This invention relates to shaving systems with exfoliation.
Shaving razors used in wet shaving systems typically have one or more blades on a housing. The surface contacted by the skin in front of the blades is known as the guard, and the surface contacted by the skin after the blades is known as the cap. In many wet shaving systems, the guard has elastomeric projections to engage and stretch the skin before contacting the cutting edges of the blades, and the cap provides a lubricating agent to the skin surface after contacting the blades.
It is also known to enhance the tactile properties of a wet-shaving system. For example, Lyall U.S. Pat. No. 3,939,560 discloses shaving equipment with a roughened guard surface. The guard surface in Lyall can be roughened by abrading it with particles or, alternatively, by coating or impregnating it with particles.
The invention features, in general, a wet-shaving system including a housing, one or more blades mounted on the housing, an exfoliation member mounted on the housing, and a drive mechanism providing repeating movement to the exfoliation member.
Preferred embodiments of the invention may include one or more of the following features. In preferred embodiments the exfoliation member is located in front of the blades. An elastomeric guard member can be located between the exfoliation member and the blades. The elastomeric guard member can include projections, e.g., elongated fins. A guard bar can be located between the exfoliation member and the blades. The exfoliation member can be elongated and oriented parallel to the blades. Elastomeric projections can also be located in front of the exfoliation member. Alternatively the exfoliation member can located behind the blades. The exfoliating member can be made of abrasive containing material, fibers, a brush, a wire mesh, a roughened metal surface, natural organic materials, or chemical exfoliants. The shaving system can also include a handle connected to the housing. The drive mechanism can provides repeated movement of the housing that is transmitted to the exfoliation member and the blade member. The drive mechanism can be located on the housing or within the handle. The drive mechanism can provide vibrations to the housing (directly or indirectly) that are then transmitted to the exfoliation member. Alternatively the drive mechanism can cause the exfoliation member to move relative to the housing, e.g., back and forth laterally in a linear track, or back and forth vertically with respect to the housing or in an orbital manner. When moving laterally, two elongated exfoliation members can be employed and caused to move in opposite directions. For lateral movement, the drive mechanism can include an oscillating shaft, and a crank that has one end connected to the shaft and another end operatively engaging the exfoliation member to cause it to move back and forth within the track. The shaving system preferably includes a pivotal mounting for the housing, permitting the housing to pivot during shaving. The drive mechanism preferably provides repeating movement of the exfoliation member having an amplitude of 5 mm or less, most preferably 1-3 mm. The drive mechanism preferably provides repeating movement of the exfoliation member having a frequency of less than 500 Hz. The shaving system can include a variable speed control to control the frequency of repeating movement of the exfoliation member, e.g., between 0 and 160 Hz.
Embodiments can include one or more of the following advantages. The exfoliation member removes dead skin cells, providing a smoother skin surface and more efficient hair removal by the blades. The use of exfoliation member also results in healthier looking skin and increases blood flow just under the skin. Use of a powered device provides improved comfort and better shave performance. Vibration may desensitize the skin and mask some of the discomfort associated with using an exfoliation member, permitting increased particle aggressiveness. In addition, the additional movement increases effectiveness of the exfoliation member since the exfoliating action and coverage will be greater than is obtained by a simple shaving stroke. Powered lateral motion increases effectiveness by providing multiple strokes during shaving.
Other features and advantages of the invention will be apparent from the description and drawings, and from the claims.
Referring to
Handle 10 includes internal motor 32 and eccentric member 34 to provide vibrations to the handle which are in turn transmitted to the housing 16 of cartridge 14 and the components mounted on the housing. Such a motor and eccentric member are described in U.S. Pat. No. 5,299,354, which is hereby incorporated by reference. Handle 10 also includes control knob 34 that controls the revolutions per minute of motor 32.
Referring to
Referring to
Exfoliation is generally described as the peeling off of flakes or scales of dead skin. Exfoliation member 36 can be made of, for example, a mounted abrasive (e.g., sandpaper), a composite containing engineered fibers, a brush (with or without abrasive elements on the brush fibers), a molded surface (e.g., a roughened molded surface), wire mesh, a roughened (e.g., etched) metal surface, stone or stone-like material (e.g., pumice), individual fingers (e.g., plastic fingers), individual knobs, a spray- or dip-coated surface, flocked foam, a woven surface (e.g., terrycloth), or the hook and/or loop component of a hook-and-loop fastener (e.g., a Velcroâ„¢ fastener). The exfoliation member 36 can have any texture that is suitable for exfoliation. The exfoliation member can have a relatively smooth exfoliating texture, such as the texture of a fine non-woven fiber, or it can have a relatively rough exfoliating texture, such as the texture of a pumice stone. The exfoliating elements in the exfoliation member can be any of a number of different types of exfoliating elements. For example, the exfoliating elements can include abrasive particles, such as ground fruit seeds and stones (e.g., apricot, peach, avocado, or olive seeds or stones), ground nut shells (e.g., walnut, almond, coconut, or pecan shell), ground or fibrous plant material (e.g., loofah, corn cob, oatmeal), polymer beads or granular polymers (e.g., polystyrene beads, polyethylene beads), Jojoba wax beads, rice bran, silica, minerals, granular mineral composites (e.g., sand, pumice sand), clay, or combinations thereof. The exfoliating elements can be dissolvable. The exfoliating elements can be materials (e.g., sea salt) that are abrasive upon first contact with the user's skin, but that later dissolve upon contact with water or shave creams and gels. In some cases, the exfoliating elements may include chemical exfoliants such as alpha- or beta- hydroxy acids (e.g., citric acid, lactic acid, glycolic acid, tartaric acid). In such cases, the chemical exfoliants can be contained in a microcapsule that breaks during shaving, thereby releasing the exfoliant. In this case, it is generally desirable to use a matrix material that erodes or dissolves during shaving, so that new microcapsules will be exposed to replace those that have ruptured. Suitable microcapsules can range in size from less than about 50 microns to about 1000 microns. Microencapsulation can help to protect the exfoliant, e.g., by protecting heat-sensitive acids from decomposition during extruding or molding operations. Generally, suitable exfoliating elements have a hardness, roughness, and/or tackiness that is sufficient to allow the exfoliating element to remove loose flakes of skin during shaving. The exfoliating elements can be sufficiently hard so that they do not break down during shaving, or may be softer if desired.
The exfoliation member can have a width of between about 2 mm and about 10 mm, and a length the extends along the majority of the length of housing 16. The height of the exfoliation pad relative to a plane through the cutting edges could be fixed or could be adjustable, as described in U.S. application Ser. No. 10/732,555, filed Dec. 10, 2003, which is hereby incorporated by reference.
In another embodiment, cap 22 is made of an exfoliation material as described above.
When using razor 10, the user turns on the vibrating motor and selects the desired operating frequency by rotating knob 34. The user then shaves using normal shaving strokes. Fins 38, 44 or 50 engage and stretch the skin in front of the blades, and cap 22 provides lubrication. Exfoliating member 36, 46 or 52 tends to remove dead skin cells with each stroke and provide a smoother skin surface prior to contact by blades 18, providing more efficient hair removal by blades 18. Within handle 12, the rotation of eccentric member 34 causes the end 26 of handle 12 to vibrate. These vibrations are in turn transmitted to housing 16 and to guard 20 (including the exfoliation member 36, 46 or 52 thereon), blades 18, and cap 22 carried thereon. Vibration may desensitize the skin and mask some of the discomfort associated with using exfoliation member 36, permitting increased particle aggressiveness. The vibrations provide improved comfort and better shave performance. The pivotal connection about axis 30 permits the housing 16 to pivot and follow the contours of the face during shaving, avoiding concern that a user might push a vibrating cartridge too hard against the skin without appreciating it, as might happen with a vibrating razor having a non-pivoting connection of a cartridge to a handle.
Alternatively, exfoliation member 102 could be driven for vertical oscillations, i.e., into and out of a plane passing through the cutting edges of blades 18. Alternatively, the exfoliation member could be moved forward and backward with respect to the blades or in an orbital path.
Other embodiments are within the scope of the following claims. For example, the vibration generator can be mounted within or be directly attached to housing 16.
This application is a continuation of pending U.S. application Ser. No. 11/805,438, filed May 23, 2007, which is a divisional of U.S. application Ser. No. 10/830,383, filed Apr. 22, 2004, now abandoned.
Number | Date | Country | |
---|---|---|---|
Parent | 10830383 | Apr 2004 | US |
Child | 11805438 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11805438 | May 2007 | US |
Child | 12484546 | US |