jan 2014 A1
20140006354 Parkison Jan 2014 A1
20140006565 Muscariello Jan 2014 A1
20140029445 Hui Jan 2014 A1
20140032714 Liu Jan 2014 A1
20140033193 Palaniappan Jan 2014 A1
20140040505 Barton Feb 2014 A1
20140040628 Fort Feb 2014 A1
20140043987 Watve Feb 2014 A1
20140047513 vantNoordende Feb 2014 A1
20140074730 Arensmeier Mar 2014 A1
20140075567 Raleigh Mar 2014 A1
20140082135 Jung Mar 2014 A1
20140082661 Krahnstoever Mar 2014 A1
20140089454 Jeon Mar 2014 A1
20140096249 Dupont Apr 2014 A1
20140098685 Shattil Apr 2014 A1
20140108313 Heidasch Apr 2014 A1
20140108474 David Apr 2014 A1
20140115037 Liu Apr 2014 A1
20140122587 Petker et al. May 2014 A1
20140129736 Yu May 2014 A1
20140136814 Stark May 2014 A1
20140140348 Perlman May 2014 A1
20140143370 Vilenski May 2014 A1
20140146819 Bae May 2014 A1
20140149733 Kim May 2014 A1
20140237095 Petker May 2014 A1
20140156396 deKozan Jun 2014 A1
20140165207 Engel Jun 2014 A1
20140172783 Suzuki Jun 2014 A1
20140172981 Kim Jun 2014 A1
20140173034 Liu Jun 2014 A1
20140173076 Ravindran Jun 2014 A1
20140181140 Kim Jun 2014 A1
20140192677 Chew Jul 2014 A1
20140192717 Liu Jul 2014 A1
20140195328 Ferens Jul 2014 A1
20140195641 Wang Jul 2014 A1
20140195666 Dumitriu Jul 2014 A1
20140204945 Byun Jul 2014 A1
20140214942 Ozonat Jul 2014 A1
20140233575 Xie Aug 2014 A1
20140237085 Park Aug 2014 A1
20140245359 DeFoy Aug 2014 A1
20140254595 Luo Sep 2014 A1
20140280823 Varvello Sep 2014 A1
20140281489 Peterka Sep 2014 A1
20140281505 Zhang Sep 2014 A1
20140282816 Xie Sep 2014 A1
20140289325 Solis Sep 2014 A1
20140289790 Wilson Sep 2014 A1
20140298248 Kang Oct 2014 A1
20140314093 You Oct 2014 A1
20140337276 Iordanov Nov 2014 A1
20140365550 Jang Dec 2014 A1
20150006896 Franck Jan 2015 A1
20150018770 Baran Jan 2015 A1
20150032892 Narayanan Jan 2015 A1
20150033365 Mellor Jan 2015 A1
20150039890 Khosravi Feb 2015 A1
20150063802 Bahadur Mar 2015 A1
20150089081 Thubert Mar 2015 A1
20150095481 Ohnishi Apr 2015 A1
20150095514 Yu Apr 2015 A1
20150120663 Lescouarnec Apr 2015 A1
20150169758 Assom Jun 2015 A1
20150188770 Naiksatam Jul 2015 A1
20150195149 Vasseur Jul 2015 A1
20150207633 Ravindran Jul 2015 A1
20150207864 Wilson Jul 2015 A1
20150279348 Cao Oct 2015 A1
20150288755 Mosko Oct 2015 A1
20150312300 Mosko Oct 2015 A1
20150341373 Solis et al. Nov 2015 A1
20150349961 Mosko Dec 2015 A1
20150372903 Hui Dec 2015 A1
20150381546 Mahadevan Dec 2015 A1
20160014234 Oran Jan 2016 A1
20160019275 Mosko Jan 2016 A1
20160021172 Mahadevan Jan 2016 A1
20160062840 Scott Mar 2016 A1
20160110466 Uzun Apr 2016 A1
20160171184 Solis Jun 2016 A1
20170012867 Royon Jan 2017 A1
20170134276 White May 2017 A1
Foreign Referenced Citations (32)
Number Date Country
103873371 Jun 2014 CN
1720277 Jun 1967 DE
19620817 Nov 1997 DE
0295727 Dec 1988 EP
0757065 Jul 1996 EP
1077422 Feb 2001 EP
1383265 Jan 2004 EP
1384729 Jan 2004 EP
1473889 Nov 2004 EP
2120402 Nov 2009 EP
2120419 Nov 2009 EP
2120419 Nov 2009 EP
2124415 Nov 2009 EP
2214357 Aug 2010 EP
2299754 Mar 2011 EP
2323346 May 2011 EP
2533495 Dec 2012 EP
2552083 Jan 2013 EP
2214356 May 2016 EP
03005288 Jan 2003 WO
03042254 May 2003 WO
03049369 Jun 2003 WO
03091297 Nov 2003 WO
2005041527 May 2005 WO
2007113180 Oct 2007 WO
2007122620 Nov 2007 WO
2007144388 Dec 2007 WO
2011049890 Apr 2011 WO
2012077073 Jun 2012 WO
2013123410 Aug 2013 WO
2014023072 Feb 2014 WO
2015084327 Jun 2015 WO
Non-Patent Literature Citations (175)
Entry
RTMP (2009). Available online at http://wwwimages.adobe.com/www.adobe.com/content/dam/Adobe/en/devnet/rtmp/ pdf/rtmp specification 1.0.pdf.
Garnepudi Parimala et al “Proactive, reactive and hybrid multicast routing protocols for Wireless Mesh Networks”, 2013 IEEE International Conference on Computational Intelligence and Computing Research, IEEE, Dec. 26, 2013, pp. 1-7.
Marc Mosko: “CCNx 1.0 Protocol Introduction” Apr. 2, 2014 [Retrieved from the Internet Jun. 8, 2016] http://www.ccnx.org/pubs/hhg/1.1%20CCNx%201.0%20Protocol%20Introduction.pdf *paragraphs [01.3], [002], [02.1], [0003].
Akash Baid et al: “Comparing alternative approaches for networking of named objects in the future Internet”, Computer Communications Workshops (Infocom Wkshps), 2012 IEEE Conference on, IEEE, Mar. 25, 2012, pp. 298-303, *Paragraph [002]* *figure 1*.
Priya Mahadevan: “CCNx 1.0 Tutorial”, Mar. 16, 2014, pp. 1-11, Retrieved from the Internet: http://www.ccnx.org/pubs/hhg/1.2%20CCNx%201.0%20Tutorial.pdf [retrieved on Jun. 8, 2016] *paragraphs [003]—[006], [0011], [0013]* *figures 1,2*.
Marc Mosko et al “All-In-One Streams for Content Centric Networks”, May 24, 2015, retrieved from the Internet: http://www.ccnx.org/pubs/AllinOne.pdf [downloaded Jun. 9, 2016] *the whole document*.
Cesar Ghali et al. “Elements of Trust in Named-Data Networking”, Feb. 13, 2014 Retrieved from the internet Jun. 17, 2016 http://arxiv.org/pdf/1402.3332v5.pdf *p. 5, col. 1* *p. 2, col. 1-2* * Section 4.1; p. 4, col. 2* *Section 4.2; p. 4, col. 2*.
Priya Mahadevan et al. “CCN-KRS”, Proceedings of the 1st International Conference on Information-Centric Networking, Inc. '14, Sep. 24, 2014.
Flavio Roberto Santos Et al. “Funnel: Choking Polluters in BitTorrent File Sharing Communities”, IEEE Transactions on Network and Service Management, IEEE vol. 8, No. 4, Dec. 1, 2011.
Liu Wai-Xi et al: “Multisource Dissemination in content-centric networking”, 2013 Fourth International conference on the network of the future (NOF), IEEE, Oct. 23, 2013, pp. 1-5.
Marie-Jose Montpetit et al.: “Network coding meets information-centric networking”, Proceedings of the 1st ACM workshop on emerging Name-Oriented mobile networking design, architecture, algorithms, and applications, NOM '12, Jun. 11, 2012, pp. 31-36.
Asokan et al.: “Server-Supported Signatures”, Computer Security Esorics 96, Sep. 25, 1996, pp. 131-143, Section 3.
Mandl et al.: “A Fast FPGA Based Coprocessor Supporting Hard Real-Time Search”, New Frontiers of Information Technology, Proceedings of the 23rd Euromicro Conference Budapest, Sep. 1, 1997, pp. 499-506 *The Whole Document*.
Sun et al.: “Content-Based Route Lookup Using CAMs”, Global Communications Conference, IEEE, Dec. 3, 2012 *The Whole Document*.
Gelenbe et al.: “Networks With Cognitive Packets”, Modeling, Analysis and Simulation of Computer and Telecommunication Systems, 2000. IEEE, Aug. 29, 2000, pp. 3-10.
Vangelis et al.: “On the Role of Semantic Descriptions for Adaptable Protocol Stacks in the Internet of Things”, 2014 28th International Conference on Advanced Information Networking and Applications Workshops, IEEE, May 13, 2014, pp. 437-443, *last paragraph of section II.B*.
Smetters et al. “Securing Network Content” Technical Report, PARC TR-2009-1, Oct. 1, 2009, Retrieved from the internet URL:http//www.parc.com/content/altachments/TR-2009-01.pdf [retrieved Nov. 1, 2016].
Marc Mosko “CCNx Label Forwarding (CCNLF)” Jul. 21, 2014.
Gallo Alcatel-Lucent Bell Labs “Content-Centric Networking Packet Header Format” Jan. 26, 2015.
Huard J-F et al. “A Programmable Transport Architecture with QOS Guarantees” IEEE Communications Magazine, vol. 36, No. 10, Oct. 1, 1998.
Microsoft Computer Dictionary, Fifth Edition, 2002, Microsoft Press, p. 23.
Mind—A Brief Introduction, John R. Searle, 2004, Oxford University Press, pp. 62-67.
International Search Report and Written Opinion in corresponding International Application No. PCT/US2017/026346, dated Jun. 28, 2017, 11 pgs.
Saxena, et al., “Named Data Networking: A Survey”, Computer Science Review, XP029469974, ISSN: 1574-0137, Feb. 21, 2016, 41 pgs.
Jacobson, Van et al., “Content-Centric Networking, Whitepaper Describing Future Assurable Global Networks”, Palo Alto Research Center, Inc., Jan. 30, 2007, pp. 1-9.
Koponen, Teemu et al., “A Data-Oriented (and Beyond) Network Architecture”, SIGCOMM '07, Aug. 27-31, 2007, Kyoto, Japan, XP-002579021, p. 181-192.
Ao-Jan Su, David R. Choffnes, Aleksandar Kuzmanovic, and Fabian E. Bustamante. Drafting Behind Akamai: Inferring Network Conditions Based on CDN Redirections. IEEE/ACM Transactions on Networking {Feb., 2009).
“PBC Library-Pairing-Based Cryptography-About,” http://crypto.stanford.edu/pbc. downloaded Apr. 27, 2015.
Boneh et al., “Collusion Resistant Broadcast Encryption With Short Ciphertexts and Private Keys”, 2005.
D. Boneh and M. Franklin. Identity-Based Encryption from the Weil Pairing. Advances in Cryptology—CRYPTO 2001, vol. 2139, Springer Berlin Heidelberg (2001).
Anteniese et al., “Improved Proxy Re-Encryption Schemes with Applications to Secure Distributed Storage”, 2006.
J. Bethencourt, A, Sahai, and B. Waters, ‘Ciphertext-policy attribute-based encryption,’ in Proc. IEEE Security & Privacy 2007, Berkeley, CA, USA, May 2007, pp. 321-334.
J. Lotspiech, S. Nusser, and F. Pestoni. Anonymous Trust: Digit.
J. Shao and Z. Cao. CCA-Secure Proxy Re-Encryption without Pairings. Public Key Cryptography. Springer Lecture Notes in Computer ScienceVolume 5443 (2009).
Gopal et al. “Integrating content-based Mechanisms with hierarchical File systems”, Feb. 1999, University of Arizona, 15 pages.
R. H. Deng, J. Weng, S. Liu, and K. Chen. Chosen-Ciphertext Secure Proxy Re-Encryption without Pairings. CANS. Spring Lecture Notes in Computer Science vol. 5339 (2008).
S. Chow, J. Weng, Y. Yang, and R. Deng. Efficient Unidirectional Proxy Re-Encryption. Progress in Cryptology—AFRICACRYPT 2010. Springer Berlin Heidelberg (2010).
S. Kamara and K. Lauter. Cryptographic Cloud Storage. Financial Cryptography and Data Security. Springer Berlin Heidelberg (2010).
Sandvine, Global Internet Phenomena Report—Spring 2012. Located online at http://www.sandvine.com/downloads/ documents/Phenomenal H 2012/Sandvine Global Internet Phenomena Report 1H 2012.pdf.
The Despotify Project (2012). Available online at http://despotify.sourceforge.net/.
V. K. Adhikari, S. Jain, Y. Chen, and Z.-L. Zhang. Vivisecting Youtube:An Active Measurement Study. In INFOCOM12 Mini-conference (2012).
Vijay Kumar Adhikari, Yang Guo, Fang Hao, Matteo Varvello, Volker Hilt, Moritz Steiner, and Zhi-Li Zhang. Unreeling Netflix: Understanding and Improving Multi-CDN Movie Delivery. In the Proceedings of IEEE INFOCOM 2012 (2012).
Jacobson, Van et al. ‘VoCCN: Voice Over Content-Centric Networks.’ Dec. 1, 2009. ACM ReArch'09.
Rosenberg, J. “Interactive Connectivity Establishment (ICE): A Protocol for Network Address Translator (NAT) Traversal for Offer/Answer Protocols”, Apr. 2010, pp. 1-117.
Shih, Eugene et al., ‘Wake on Wireless: An Event Driven Energy Saving Strategy for Battery Operated Devices’, Sep. 23, 2002, pp. 160-171.
Fall, K. et al., “DTN: an architectural retrospective”, Selected areas in communications, IEEE Journal on, vol. 28, No. 5, Jun. 1, 2008, pp. 828-835.
Gritter, M. et al., ‘An Architecture for content routing support in the Internet’, Proceedings of 3rd Usenix Symposium on Internet Technologies and Systems, 2001, pp. 37-48.
“CCNx,” http://ccnx.org/. downloaded Mar. 11, 2015.
“Content Delivery Network”, Wikipedia, Dec. 10, 2011, http://en.wikipedia.org/w/index.php?titleContent_delivery_network&oldid=465077460.
“Digital Signature” archived on Aug. 31, 2009 at http://web.archive.org/web/20090831170721/http://en.wikipedia.org/wiki/Digital_signature.
“Introducing JSON,” http://www.json.org/. downloaded Mar. 11, 2015.
“Microsoft PlayReady,” http://www.microsoft.com/playready/. downloaded Mar. 11, 2015.
“Pursuing a pub/sub internet (PURSUIT),” http://www.fp7-pursuit.ew/PursuitWeb/. downloaded Mar. 11, 2015.
“The FP7 4WARD project,” http://www.4ward-project.eu/. downloaded Mar. 11, 2015.
A. Broder and A. Karlin, “Multilevel Adaptive Hashing”, Jan. 1990, pp. 43-53.
Detti, Andrea, et al. “CONET: a content centric inter-networking architecture.” Proceedings of the ACM SIGCOMM workshop on Information-centric networking. ACM, 2011.
A. Wolman, M. Voelker, N. Sharma N. Cardwell, A. Karlin, and H.M. Levy, “On the scale and performance of cooperative web proxy caching,” ACM SIGHOPS Operating Systems Review, vol. 33, No. 5, pp. 16-31, Dec. 1999.
Afanasyev, Alexander, et al. “Interest flooding attack and countermeasures in Named Data Networking.” IFIP Networking Conference, 2013. IEEE, 2013.
B. Ahlgren et al., ‘A Survey of Information-centric Networking’ IEEE Commun. Magazine, Jul. 2012, pp. 26-36.
Bari, MdFaizul, et al. ‘A survey of naming and routing in information-centric networks.’ Communications Magazine, IEEE 50.12 (2012): 44-53.
Baugher, Mark et al., “Self-Verifying Names for Read-Only Named Data”, 2012 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Mar. 2012, pp. 274-279.
Brambley, Michael, A novel, low-cost, reduced-sensor approach for providing smart remote monitoring and diagnostics for packaged air conditioners and heal pumps. Pacific Northwest National Laboratory, 2009.
C.A. Wood and E. Uzun, “Flexible end-to-end content security in CCN,” in Proc. IEEE CCNC 2014, Las Vegas, CA, USA, Jan. 2014.
Carzaniga, Antonio, Matthew J. Rutherford, and Alexander L. Wolf. ‘A routing scheme for content-based networking.’ INFOCOM 2004. Twenty-third Annual Joint Conference of the IEEE Computer and Communications Societies. vol. 2. IEEE, 2004.
Cho, Jin-Hee, Ananthram Swami, and Ray Chen. “A survey on trust management for mobile ad hoc networks.” Communications Surveys & Tutorials, IEEE 13.4 (2011): 562-583.
Compagno, Alberto, et al. “Poseidon: Mitigating interest flooding DDoS attacks in named data networking.” Local Computer Networks (LCN), 2013 IEEE 38th Conference on. IEEE, 2013.
Conner, William, et al. “A trust management framework for service-oriented environments.” Proceedings of the 18th international conference on World wide web. ACM, 2009.
Content Centric Networking Project (CON) [online], http://ccnx.org/releases/latest/doc/technical/, Downloaded Mar. 9, 2015.
Content Mediator Architecture for Content-aware Networks (COMET) Project [online], http://www.comet-project.org/, Downloaded Mar. 9, 2015.
D.K. Smetters, P. Golle, and J.D. Thornton, “CCNx access control specifications,” PARC, Tech. Rep., Jul. 2010.
Dabirmoghaddam, Ali, Maziar Mirzazad Barijough, and J. J. Garcia-Luna-Aceves. ‘Understanding optimal caching and opportunistic caching at the edge of information-centric networks.’ Proceedings of the 1st international conference on Information-centric networking. ACM, 2014.
Detti et al., “Supporting the Web with an information centric network that routes by name”, Aug. 2012, Computer Networks 56, pp. 3705-3702.
Dijkstra, Edsger W., and Carel S. Scholten. ‘Termination detection for diffusing computations.’ Information Processing Letters 11.1 (1980): 1-4.
Dijkstra, Edsger W., Wim HJ Feijen, and A_J M. Van Gasteren. “Derivation of a termination detection algorithm for distributed computations.” Control Flow and Data Flow: concepts of distributed programming. Springer Berlin Heidelberg, 1986. 507-512.
E. Rescorla and N. Modadugu, “Datagram transport layer security,” IETF RFC 4347, Apr. 2006.
E.W. Dijkstra, W. Feijen, and A.J.M. Van Gasteren, “Derivation of a Termination Detection Algorithm for Distributed Computations,” Information Processing Letter, vol. 16, No. 5, 1983.
Fayazbakhsh, S. K., Lin, Y., Tootoonchian, A., Ghodsi, A., Koponen, T., Maggs, B., & Shenker, S. {Aug. 2013). Less pain, most of the gain: Incrementally deployable ICN. In ACM SIGCOMM Computer Communication Review (vol. 43, No. 4, pp. 147-158). ACM.
G. Tyson, S. Kaune, S. Miles, Y. El-Khatib, A. Mauthe, and A. Taweel, “A trace-driven analysis of caching in content-centric networks,” in Proc. IEEE ICCCN 2012, Munich, Germany, Jul.-Aug. 2012, pp. 1-7.
G. Wang, Q. Liu, and J. Wu, “Hierarchical attribute-based encryption for fine-grained access control in cloud storage services,” in Proc. ACM CCS 2010, Chicago, IL, USA, Oct. 2010, pp. 735-737.
G. Xylomenos et al., “A Survey of Information-centric Networking Research,” IEEE Communication Surveys and Tutorials, Jul. 2013.
Garcia, Humberto E., Wen-Chiao Lin, and Semyon M. Meerkov. “A resilient condition assessment monitoring system.” Resilient Control Systems (ISRCS), 2012 5th International Symposium on. IEEE, 2012.
Garcia-Luna-Aceves, Jose J. ‘A unified approach to loop-free routing using distance vectors or link states.’ ACM SIGCOMM Computer Communication Review. vol. 19. No. 4. ACM, 1989.
Garcia-Luna-Aceves, Jose J. ‘Name-Based Content Routing in Information Centric Networks Using Distance Information’ Proc ACM ICN 2014, Sep. 2014.
Ghali, Cesar, GeneTsudik, and Ersin Uzun. “Needle in a Haystack: Mitigating Content Poisoning in Named-Data Networking.” Proceedings of NDSS Workshop on Security of Emerging Networking Technologies (SENT). 2014.
Ghodsi, Ali, et al. “Information-centric networking: seeing the forest for the trees.” Proceedings of the 10th ACM Workshop on Hot Topics in Networks. ACM, 2011.
Ghodsi, Ali, et al. “Naming in content-oriented architectures.” Proceedings of the ACM SIGCOMM workshop on Information-centric networking. ACM, 2011.
Gupta, Anjali, Barbara Liskov, and Rodrigo Rodrigues. “Efficient Routing for Peer-to-Peer Overlays.” NSDI. vol. 4. 2004.
Heckerman, David, John S. Breese, and Koos Rommelse. “Decision-Theoretic Troubleshooting.” Communications of the ACM. 1995.
Heinemeier, Kristin, et al. “Uncertainties in Achieving Energy Savings from Hvac Maintenance Measures in the Field.” ASHRAE Transactions 118.Part 2 {2012).
Herlich, Matthias et al., “Optimizing Energy Efficiency for Bulk Transfer Networks”, Apr. 13, 2010, pp. 1-3, retrieved for the Internet: URL:http://www.cs.uni-paderborn.de/fileadmin/informationik/ag-karl/publications/miscellaneous/optimizing.pdf (retrieved on Mar. 9, 2012).
Hoque et al., ‘NLSR: Named-data Link State Routing Protocol’, Aug. 12, 2013, ICN 2013, pp. 15-20.
I. Psaras, R.G. Clegg, R. Landa, W.K. Chai, and G. Pavlou, “Modelling and evaluation of CCN-caching trees,” in Proc. IFIP Networking 2011, Valencia, Spain, May 2011, pp. 78-91.
Intanagonwiwat, Chalermek, Ramesh Govindan, and Deborah Estrin. ‘Directed diffusion: a scalable and robust communication paradigm for sensor networks.’ Proceedings of the 6th annual international conference on Mobile computing and networking. ACM, 2000.
J. Aumasson and D. Bernstein, “SipHash: a fast short-input PRF”, Sep. 18, 2012.
J. Hur, “Improving security and efficiency in attribute-based data sharing,” IEEE Trans. Knowledge Data Eng., vol. 25, No. 10, pp. 2271-2282, Oct. 2013.
V. Jacobson et al., ‘Networking Named Content,’ Proc. IEEE CoNEXT '09, Dec. 2009.
Jacobson et al., “Custodian-Based Information Sharing,” Jul. 2012, IEEE Communications Magazine: vol. 50 Issue 7 (p. 3843).
Ji, Kun, et al. “Prognostics enabled resilient control for model-based building automation systems.” Proceedings of the 12th Conference of International Building Performance Simulation Association. 2011.
K. Liang, L. Fang, W. Susilo, and D.S. Wong, “A Ciphertext-policy attribute-based proxy re-encryption with chosen-ciphertext security,” in Proc. INCoS 2013, Xian, China, Sep. 2013, pp. 552-559.
Katipamula, Srinivas, and Michael R. Brambley. “Review article: methods for fault detection, diagnostics, and prognostics for building systemsa review, Part I.” HVAC&R Research 11.1 (2005): 3-25.
Katipamula, Srinivas, and Michael R. Brambley. “Review article: methods for fault detection, diagnostics, and prognostics for building systemsa review, Part II.” HVAC&R Research 11.2 (2005): 169-187.
L. Wang et al., ‘OSPFN: An OSPF Based Routing Protocol for Named Data Networking,’ Technical Report NDN-0003, 2012.
L. Zhou, V. Varadharajan, and M. Hitchens, “Achieving secure role-based access control on encrypted data in cloud storage,” IEEE Trans. Inf. Forensics Security, vol. 8, No. 12, pp. 1947-1960, Dec. 2013.
Li, Wenjia, Anupam Joshi, and Tim Finin. “Coping with node misbehaviors in ad hoc networks: A multi-dimensional trust management approach.” Mobile Data Management (MDM), 2010 Eleventh International Conference on. IEEE, 2010.
Lopez, Javier, et al. “Trust management systems for wireless sensor networks: Best practices.” Computer Communications 33.9 (2010): 1086-1093.
M. Green and G. Ateniese, “Identity-based proxy re-encryption,” in Proc. ACNS 2007, Zhuhai, China, Jun. 2007, pp. 288-306.
M. Ion, J. Zhang, and E.M. Schooler, “Toward content-centric privacy in ICN: Attribute-based encryption and routing,” in Proc. ACM SIGCOMM ICN 2013, Hong Kong, China, Aug. 2013, pp. 39-40.
M. Naor and B. Pinkas “Efficient trace and revoke schemes,” in Proc. FC 2000, Anguilla, British West Indies, Feb. 2000, pp. 1-20.
M. Nystrom, S. Parkinson, A. Rusch, and M. Scott, “PKCS#12: Personal information exchange syntax v. 1.1,” IETF RFC 7292, K. Moriarty, Ed., Jul. 2014.
M. Parsa and J.J. Garcia-Luna-Aceves, “A Protocol for Scalable Loop-free Multicast Routing.” IEEE JSAC, Apr. 1997.
M. Walfish, H. Balakrishnan, and S. Shenker, “Untangling the web from DNS,” in Proc. USENIX NSDI 2004, Oct. 2010, pp. 735-737.
Mahadevan, Priya, et al. “Orbis: rescaling degree correlations to generate annotated internet topologies.” ACM SIGCOMM Computer Communication Review. vol. 37. No. 4. ACM, 2007.
Matocha, Jeff, and Tracy Camp. ‘A taxonomy of distributed termination detection algorithms.’ Journal of Systems and Software 43.3 (1998): 207-221.
Matteo Varvello et al., “Caesar: A Content Router for High Speed Forwarding”, ICN 2012, Second Edition on Information-Centric Networking, New York, Aug. 2012.
McWilliams, Jennifer A., and Iain S. Walker. “Home Energy Article: A Systems Approach to Retrofitting Residential HVAC Systems.” Lawrence Berkeley National Laboratory (2005).
Merindol et al., “An efficient algorithm to enable path diversity in link state routing networks”, Jan. 10, Computer Networks 55 (2011), pp. 1132-1140.
Mobility First Project [online], http://mobilityfirst.winlab.rutgers.edu/, Downloaded Mar. 9, 2015.
Narasimhan, Sriram, and Lee Brownston. “HyDE-A General Framework for Stochastic and Hybrid Modelbased Diagnosis.” Proc. DX 7 (2007): 162-169.
NDN Project [online], http://www.named-data.net/, Downloaded Mar. 9, 2015.
Omar, Mawloud, Yacine Challal, and Abdelmadjid Bouabdallah. “Certification-based trust models in mobile ad hoc networks: A survey and taxonomy.” Journal of Network and Computer Applications 35.1 (2012): 268-286.
P. Mahadevan, E.Uzun, S. Sevilla, and J. Garcia-Luna-Aceves, “CCN-krs: A key resolution service for ccn,” in Proceedings of the 1st International Conference on Information-centric Networking, Ser. INC 14 New York, NY, USA: ACM, 2014, pp. 97-106. [Online]. Available: http://doi.acm.org/10.1145/2660129.2660154.
S. Deering, “Multicast Routing in Internetworks and Extended LANs,” Proc. ACM SIGCOMM '88, Aug. 1988.
S. Deering et al., “The PIM architecture for wide-area multicast routing,” IEEE/ACM Trans, on Networking, vol. 4, No. 2, Apr. 1996.
S. Jahid, P. Mittal, and N. Borisov, “Easier: Encryption-based access control in social network with efficient revocation,” in Proc. ACM ASIACCS 2011, Hong Kong, China, Mar. 2011, pp. 411-415.
S. Kamara and K. Lauter, “Cryptographic cloud storage,” in Proc. FC 2010, Tenerife, Canary Islands, Spain, Jan. 2010, pp. 136-149.
S. Kumar et al. “Peacock Hashing: Deterministic and Updatable Hashing for High Performance Networking,” 2008, pp. 556-564.
S. Misra, R. Tourani, and N.E. Majd, “Secure content delivery in information-centric networks: Design, implementation, and analyses,” in Proc. ACM SIGCOMM ICN 2013, Hong Kong, China, Aug. 2013, pp. 73-78.
S. Yu, C. Wang, K. Ren, and W. Lou, “Achieving secure, scalable, and fine-grained data access control in cloud computing,” in Proc. IEEE INFOCOM 2010, San Diego, CA, USA, Mar. 2010, pp. 1-9.
S.J. Lee, M. Gerla, and C. Chiang, “On-demand Multicast Routing Protocol in Multihop Wireless Mobile Networks,” Mobile Networks and Applications, vol. 7, No. 6, 2002.
Scalable and Adaptive Internet Solutions (SAIL) Project [online], http://sail-project.eu/ Downloaded Mar. 9, 2015.
Schein, Jeffrey, and Steven T. Bushby. A Simulation Study of a Hierarchical, Rule-Based Method for System-Level Fault Detection and Diagnostics in HVAC Systems. US Department of Commerce,[Technology Administration], National Institute of Standards and Technology, 2005.
Shani, Guy, Joelle Pineau, and Robert Kaplow. “A survey of point-based POMDP solvers.” Autonomous Agents and Multi-Agent Systems 27.1 (2013): 1-51.
Sheppard, John W., and Stephyn GW Butcher. “A formal analysis of fault diagnosis with d-matrices.” Journal of Electronic Testing 23.4 (2007): 309-322.
Shneyderman, Alex et al., ‘Mobile VPN: Delivering Advanced Services in Next Generation Wireless Systems’, Jan. 1, 2003, pp. 3-29.
Solis, Ignacio, and J. J. Garcia-Luna-Aceves. ‘Robust content dissemination in disrupted environments.’ proceedings of the third ACM workshop on Challenged networks. ACM, 2008.
Sun, Ying, and Daniel S. Weld. “A framework for model-based repair.” AAAI. 1993.
T. Ballardie, P. Francis, and J. Crowcroft, “Core Based Trees (CBT),” Proc. ACM SIGCOMM '88, Aug. 1988.
T. Dierts, “The transport layer security (TLS) protocol version 1.2,” IETF RFC 5246, 2008.
T. Koponen, M. Chawla, B.-G. Chun, A. Ermolinskiy, K.H. Kim, S. Shenker, and I. Stoica, ‘A data-oriented (and beyond) network architecture,’ ACM SIGCOMM Computer Communication Review, vol. 37, No. 4, pp. 181-192, Oct. 2007.
V. Goyal, 0. Pandey, A. Sahai, and B. Waters, “Attribute-based encryption for fine-grained access control of encrypted data,” in Proc. ACM CCS 2006, Alexandria, VA, USA, Oct.-Nov. 2006, pp. 89-98.
V. Jacobson, D.K. Smetters, J.D. Thornton, M.F. Plass, N.H. Briggs, and R.L. Braynard, ‘Networking named content,’ in Proc. ACM CoNEXT 2009, Rome, Italy, Dec. 2009, pp. 1-12.
Verma, Vandi, Joquin Fernandez, and Reid Simmons. “Probabilistic models for monitoring and fault diagnosis.” The Second IARP and IEEE/RAS Joint Workshop on Technical Challenges for Dependable Robots in Human Environments. Ed. Raja Chatila. Oct. 2002.
Vutukury, Srinivas, and J. J. Garcia-Luna-Aceves. A simple approximation to minimum-delay routing. vol. 29. No. 4. ACM, 1999.
W.-G. Tzeng and Z.-J. Tzeng, “A public-key traitor tracing scheme with revocation using dynamic shares,” in Proc. PKC 2001, Cheju Island, Korea, Feb. 2001, pp. 207-224.
Waldvogel, Marcel “Fast Longest Prefix Matching: Algorithms, Analysis, and Applications”, A dissertation submitted to the Swiss Federal Institute of Technology Zurich, 2002.
Walker, Iain S. Best practices guide for residential HVAC Retrofits. No. LBNL-53592. Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, CA (US), 2003.
Wang, Jiangzhe et al.,“DMND: Collecting Data from Mobiles Using Named Data”, Vehicular Networking Conference, 2010 IEEE, pp. 49-56.
Xylomenos, George, et al. “A survey of information-centric networking research.” Communications Surveys & Tutorials, IEEE 16.2 (2014): 1024-1049.
Yi, Cheng, et al. ‘A case for stateful forwarding plane.’ Computer Communications 36.7 (2013): 779-791.
Yi, Cheng, et al. ‘Adaptive forwarding in named data networking.’ ACM SIGCOMM computer communication review 42.3 (2012): 62-67.
Zhang, et al., “Named Data Networking (NDN) Project”, http://www.parc.com/publication/2709/named-data-networking-ndn-project.html, Oct. 2010, NDN-0001, PARC Tech Report.
Zhang, Lixia, et al. ‘Named data networking.’ ACM SIGCOMM Computer Communication Review 44.3 {2014): 66-73.
Soh et al., “Efficient Prefix Updates for IP Router Using Lexicographic Ordering and Updateable Address Set”, Jan. 2008, IEEE Transactions on Computers, vol. 57, No. 1.
Beben et al., “Content Aware Network based on Virtual Infrastructure”, 2012 13th ACIS International Conference on Software Engineering.
D. Trossen and G. Parisis, “Designing and realizing and information-centric Internet,” IEEE Communications Magazing, vol. 50, No. 7, pp. 60-67, Jul. 2012.
Garcia-Luna-Aceves et al., “Automatic Routing Using Multiple Prefix Labels”, 2012, IEEE, Ad Hoc and Sensor Networking Symposium.
Gasti, Paolo et al., ‘DoS & DDoS in Named Data Networking’, 2013 22nd International Conference on Computer Communications and Networks (ICCCN), Aug. 2013, pp. 1-7.
Ishiyama, “On the Effectiveness of Diffusive Content Caching in Content-Centric Networking”, Nov. 5, 2012, IEEE, Information and Telecommunication Technologies (APSITT), 2012 9th Asia-Pacific Symposium.
J. Hur and D.K. Noh, “Attribute-based access control with efficient revocation in data outsourcing systers,” IEEE Trans. Parallel Distrib. Syst, vol. 22, No. 7, pp. 1214-1221, Jul. 2011.
Kaya et al., “A Low Power Lookup Technique for Multi-Hashing Network Applications”, 2006 IEEE Computer Society Annual Symposium on Emerging VLSI Technologies and Architectures, Mar. 2006.
Hoque et al., “NLSR: Named-data Link State Routing Protocol”, Aug. 12, 2013, ICN'13.
Nadeem Javaid, “Analysis and design of quality link metrics for routing protocols in Wireless Networks”, PhD Thesis Defense, Dec. 15, 2010, Universete Paris-Est.
Wetherall, David, “Active Network vision and reality: Lessons form a capsule-based system”, ACM Symposium on Operating Systems Principles, Dec. 1, 1999. pp. 64-79.
Kulkarni A.B. et al., “Implementation of a prototype active network”, IEEE, Open Architectures and Network Programming, Apr. 3, 1998, pp. 130-142.
C. Gentry and A. Silverberg. Hierarchical ID-Based Cryptography. Advances in Cryptology—ASIACRYPT 2002. Springer Berlin Heidelberg (2002).
Zahariadis, Theodore, et al. “Trust management in wireless sensor networks.” European Transactions on Telecommunications 21.4 (2010): 386-395.
Mahadevan, Priya, et al. “Systematic topology analysis and generation using degree correlations.” ACM SIGCOMM Computer Communication Review. vol. 36. No. 4. ACM, 2006.
Xiong et al., “CloudSeal: End-to-End Content Protection in Cloud-based Storage and Delivery Services”, 2012.
https://code.google.com/p/ccnx-trace/.
Biradar et al., “Review of multicast routing mechanisms in mobile ad hoc networks”, Aug. 16, Journal of Network and Computer Applications 35 (2012) 221-229.
Lui et al. (A TLV-Structured Data Naming Scheme for Content-Oriented Networking, pp. 5822-5827, International Workshop on the Network of the Future, Communications (ICC), 2012 IEEE International Conference on Jun. 10-15, 2012).
Peter Dely et al. “OpenFlow for Wireless Mesh Networks” Computer Communications and Networks, 2011 Proceedings of 20th International Conference on, IEEE, Jul. 31, 2011 (Jul. 31, 2011), pp. 1-6.
Tiancheng Zhuang et al. “Managing Ad Hoc Networks of Smartphones”, International Journal of Information and Education Technology, Oct. 1, 2013.
Xie et al. “Collaborative Forwarding and Caching in Content Centric Networks”, Networking 2012.
Amadeo et al. “Design and Analysis of a Transport-Level Solution for Content-Centric VANETs”, University “Mediterranea” of Reggio Calabria, Jun. 15, 2013.
Related Publications (1)
Number Date Country
20170295261 A1 Oct 2017 US