The invention relates to the field of fluid filters.
Fluid filters are designed to remove solid or other impurities from a fluid (liquid and/or gas) by means of a porous physical barrier. The physical barrier is often referred to as the “filter medium”. Many types of filter media exist. Some filter media are compressible, allowing an adjustment of the size and/or shape of their pores, thereby enabling the removal of impurities of different sizes and/or shapes. Other filter media remove impurities by means of interception and causing adherence of the particles, requiring water to flow flows at a relatively slow rate.
In addition to their filtering mode of operation, fluid filters are often also configured to be operated in a washing mode. In the washing mode, a fluid is streamed in the opposite direction to the filtering direction, thereby washing away the impurities previously caught in the filter medium. In some cases, the media may be expanded before or during the washing, thereby allowing the caught impurities to escape from the pores into the washing fluid.
One common type of fluid filters is a water filter. Water filters are used, for example, in water treatment plants, desalination plants, and points-of-use, such as residential or commercial sites. These filters may filter water intended for drinking, irrigation and/or industrial purposes, removing impurities ranging from dirt to pathogens.
The foregoing examples of the related art and limitations related therewith are intended to be illustrative and not exclusive. Other limitations of the related art will become apparent to those of skill in the art upon a reading of the specification and a study of the figures.
The following embodiments and aspects thereof are described and illustrated in conjunction with systems, tools and methods which are meant to be exemplary and illustrative, not limiting in scope.
There is provided, in accordance with an embodiment, a thread-based filter, comprising: a thread-based medium comprising multiple threads; and a tube comprising a first opening and a second opening, wherein the tube at least partially houses the thread-based medium, the medium having a first end oriented towards the first opening and a second end oriented towards the second opening, wherein the threads are oriented lengthwise along the length of the tube and extend between the first and second ends of the medium, and wherein the thread-based medium is configured to trap impurities present in a fluid flowing substantially lengthwise along the threads from the first opening to the second opening during a filtration mode, and wherein the thread-based medium is configured to release impurities into a fluid flowing substantially lengthwise along the threads from the second opening to the first opening during a washing mode.
In some embodiments, the threads at the second end of the medium are attached to a plate, and wherein the threads at the first end of the medium are unattached, thereby providing a smaller inter-thread spacing during the filtering mode and providing a greater inter-thread spacing during the washing mode.
In some embodiments, the medium is tapered towards the second end of the medium.
In some embodiments, the plate provides a passageway for the fluid.
In some embodiments, the medium is configured to move lengthwise along the tube.
In some embodiments, the motion of the medium lengthwise along the tube is configured to provide a varying inter-thread spacing within the medium.
In some embodiments, the tube comprises a narrow portion and a wide portion.
In some embodiments, the thread based medium is housed in the narrow portion during the filtration mode, and wherein the at least a portion of the medium adjacent to the first end of the medium is housed in the wide portion of the tube during the washing mode.
In some embodiments, the thread based medium is at least partially contained within the tube during the filtration mode, and wherein at least a portion of the medium adjacent to the first end of the medium is exposed from the tube during a washing mode.
In some embodiments, the fluid is any of water, air or a combination of water and air during a washing mode.
In some embodiments, the fluid is introduced to the medium as a continuous stream during a washing.
In some embodiments, the fluid is introduced to the medium as a pulse during a washing mode
There is further provided, in accordance with an embodiment, a multi-sheaf-based filter, comprising: multiple sheaf-based filter units; and a filter body, wherein the filter body is configured to house the multiple sheaf-based filter units. In some embodiments, the sheaf-based filter units comprise the thread-based filter units of claim 1.
In some embodiments, the multi-sheaf-based filter further comprises: a filtering input port; a filtering output port; a washing input port; and a washing output port, wherein the multi-sheaf based filter is configured to receive a filtration fluid at the filtering input port, direct the filtration fluid into the multiple sheaf-based filter units to flow lengthwise along the threads of the units, and remove the filtration fluid via the filtering output port, thereby filtering the filtration fluid, and receive a washing fluid at the washing input port, direct the washing fluid into the multiple sheaf-based filter units to flow lengthwise along the threads of the units, and remove the washing fluid via the washing output port, thereby washing the filter.
In some embodiments, the filter is configured to direct the fluid into the units simultaneously.
In some embodiments, the filter is configured to direct the fluid into the units sequentially.
There is further provided, in accordance with an embodiment, a method for filtering a fluid, the method comprising: introducing a fluid into a thread-based medium comprising multiple threads extending between a first end and a second end of the medium, wherein the medium is at least partially housed in a tube, and wherein the threads of the medium are oriented lengthwise along the length of the tube with the first end of the medium oriented with a first end of the tube and the second end of the medium oriented with a second end of the tube, directing the fluid to flow lengthwise along the threads from the first end of the medium to the second end of the medium; trapping in the threads impurities present in the fluid, thereby filtering the fluid; and removing the fluid from the second end of the medium.
In some embodiments, directing the fluid to flow from the first end of the medium to the second end of the medium further comprises directing the fluid to flow from the unattached ends of the threads at the first end of the medium to a plate attached to the second end of the medium.
In some embodiments, trapping further comprises pushing the medium lengthwise along the tube, thereby containing the medium within the tube and reducing the inter-thread spacing of the medium.
In some embodiments, the tube has a varying cross-sectional area, and wherein the medium is at least partially contained within a narrower portion of the tube.
In some embodiments, the second end of the medium is tapered.
There is further provided, in accordance with an embodiment, a method for washing a filter, the method comprising: introducing a fluid into a second end of a thread-based medium comprising multiple threads extending between a first end and a second end of the medium, wherein the medium is at least partially housed in a tube, and wherein the threads of the medium are oriented lengthwise along the length of the tube with the first end of the medium oriented with a first end of the tube and the second end of the medium oriented with a second end of the tube, directing the fluid to flow lengthwise along the threads from the second end of the medium to the first end of the medium; releasing impurities trapped in the threads into the fluid, thereby washing the filter; and removing the fluid from the first end of the medium.
In some embodiments, directing further comprises directing the fluid to flow through a plate attached to the second end of the medium to the unattached ends of the threads at the first end of the medium.
In some embodiments, releasing further comprises pushing the medium lengthwise along the tube, thereby exposing at least a portion of the medium adjacent to the first end of the medium from the tube and increasing the inter-thread spacing of the medium.
In some embodiments, releasing further comprises pushing the medium lengthwise along the tube, thereby containing the at least a portion of the medium adjacent to the second end of the medium in a wider portion of the tube and increasing the inter-thread spacing of the medium
In some embodiments, the fluid comprises water, or air, or a combination of water and air.
In some embodiments, the fluid is introduced as a continuous stream.
In some embodiments, the fluid is introduced as a pulse.
In addition to the exemplary aspects and embodiments described above, further aspects and embodiments will become apparent by reference to the figures and by study of the following detailed description.
Exemplary embodiments are illustrated in referenced figures. Dimensions of components and features shown in the figures are generally chosen for convenience and clarity of presentation and are not necessarily shown to scale. The figures are listed below.
A thread-based fluid filter is disclosed herein. In this filter, multiple threads, such as in a sheaf configuration, provide a bi-directional medium for alternate filtering and washing modes. Filtering and washing is achieved by streaming a fluid substantially lengthwise along the threads in opposing directions, accordingly. The term “substantially” refers to the fact that while the majority of the flow may be lengthwise along the threads, some flow may be transverse or lateral to some of the threads, resulting in some cross flow.
Reference is now made to
Filter 100 may include a thread-based filtration medium 102 providing multiple threads, such as in a sheaf configuration, where the threads of the medium extend from one end of the medium to the other end. Filter 100 may be configured to remove impurities from a fluid flowing lengthwise along the threads during a filtration mode, and release those impurities into a fluid flowing lengthwise along the threads during a washing mode. The fluid, in accordance with some exemplary embodiments, may be water, air, oil, or combinations thereof, to name a few.
For example, in various embodiments, the number of threads per sheaf is between 120,000 and 130,000. The threads may be mono-filament having a typical diameter ranging between 200-250 microns. Alternatively, the threads may be spun threads, each composed of approximately 70 single mono-filament polyester fibers with typical thread diameters ranging from 200 to 250 microns. A typical filtration unit may have an approximate diameter of 8 cm, and a height of between 10 and 15 cm. However, other sizes of filtration units are intended herein
The term “threads”, as referred to herein, may relate to any kind of strings, yarns, fabric stripes, etc.—whether having an essentially round cross section, essentially rectangular cross section, etc. The threads may be made of any suitable material, whether rigid or flexible.
Medium 102 may be at least partially housed in a tube 104 disposed with one or more openings 106a and 106b for introducing and removing the fluid. Medium 102 may be oriented in a manner to allow the threads of medium 102 to run lengthwise along the length of tube 104, by orienting one end of medium 102 with opening 106a and orienting the other end of medium 102 with opening 106b, thereby allowing a fluid flowing through the tube to flow lengthwise along the threads of medium 102. In some embodiments, the cross-sectional area of tube 104 may have a circular or elliptical shape. In other embodiments the cross-sectional area of tube 104 may have a polygon shape, such as a hexagon, triangle or square, to name a few.
The threads of medium 102 may be attached at one end, such as by attaching the ends of the threads to a plate, such as a disc 108 . Medium 102 may be configured to move lengthwise along tube 102, such as by configuring plate 108 to move lengthwise along tube 102, such as in response to fluid pressure. The threads may be attached to plate 108 using any suitable attachment technique, such as by gluing the threads to plate 108 using any suitable adhesive. Plate 108 may provide one or more passageways for fluid to flow through plate 108, such as one or more perforations. The opposite ends of the threads of medium 102 may be optionally unattached. A rod 110 may be coupled to plate 108 at an end of tube 104 via a bridge 112. Rod 110 may provide a stabilizing axis to plate 108 for lengthwise aligning the motion of plate 108 along tube 104, such as in response to fluid pressure. Optionally, the lengthwise motion of rod 110 for pushing and/or pulling plate 108 along tube 102 may be augmented using any suitable means, such as by applying any combination of mechanical, electric, or pneumatic means to enhance the filtering and washing operations. A seal 114, such as a polymeric seal may be provided to prevent fluid leakage.
The following description discloses multiple modes of use for filter 100, such as a filtering mode and a washing mode. In describing various elements of the system, the terms ‘top’ and ‘bottom’ may be understood as identifying opposite ends of the filter, and do not imply any specific orientation of the filter.
During a filtration mode, the fluid may be introduced to medium 102, such as at the unattached and optionally exposed ends of the threads. The fluid may enter from the bottom of tube 104 via opening 106a, and flow substantially lengthwise along the threads towards opening 106b. The fluid pressure, optionally augmented with electro/mechanical/pneumatic means, may push medium 102 attached to plate 108 along tube 104 until plate 108 engages with the top end of tube 104, pushing medium 102 against plate 108 and at least partially containing medium 102 within tube 104, thereby decreasing the inter-thread spacing within the threads of the medium. Impurities, also referred to as “particles”, that are present in the fluid may flow into the spaces between the threads, starting from the free ends of the medium 102 until they reach a location where the space is too tight to accommodate them, and they become trapped in the threads, thereby filtering the fluid. The particles may be trapped in the threads by additional means, such as by interception by the threads, internal impaction, diffusion, or Electro kinetic effects, thereby filtering the fluid. The filtered fluid may flow out of medium 102 through the perforations in plate 108 and exit from the top of tube 104 via opening 106b.
Reference is now made to
Reference is now made to
Reference is now made to
In some embodiments, multiple cycles, such as the washing cycle, may be performed with filters 100 and 200 using different compositions of fluid, such as performing alternating cycles with water, air, or a combination of water and air. In some embodiments the fluid is introduced into mediums 102 and 202 in pulses, whereas in other embodiments the fluid is introduced as a continuous stream.
Advantageously, by attaching the optionally tapered threads at one end to a plate, and leaving the threads unattached at their other ends, and further providing the plate mobility within either of tubes 104 or 204, a varying inter-thread spacing is provided to the thread medium throughout the usage modes described above, thereby enhancing both the filtering and washing operations. In this manner, in some embodiments a filtration fineness of approximately 1 micron may be achieved. In other embodiments a different filtration fineness may be achieved.
Reference is now made to
Reference is now made to
Reference is now made to
To enhance the washing, a combination of water and air, or a combination of a different liquid with air, may be used as the washing fluid. The air may form bubbles in the water or the different fluid, and, thereby, the threads and their trapped impurities may be intermittently hit with water and air, shocking them and assisting in releasing the impurities. Alternatively, only air may be used as the washing fluid, for at least a certain duration during the washing.
Reference is now made to
To enhance the washing, a combination of water and air, or a combination of a different liquid with air, may be used as the washing fluid. The air may form bubbles in the water or the different fluid, and, thereby, the threads and their trapped impurities may be intermittently hit with water and air, shocking them and assisting in releasing the impurities. Alternatively, only air may be used as the washing fluid, for at least a certain duration during the washing.
Reference is now made to
For example a filtration fluid may be received horizontally into filter house 520 via input filtering port 526a disposed towards the bottom of body 522. Input filtering pipe 528a may direct the fluid to flow vertically upwards into units 500, so that the fluid flows lengthwise along the threads of mediums 502, corresponding to medium 102, in accordance with the filters described above in
Similarly, a washing fluid may be introduced horizontally into filter house 520 via input washing port 530a situated at the side of cover 524. Input washing pipe 532a may direct the fluid to flow vertically downwards into units 500, so that the fluid flows lengthwise along the threads of mediums 502, corresponding to medium 102, in accordance with the filters described above in
Reference is now made to
Reference is now made to
Reference is now made to
To enhance the washing, a combination of water and air, or a combination of a different liquid with air, may be used as the washing fluid. The air may form bubbles in the water or the different fluid, and, thereby, the threads and their trapped impurities may be intermittently hit with water and air, shocking them and assisting in releasing the impurities. Alternatively, only air may be used as the washing fluid, for at least a certain duration during the washing.
In this manner, a high overall thread-count is provided for enhanced filtration. By dividing and separating the threads into multiple tubes individually contained in multiple receptacles, a degree of separation is maintained between the threads, hindering thread entanglement.
In the description and claims of the application, each of the words “comprise” “include” and “have”, and forms thereof, are not necessarily limited to members in a list with which the words may be associated. In addition, where there are inconsistencies between this application and any document incorporated by reference, it is hereby intended that the present application controls.
Number | Date | Country | Kind |
---|---|---|---|
1316007.2 | Sep 2013 | GB | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/IL2014/050800 | 9/9/2014 | WO | 00 |